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We report water wave experiments performed in a long tank where we consider the
evolution of nonlinear deep-water surface gravity waves with the envelope in the form
of a large-scale rectangular barrier. Our experiments reveal that, for a range of initial
parameters, the nonlinear wave packet is not disintegrated by the Benjamin-Feir instability
but exhibits a specific, strongly nonlinear modulation, which propagates from the edges of
the wave packet toward the center with finite speed. Using numerical tools of nonlinear
spectral analysis of experimental data, we identify the observed envelope wave structures
with focusing dispersive dam break flows, a peculiar type of dispersive shock waves
recently described in the framework of the semiclassical limit of the 1D focusing nonlinear
Schrödinger equation (1D-NLSE). Our experimental results are shown to be in a good
quantitative agreement with the predictions of the semiclassical 1D-NLSE theory. This is
the first observation of the persisting dispersive shock wave dynamics in a modulationally
unstable water wave system.

DOI: 10.1103/PhysRevFluids.5.034802

I. INTRODUCTION

Following the pioneering works by Whitham and Lighthill [1,2], Benjamin and Feir reported in
1967 the fundamental experimental and theoretical investigations of the time evolution of nonlinear
deep-water surface gravity waves [3,4]. They demonstrated that a uniform continuous wave train is
unstable with respect to small long-wave perturbations of its envelope, which may eventually lead
to its disintegration after some evolution time [3–9]. In 1968 Zakharov showed that, for narrowband
perturbations, the governing hydrodynamic equations can be reduced to a single equation for the
complex wave envelope: the focusing one-dimensional nonlinear Schrödinger equation (1 D-NLSE)
[10,11]. It was then understood that the instability, first observed in water waves, represents
a ubiquitous phenomenon in focusing nonlinear media. Nowadays this phenomenon is called
modulational instability (MI) and it has been observed and studied in many physical situations
including plasma waves, matter waves, electromagnetic and optical waves [12–22].
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According to the conventional picture, the early (linear) stage of MI is manifested in the
exponential growth of all the perturbations of a plane wave background that fall in the region of
the Fourier spectrum below a certain cutoff wave number. This simple classical (linear) picture
provides a valid description of the process of the short-term destabilization of a plane wave of
an infinite extent but it is inherently not adapted to the description of the nonlinear development
of MI. Three distinct scenarios of nonlinear evolution of modulationally unstable wave systems
described by the 1D-NLSE can be distinguished depending on the type of the initial condition
considered. In the classical configuration (i) where the initial condition is a plane wave of infinite
extent a particular scenario of the MI development strongly depends on the type of perturbation
of the plane wave background that is considered. Breather solutions of the focusing 1D-NLSE are
usually found to dominate the dynamics in this situation [23–31], although other nonlinear wave
structures are also found depending on the localization and the solitonic content of the considered
perturbation [32–36]. The destabilization of an infinite plane wave by a random perturbation leads
to the emergence of a complex nonlinear wave structure associated with the so-called integrable
turbulence [37] requiring statistical approaches to the description of the evolution of the nonlinear
wave system [38–47].

There is another situation (ii) of physical relevance where the initial condition does not represent
a plane wave of infinite extent but is a broad localized wave packet with a smooth envelope. In this
situation, the initial evolution is dominated by nonlinear effects, and the classical MI (understood
as an exponential growth of small long-wave initial perturbations) plays a secondary role. The
dynamical evolution of such wave fields in nonlinear focusing dispersive media gives rise to generic
dynamical features which are in sharp contrast with the conventional MI scenarios [48]. As shown
in the optical fiber experiments reported in Ref. [49], the nonlinear focusing of such wave packets
(light pulses) results in a gradient catastrophe that is regularized by dispersive effects through the
universal mechanism yielding the local Peregrine soliton structure [48]. Note that these dynamical
features have been observed in the nonlinear evolution of deep-water wave packets [50,51] even
though they had not been connected to the universal semiclassical mechanism of the generation of
the Peregrine soliton discussed in Ref. [48].

In a third configuration (iii), which is the main focus of the present paper, the initial field profile
is characterized by sharp and significant amplitude changes. This configuration, which belongs to
the class of the so-called Riemann problems [52], can give rise to dispersive shock waves (DSWs), a
phenomenon that has attracted considerable attention in recent years but considered predominantly
for stable media [53]. DSWs in shallow water waves (often termed undular bores) are a classical
subject of fluid dynamics [54] with numerous contributions over the past 60 or so years [55],
starting from the pioneering paper by Benjamin and Lighthill [56]. Note that some recent optical
fiber experiments have demonstrated that light may evolve as a fluid, mimicking the features of
undular bores or dispersive dam break flows in shallow water [57–59]. In contrast, there has been
no experimental demonstration of the DSW dynamics on deep water so far.

In this paper, we present water wave experiments in which we demonstrate the persistent “focus-
ing DSW” dynamics in the evolution of water wave packets of large extent and constant amplitude.
Performing experiments in a long tank, we consider the evolution of nonlinear deep-water surface
gravity waves having their envelope in the form of a large-scale rectangular barrier (a “box”) of finite
height. Our experimental observations reveal that, for a range of input parameters, the nonlinear
wave train does not get disintegrated by the spontaneous MI but instead, exhibits a regular DSW
type behavior that dominates the dynamics of the nonlinear wave at intermediate times.

More specifically, we observe that the initial sharp transitions between the uniform plane wave
and the zero background undergo a very special nonlinear evolution leading to the emergence of two
counter-propagating focusing dispersive dam break flows having the characteristic DSW structure,
in good agreement with the scenario studied theoretically in Refs. [60,61] using semiclassical
analysis of the focusing 1D-NLSE. We show that there exist ranges of parameters for which
the dynamics observed in the experiment are nearly integrable and quantitatively agree with the
theoretical predictions of Refs. [60,61]. We also show that the observed behaviors exhibit significant
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degree of robustness to perturbative higher-order effects. Our paper presents the first observation of
DSWs in deep water waves, supported by the previously developed semiclassical theory [60,61].

The paper is organized as follows. In Sec. II, we describe our experimental results obtained
in a one-dimensional water tank. In Sec. III, we introduce the semiclassical formalism in which
the observed dynamical behaviors can be interpreted. In Sec. IV, we perform quantitative com-
parison between experimental results and the semiclassical theory. In Sec. V, we show that the
observed dynamics exhibits some degree of robustness to perturbative higher-order effects. A brief
summary of our work is presented in Sec. VI together with a short discussion about possible
perspectives.

II. WATER WAVE EXPERIMENT

The experiment was performed in a wave flume at the Hydrodynamics, Energetics, and Atmo-
spheric Environment Lab (LHEEA) in Ecole Centrale de Nantes (France). The flume, which is
148 m long, 5 m wide, and 3 m deep, is equipped with a parabolic shaped absorbing beach that is
approximately 8 m long. With the addition of pool lanes arranged in a W pattern in front of the beach
the measured amplitude reflection coefficient is as low as 1%. Unidirectional waves are generated
with a computer assisted flap-type wave maker. The setup comprises 20 equally spaced resistive
wave gauges that are installed along the basin at distances z j = 6 + ( j − 1)6 m, j = 1, 2, ...20 from
the wave maker located at z = 0 m. This provides an effective measuring range of 114 m.

In the first experimental run presented in Fig. 1(a), the wave maker produced one single
large-scale wave packet having a near rectangular envelope. The duration �T0 of the wave packet
is ∼160 s. The water wave has a carrier period T0 = 2π/ω0 of 0.87 s. The angular frequency ω0 of
the wave and the wave vector k0 are linked according to the deep water dispersion relation ω2

0 = k0g
(k0 = 5.31 m−1, λ0 = 2π/k0 � 1.17 m) with g the gravity acceleration. The amplitude of the gen-
erated envelope is a0 = 3.7 cm implying that the wave steepness k0a0 is � 0.19 in this experiment.

In the second experimental run presented in Fig. 1(b), the computer controlled wave maker
produced a sequence of three large-scale wave packets having rectangular envelopes. The three
rectangular wave trains are individually generated over a global time interval of ∼220 s where
they have increasing durations of �T1 = 30 s, �T2 = 45 s, �T3 = 60 s. The period of the carrier
wave has been changed to T0 = 0.99 s (k0 = 4.10 m−1, λ0 = 2π/k0 � 1.51 m) and the amplitude
of the generated envelope has been reduced to a = 2 cm which implies that the wave steepness
k0a = 0.082 is 2.3 times smaller than in Fig. 1(a).

Figure 1(a) shows that disintegration of the large rectangular wave packet occurs as a result
of modulational instability, in good agreement with experimental results previously reported in
Refs. [4,5,8,9,62]. In particular, the initial destabilization of the plane wave background (z < 40 m)
is associated with the exponential amplification of small random perturbations having frequency
components falling in spectral regions of MI gain. We have checked that the amplification rate
measured in our experiment is in agreement with the theory developed by Benjamin and Feir
[3,4,46]. At long propagation distances (z > 50 m), the spectral (Fourier) analysis of the experimen-
tal wave train reveals a significant frequency down-shifting (∼0.15 Hz at z = 120 m) correlated with
a spectral broadening (see Fourier spectra plotted in the Supplemental Material [63]). These spectral
features already observed in Ref. [8] demonstrate that the dynamical evolution reported in Fig. 1(a)
is influenced by high-order nonlinear effects. Another clear signature of the presence of higher-order
nonlinear effects lies in the fact that the front edge and the back edge of the wave train in Fig. 1(a) are
propagating faster than the reference frame moving at the group velocity ω0/(2k0), a feature which
is not observed in Fig. 1(b). Such a space-time evolution and the observed frequency down-shifting
cannot be described by the 1D-NLSE but rather by other models like the unidirectional Zakharov
equation or the Dysthe equation. The occurrence of higher-order nonlinear effects breaks the
integrability of the wave system [see also Figs. 7(a)–7(d)] and it prevents the observation of any
recurrence phenomenon, which represents an intrinsic feature of integrable wave systems.
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FIG. 1. Experimental results showing the nonlinear evolution of several rectangular wave trains along the
1D water tank. The evolution is plotted in the frame of reference moving at the group velocity ω0/(2k0 ) of
the wave packets. (a) A large-scale wave packet of constant amplitude unstable to small perturbations of
its envelope is disintegrated by the Benjamin-Feir instability [the wave steepness is k0a0 � 0.19, the carrier
period is T0 = 0.87 s and the wave amplitude is a0 = 3.7 cm (see text)]. (b) Three “boxes” of constant identical
amplitudes, which are not disintegrated by the Benjamin-Feir instability, undergo some strongly nonlinear
modulation which propagates with finite speed from the front and back edges of the wave packet toward
the center under the form of counter-propagating dispersive dam break flows with DSW structure [the wave
steepness is 0.082, the carrier period is T0 = 0.99 s and the wave amplitude is a = 2 cm (see text)]. The thick
black dashed lines represent the theoretical breaking lines separating the genus 1 region from the genus 0
region; see calculation details in Secs. III B and IV A.

Figure 1(b) reveals that features of a qualitatively different nature occur at smaller steepness and
for the rectangular wave packets having shorter durations. Each of the three generated rectangular
wave packets qualitatively experiences some dispersive breaking following a scenario where two
nonlinear wave trains generated from the edges of the rectangular envelopes counterpropagate
toward the center of the box envelopes; see also the Supplemental Material Video S1 [63]. These
two counterpropagating nonlinear wave trains were identified as two dispersive dam break flows in
Ref. [60]. Remarkably, the relatively moderate steepness (k0a � 0.08) characterizing water waves
used in our experiment permits the clear observation of this phenomenon without the Benjamin-Feir
instability significantly perturbes the wave dynamics.

Let us mention that some features qualitatively similar to those shown in Fig. 1(b) have been
reported in Refs. [64,65] for water waves. In these experiments it was understood that the evolution
of the unsteady wavefront was determined by combined influence of nonlinearity and dispersion but
the degree of the analysis that was made did not exceed a very qualitative level.
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In 2015, Shemer and Ee have reported some experiments showing the evolution of a truncated
water wave train having a rectangular shape at initial time [66]. The physical values of parameters
used in their experiments (T0 = 0.8 s, a = 2.6 cm) are close to those used in the experiments that
we report in Fig. 1(b). However, the truncated wave train considered by Shemer and Ee was weakly
modulated in such a way that a Peregrine breather was generated after some propagation distance
inside the water tank [66]. Even though the growth of large oscillations at the edges of the truncated
wave train was reported, most of the study presented in Ref. [66] was focused on the build-up of the
Peregrine breather generated in the central part of the rectangular wave train.

Interestingly our water wave experiments can be connected to the subject of diffractive focusing
of waves in time and in space. In Ref. [67], Weisman et al. have reported an experiment where the
envelope of a surface gravity water wave is modulated in time by a rectangular function. Near-field
(Fresnel) diffraction patterns very similar to those observed in optics for light beams diffracted by
a slit have been observed in the water wave context. Contrary to our experiment, the experiments
reported in Ref. [67] are placed in a purely linear regime where (linear) diffraction of waves is
observed. As it is clearly shown in Sec. IV, our experiments involve nonlinear wavefields that have
some solitonic content. From an optical perspective, they are conceptually related to the subject of
nonlinear diffraction of a field of constant amplitude by a slit in a focusing medium [68], a research
topic introduced at theoretical level by Manakov [69,70].

Nonlinear diffraction of light beams in focusing media has been considered in a few optical
experiments. The experiment reported in Ref. [71] has investigated diffraction from an edge in
a self-focusing nonlinear photorefractive medium using a spatially incoherent light beam. In the
very recent experimental work [72] the evolution of a 1D optical beam having a square profile
was observed in a focusing photorefractive medium. While some of the robust qualitative features
of the DSW dynamics predicted by the semiclassical 1D-NLSE theory [53] have been observed
and interpreted in the context of the “topological control of extreme waves” [72], the quantitative
comparison with the theory was limited because of the significant competition between the DSW
dynamics and noise amplification in the modulationally unstable photorefractive medium.

Recent optical fiber experiments reported in Ref. [73] have also evidenced a spatio-temporal
evolution very similar to the one that we observe with the rectangular wave train of the smallest
width (�T1 = 30 s), compare Fig. 1(b) with Fig. 3(a) of Ref. [73]. However, the work reported
in Ref. [73] was concentrated on the emergence of Peregrine-like events and did not allow for a
meaningful quantitative, or even qualitative, identification of the observed wave patterns with DSWs
due to very few oscillations observed.

III. DISPERSIVE FOCUSING DAM BREAK FLOWS: SEMICLASSICAL THEORY

The experimental results shown in Fig. 1(b) clearly indicate that the envelope of the wave
packet develops oscillations with the typical period significantly smaller than the temporal extent
of the wave packet. This separation of scales suggests the usefulness of an asymptotic WKB-type
approach to the theoretical understanding of the arising dynamics. In this section, we show that
the mathematical framework of dispersive hydrodynamics [74], a semiclassical theory of nonlinear
dispersive waves, provides some insightful interpretation of the experimentally observed multiscale
coherent structures.

A. The semiclassical framework

The experimental results reported in Fig. 1(b) can be interpreted within the framework of the
focusing 1D-NLSE Eq. (2), written in a dimensional form as a spatial evolution equation

i
∂A

∂z
+ k0

ω2
0

∂2A

∂t2
+ αk3

0 |A|2A = 0, (1)
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TABLE I. Parameters corresponding to the three rectangular wave envelopes considered in our experiment
(k0 = 4.1 m−1, ω0 = 6.34 s−1, a = 2. 10−2 m, α = 0.91). ε is the small dispersion parameter in Eq. (2). z∗

j

represents the physical position at which the dispersive dam break flows collide. N represents the number of
solitons embedded within the rectangular wave packets; see Sec. IV B.

�Tj LNL LD z∗
j

(s) (m) (m) ε (m) N

30 39.86 4414 0.095 74 3
45 39.86 9932 0.063 111 5
60 39.86 17658 0.047 148 7

where A(z, t ) represents the complex envelope of the water wave that changes in space z and in time
t [75]. α = 0.91 is a corrective term to the cubic nonlinear term. It has been introduced in Eq. (1)
to take into account finite depth effects. In our experiment where the water depth h is 3 m, the
numerical value of k0h is ∼12.3. This is large enough to consider that the condition of propagation
in deep water regime is well verified but not large enough not to include some small corrective term
in the nonlinear coefficient. A comprehensive discussion about the influence of finite depth effects
on the values of linear and nonlinear coefficients is given in the Appendix.

In the experimental evolution reported in Fig. 1(b), the dynamics of the nonlinear wave is ruled
by the interplay of two characteristic length scales associated with the temporal duration �Tj ( j =
1, 2, 3) of the rectangular envelopes, namely, the nonlinear length LNL = 1/(αk3

0a2) and the linear
dispersion length LD = (ω0�Tj )2/(2 k0) = g�T 2

j /2. Normalizing the propagation distance z along
the flume as ξ = z/

√
LNLLD, the physical time as τ = t/�Tj , the complex field envelope as ψ =

A/a, Eq. (1) takes the following dimensionless “semiclassical” form:

iε
∂ψ

∂ξ
+ ε2

2

∂2ψ

∂τ 2
+ |ψ |2ψ = 0, (2)

where ε = √
LNL/LD � 1 is a small dispersion parameter.

The numerical values of the physical and dimensionless parameters describing our experiment
are reported in Table I for the three rectangular wave trains with temporal widths �Tj ( j = 1, 2, 3).
It can be easily seen that our experiments are always placed in a regime where LNL � LD which
implies that the experimental values of the ε parameter are much smaller than 1. Therefore our
experimental observations can be interpreted within the mathematical framework of dispersive hy-
drodynamics [74], a semiclassical theory of nonlinear dispersive waves suitable for such multiscale
coherent structures.

Equation (2) is considered with decaying data in the form of a rectangular barrier of finite height
q > 0 and the width 2T :

ψ (τ, ξ = 0) =
{

q for |τ | < T,

0 for |τ | > T .
(3)

We shall call the initial value problem Eqs. (2), (3) the 1D-NLSE box problem.
Figure 2(a) shows the numerical simulation of the 1D-NLSE box problem for ε = 0.04; see also

the Supplemental Material Video S2 [63]. Figure 2(a) provides evidence of a space-time evolution
qualitatively similar to the one observed in our water wave experiment; see Fig. 1(b). In particular,
the two nonlinear wave trains that are generated at the edges of the box counterpropagate toward
the center of the box where they collide and produce a peak of large amplitude; see Fig. 2(d). Let us
emphasize that simulations reported in Fig. 2 are done for an unperturbed box [see Eq. (3)]. If the
box is perturbed by a small modulation or a small noise having frequency components falling within
the MI gain curve, the perturbation will be amplified and an interaction between the DSWs generated
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FIG. 2. Numerical simulation of Eq. (2) showing (a) the space time evolution of the wave field having a
profile specified by Eq. (3) at ξ = 0 (q = 1, T = 1, ε = 0.04). The space-time evolution is separated into three
regions of increasing genus g (see text). The genus g = 0 region corresponds locally to the plane wave solution.
The genus g = 1 region is associated to DSWs that are generated from the edges of the box. The genus g = 2
region emerges from the collision of the two focusing dam break flows, see also the Supplemental Material
Video S2 [63]. Curves plotted in blue lines in (b)–(d) represent the wave amplitude profiles at ξ = 0.25, ξ =
0.35, ξ = 0.477, respectively. Red dashed lines in (b) and (c) represent the amplitudes of the modulated cnoidal
waves that are determined from Eqs. (5)–(7). (e), (f) Spectral (IST) portraits of isolated structures made at
ξ = 0.477. The spectral portrait in (e) is mostly composed of two complex conjugate bands demonstrating that
the analyzed structure has a genus g = 1 (solitonlike structure, see text). The spectral portrait in (f) is composed
of three bands demonstrating that the genus of the analyzed structure is g = 2 (breatherlike structure).

from the edges of the box and the coherent structures seeded by the initial perturbation will be
observed. The study of the associated dynamics represents an interesting perspective of our work.

Note that the typical scale of the coherent structures found in the dam break flows is around
∼ε � T ; see Figs. 2(b)–2(d). Note also that the dynamics reported in Fig. 2(a) is not influenced
by the exact shape of the field near the edges of the box. Space-time evolutions similar to the one
reported in Fig. 2(a) are observed as long as the typical space scale of the transition between the
zero and the constant backgrounds is of the order of ε.

B. Main results from the semiclassical theory

In this section, we summarize some important theoretical results about the 1D-NLSE box
problem. The quantitative comparison between these theoretical results and the experimental results
will be presented in Sec. IV.

First, it is instructive to use the Madelung transform ψ = √
ρ(τ, ξ ) exp[iε−1

∫ τ u(τ ′, ξ )dτ ′] to
represent the 1D-NLSE in the dispersive hydrodynamic form

ρξ + (ρu)τ = 0,

uξ + uuτ − ρτ − ε2

(
ρ2

τ

8ρ2
− ρττ

4ρ

)
τ

= 0, (4)
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where ρ and u are analogues of the fluid depth and velocity respectively. Within the hydrodynamic
interpretation [Eq. (4)], the box initial data [Eq. (3)] can be viewed as a combination of two
hydrodynamic dam breaks (i.e., step transitions from finite depth ρ = q2 to “dry bottom” ρ = 0)
of opposite polarities, placed at the distance 2T from each other. It is important to stress that the
1D-NLSE “fluid” here has nothing to do with the underlying water wave context of the original
problem; moreover, due to the focusing nature of the 1D-NLSE Eq. (2), the classical “pressure”
term in the hydrodynamic representation Eq. (4) is negative.

The dispersive hydrodynamic representation Eq. (4) provides an important insight into the
1D-NLSE evolution of different types of initial data. Linearizing system Eq. (4) about a constant
equilibrium flow ρ = ρ0, u = 0 (a plane wave of the 1D-NLSE) one obtains the usual 1D-NLSE
dispersion relation ω = ±k

√
(εk)2 − 4ρ0 implying modulational instability of plane waves for long

enough waves with εk < 2
√

ρ0. This is the classical Benjamin-Feir instability, which is manifested
as a dispersion-dominated, linear wave phenomenon within 1D-NLSE. The initial exponential
growth of harmonic, long-wave perturbations is mediated by nonlinearity leading to the formation of
Akhmediev breathers or more complicated breather structures associated with integrable turbulence
[76,77].

The focusing 1D-NLSE dam break problem Eqs. (2) and (3) is rather special in the sense that
it triggers both nonlinearity and dispersion in Eq. (4) from the early time of the evolution. As
a result, it leads to the formation of a coherent, unsteady nonlinear wave structure that is very
different from those arising in the development of the BF instability or in the evolution of broad
smooth humps. This structure can be viewed as a focusing counterpart of the well-known dispersive-
hydrodynamic phenomenon, called a dispersive shock wave (DSW) [53], which represents an
expanding, nonlinear wave train connecting two disparate constant fluid states. DSW is described by
a slowly modulated, locally periodic wave solution of a dispersive equation (1 D-NLSE in our case)
gradually transforming from a soliton at one edge to a vanishing amplitude, harmonic wave at the
opposite edge. The special modulation providing such a transition has been found in Ref. [78] as
a self-similar solution of the Whitham modulation equations [54] associated with the 1D-NLSE.
Typically, DSWs are the features of stable media, described by such equations as the KdV or
defocusing NLS equations (see Ref. [53] and references therein) but for a special Riemann data
(dam break) the DSWs can be generated in unstable (focusing) media [60,79,80]. The persistence
of DSW dynamics in focusing dam break problem is due to a special “hyperbolic” modulation as
explained below.

The periodic solutions of the focusing 1D-NLSE are known to be modulationally unstable
with respect to small initial perturbations (see, e.g., Ref. [81]), but this modulational instability
is more subtle than the BF instability of a plane wave. It turns out that the instability of
nonlinear periodic solution can be “inhibited” by a special modulation yielding a “hyperbolic”
wave behavior characterized by finite speeds of propagation. This modulation is described by a
similarity solution of the Whitham modulation equations associated with the 1D-NLSE [82,83] and
it is exactly the modulation that is realized in the dispersive regularization of the dam break flow
in the focusing 1D-NLSE and enables the persistent DSW structure that can be observed in an
experiment.

The box problem Eqs. (2) and (3) has been studied analytically in Refs. [60,61] using a
combination of the Whitham modulation theory and an IST-based Riemann-Hilbert problem
approach [84]. The theoretical developments of Ref. [60] important for the interpretation of our
experimental results in water waves can be conveniently explained by considering Fig. 2, where the
numerical simulation of the focusing dam break problem for the 1D-NLSE equation is presented
along with the results of the so-called “local IST” analysis [77] of the emerging wave structures
[Figs. 2(e) and 2(f)]. The plots in Figs. 2(e) and 2(f) show the qualitative changes of the nonlinear
(IST) spectra occurring in the course of the wave propagation. These spectra and the associated
nonlinear waves are characterized by a fundamental integer index g called genus which enables
classification of the emerging wave structures in terms of the number N = g + 1 of “nonlinear
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Fourier modes” involved. The genus itself characterises topology of the hyperelliptic Riemann
surfaces associated with the special class of the 1D-NLSE solutions, called finite-gap potentials
(see, e.g., Refs. [75,85]). As shown in Ref. [60] the solutions of the semiclassical 1D-NLSE
box problem can be asymptotically described by slowly modulated finite-gap 1D-NLSE solutions
with the genus changing across certain lines in τ -ξ plane called breaking curves. In particular,
the wave structures regularizing the initial dam breaks at τ = ±T in the box problem have
genus g = 1 while the genus 2 structures emerge as a result of the interaction of two counter-
propagating dispersive dam break flows having the signature structure of dispersive shock waves
(DSWs) [53].

The asymptotic solution of the box problem for the small dispersion 1D-NLSE Eq. (2) has
different form in different regions of τ -ξ plane (see Fig. 2). For ξ < ξ ∗, where ξ ∗ = T

2
√

2q
the

solution represents two counter-propagating focusing DSWs—seen as the genus one regions in
Fig. 1—connecting two disparate genus zero states: the “dry bottom” state ψ = 0 at |τ | > T and the
constant state ψ = q for (2

√
2qξ − T ) < τ < (−2

√
2qξ + T ). The local structure of both DSWs

is described by the elliptic (“cnoidal”) solution of the 1D-NLSE,

ρ = (q + b)2 − 4qb sn2(2
√

qb/m (τ − aξ − τ0)ε−1; m), (5)

where sn(·) is a Jacobi elliptic function with the modulus m ∈ [0, 1] given by

m = 4qb

a2 + (q + b)2
.

The modulation parameters a(τ, ξ ), b(τ, ξ ) are found from equations

a = ± 2q

mμ(m)

√
(1 − m)[μ2(m) + m − 1],

b = q

mμ(m)
[(2 − m)μ(m) − 2(1 − m)], (6)

τ ∓ T

ξ
= ± 2q

mμ(m)

√
(1 − m)(μ2(m) + m − 1)

(
1 + (2 − m)μ(m) − 2(1 − m)

μ2(m) + m − 1

)
, (7)

where μ(m) = E (m)/K (m). K (m) and E (m) are the complete elliptic integrals of the first and
second kind respectively. The signs ± in Eqs. (6) and (7) correspond to right- and left-propagating
waves. The initial position τ0 in Eq. (5) is given by τ0 = ±T . In practice, τ0 depends on the way
the sharp edges of the “box” are smoothed in the experimental signal or in numerical simulations so
for a practical comparison with the theory, one chooses τ0 by fitting to the experimental/numerical
data.

Solution Eqs. (5)–(7) describe two symmetric oscillatory structures exhibiting the fundamental
1D-NLSE solitons (m = 1) with the amplitude |ψm| = 2q, located at τ = ±T . The structures
degenerate, via the modulated elliptic regime, into the vanishing amplitude linear wave (m = 0) at
the internal moving edges propagating toward the box center with constant velocities ±2

√
2q. The

solutions computed from Eqs. (5)–(7) are plotted with red dashed lines in Figs. 2(b) and 2(c). Very
good quantitative agreement is found between these theoretical solutions and numerical simulations
of the 1D-NLSE [blue lines in Figs. 2(b) and 2(c)]. Let us recall, for the sake of clarity, that the
theoretical and numerical solutions discussed here represent the envelopes (modulations) of wave
packets plotted in Fig. 1(b).

The equation of the first breaking curve �1 separating the genus g = 0 region from the genus
g = 1 region in the diagram in Fig. 2(a) is

�1 : ξ = T − |τ |
2
√

2q
. (8)
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FIG. 3. Modulus of the water wave envelopes with durations (a) �T1 = 30 s, (b) �T2 = 45 s, (c) �T3 =
60 s. The red (respectively, blue) lines represent the experimental envelopes of the signal recorded at z1 = 6 m
(respectively, z20 = 120 m), close to (respectively, far from) the wave maker. The magenta lines represent the
envelopes computed from the numerical simulation of Eq. (1) (k0 = 4.1 m−1, ω0 = 6.34 s−1, α = 0.91) by
taking as initial condition the complex envelope measured by the gauge closest to the wave maker (red lines,
z1 = 6 m).

Equation (8) yields the DSW collision time ξ ∗ = T
2
√

2q
corresponding to Fig. 2(c). For ξ > ξ ∗ the

region with g = 2 is formed, confined to another breaking curve [not shown in Fig. 2(a)]. One of
the prominent features of the genus 2 region is the occurrence of a large-amplitude breather at the
center with the characteristics close to those of the Peregrine soliton [see Fig. 2(d)] as predicted in
Ref. [60] and experimentally observed in fiber optics in Ref. [73].

We now demonstrate that deep water waves, while providing the classical example of the
Benjamin-Feir instability, present also a medium supporting the “hyperbolic” dispersive dam break
(DSW) scenario of the wave-packet evolution for a range of input parameters. This is done in Sec. IV
by a quantitative comparison of the water wave experiment with the modulated 1D-NLSE solution
[60] and the “local IST” analysis of the experimentally observed wave patterns [77,86], confirming
the spectral topological index (genus) of generated waves.

IV. DATA ANALYSIS AND COMPARISON WITH THE THEORY

A. Numerical simulations of the 1D-NLSE, breaking lines, collision points,
and modulated cnoidal waves

In this section, we focus on the quantitative comparison between experimental results and the
semiclassical theory. First we have performed numerical simulations of Eq. (1) by taking as initial
condition the complex envelope A(z1, t ) of the signal measured by the gauge closest to the wave
maker (z1 = 6 m). The complex envelope has been computed from the experimentally-recorded
signals by using standard techniques based on the Hilbert transform, as discussed, e.g., in Ref. [75].
Figure 3 shows the modulus |A(z20, t )| of the complex envelope that is computed at z20 = 120 m,
the position where is located the gauge furthest from the wave maker. The agreement between
the experimental results and the numerical simulations is quantitatively good for each of the three
generated rectangular wave trains.

As a first valuable test of the theory introduced in Sec. III, we plot the linear breaking curves
separating the genus 0 (plane wave) regions from the genus 1 (DSW) regions. Rephrasing Eq. (8)
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FIG. 4. Experimental results showing the nonlinear evolution of the rectangular wave packet of largest size
(�T3 = 60 s, a = 2 cm, k0a = 0.082, T0 = 0.99 s) in Fig. 1(b). (a) Signals recorded by the 20 gauges placed
all along the tank. All the envelopes superimposed on the carrier wave are computed from solutions given
by Eqs. (5)–(7) using τ0 = −0.48. The breaking lines plotted with full black lines in (a) are computed from
Eq. (8). (b) Space-time evolution of the modulus of the envelope of the experimental signals. The white lines
in (b) represent the breaking curves computed from Eq. (8).

in physical units, we easily find that the slopes s± of the breaking lines in the z-t plane read s± =
±ω0/(4 a

√
α k2

0 ) and that the collision between the two counterpropagating dam break flows occurs
at the position z∗

j = ω0�Tj/(8 a
√

α k2
0 ).

The numerical values of the positions at which the collisions between the counterpropagating
dam break flows occur are summarized in Table I for the three boxes generated in our experiment.
The breaking lines separating the genus 0 region from the genus 1 region are plotted in Fig. 1(b). It
can be readily seen that there is a good quantitative agreement between theoretical and experimental
results. In particular, the distance at which the collision is predicted to occur for the largest box is
larger than the physical length of the water tank and it is clear that the collision between the dam
break flows is not experimentally observed in this situation; see Fig. 1(b) and also Fig. 4.

To go one step further in the analysis of our experiment, we now compare experimental data
with the modulated cnoidal solution that has been discussed in Sec. III. To this end Eqs. (5)–(7) are
solved and rephrased to physical variables according to the transformations introduced in Sec. III A.
Considering only the box of largest size where the counterpropagating dam break flows are the most
developed near the end of the water tank (z ∼ 120 m), Fig. 4 shows that the modulated cnoidal wave
envelope determined from the semiclassical theory matches quantitatively well the experimental
results over the whole range of evolution of the dam break flows (i.e., from z = 6 m to z = 120 m).
The numerical value of τ0 has been determined from the signal measured at the last gauge, at z20 =
120 m (τ0 = −0.48).
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FIG. 5. Discrete IST spectra of the three envelopes measured at z1 = 6 m (Left column) and z20 = 120 m
(Right column). (a), (b) �T1 = 30 s, (c), (d), �T2 = 45 s, (e), (f) �T3 = 60 s. Only the upper half part of the
complex plane is represented.

B. Inverse scattering transform analysis of the experimental data

Some other insights into our experimental results can be obtained from the perspective of
the inverse scattering transform (IST) method. The configuration considered in our experiments
corresponds to the initial value problem specified by Eqs. (2) and (3). As shown by Zakharov and
Shabat [87], the nonlinear dynamics in this kind of problem is determined by the IST spectrum that
is composed of two components: a discrete part related to the soliton content of the box data and of
a continuous part related to the dispersive radiation. In particular, it is known that the number N of
solitons embedded inside the initial box is given by N = int(1/2 + 1/(πε)), where int(x) denotes
the integer part of x [69,70,88–90].

As shown in Table I, the number of solitons that are embedded inside the rectangular wave
trains is predicted to grow from N = 3 for the smallest box (ε = 0.095) to N = 7 for the largest
box (ε = 0.047). To check this result from experimental signals and to investigate more in depth
the integrable nature of the features experimentally observed, we now consider the non-self-adjoint
Zakharov-Shabat eigenvalue problem,

ε
dY
dτ

=
( −iλ ψ0

−ψ∗
0 iλ

)
Y, (9)

which is associated with Eq. (2). Y(τ ; λ, ε) is a vector where λ ∈ C represent the eigenvalues
composing the discrete spectrum associated with the soliton content of the complex envelope ψ0

measured at some given propagation distance. Note that the linear spectral problem Eq. (9) can be
identified as one half of the Lax pair for Eq. (2) [91].

Figure 5 shows the complex eigenvalues λ that are computed from the numerical resolution of
Eq. (9) made by using the Fourier collocation method described and used, e.g., in Ref. [77,86,91].
For the sake of clarity only the upper part of the complex plane is represented but complex conjugate
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eigenvalues are obviously obtained from the numerical resolution of Eq. (9). Figure 5 (left column)
shows the complex eigenvalues computed for the three experimental envelopes (red lines in Fig. 3)
measured at z1 = 6 m, close to the wave maker. Remarkably, nearly all of the nonzero eigenvalues
numerically computed are distributed close to the vertical imaginary axis, demonstrating that the
solitons embedded inside the three rectangular wave trains have negligible velocity at the initial
time. In fact, the rigorous semiclassical IST analysis of the box problem [61] shows that the discrete
spectrum is located on the imaginary axis as ε → 0. The number of discrete eigenvalues found from
numerical IST analysis and reported in Figs. 5(a), 5(c), and 5(e) is in good agreement with results
reported in Table I.

Figure 5 (right column) shows the complex eigenvalues that are computed for the three
experimental envelopes (blue lines in Fig. 3) measured at z2 = 120 m, far from the wave maker.
In the IST theory of the 1D-NLSE, these discrete eigenvalues do not change in the evolution time.
In the experiment, we find that this isospectrality condition is not perfectly verified because of
the unavoidable occurrence of small perturbative effects. It is, however, clear that the number of
eigenvalues is preserved over the propagation distance characterizing our experiment, i.e., between
z1 = 6 m and z2 = 120 m. Moreover the global shape of the IST spectra is well preserved (compare
left and right columns in Fig. 5), thus confirming the nearly integrable nature of the features
observed in the experiment.

Note that the degree of preservation of the eigenvalues reported in Fig. 5 was not reached in
our initial preliminary experiments because of the occurrence of a slightly multimodal propagation
in the water tank. Such a multimodal propagation is prone to occur because the width of the tank
(5 m) is relatively large as compared to the typical experimental wavelength (∼1 m). Therefore, we
have taken great care that the motion of the wave maker effectively produces nearly a single-mode
excitation leading to a dominant 1D wave propagation.

V. WATER WAVE EXPERIMENT: ROBUSTNESS OF THE OBSERVED DYNAMICS
TO HIGHER-ORDER EFFECTS

A. Space-time evolution

In this section, we demonstrate that the observed dynamics exhibits some degree of robustness to
higher-order effects that unavoidably perturb the wave evolution when experimental parameters are
changed in such a way that the strength of nonlinearity increases. To do so, we have simply increased
the frequency of the wave maker from f0 = 1/T0 = 1.01 Hz to f0 = 1.28 Hz while also decreasing
the amplitude of the wave envelope from 2 cm to 1.4 cm. With these changes, the nonlinear length
decreases from LNL = 39.86 m to LNL = 18.77 m while the linear dispersive lengths LD remain
unchanged and identical to those summarized in Table I.

Figure 6 shows the space-time evolutions of the three rectangular envelopes that are observed in
this situation where the nonlinearity strength is increased, see also the Supplemental Material Video
S3 [63]. Contrary to the experimental space-time evolutions considered in Secs. II and IV, there is
now a marked asymmetry in the space evolution of the three wave packets. Even though frequency
down-shifting is not observed in the studied regime, a significant spectral broadening phenomenon is
found to occur, see Fourier spectra plotted in the Supplemental Material [63]. As discussed in detail
in Sec. V B, integrability of the wave system is not preserved in this regime where higher-order
nonlinear effects influence the wave dynamics. In these conditions, the observed dynamics is not
described by the 1D-NLSE but rather by other models like the unidirectional Zakharov equation or
the Dysthe equation [50]. Note that small higher-order effects are already noticeable in the details
of Fig. 4(a) where the envelope of the modulated cnoidal wave fits better the left part than the right
part of the wave packet at large distances from the wave maker.

Despite the undisputable presence of higher-order nonlinear effects in water wave experiments
reported in Fig. 6, it is clear that the scenario of emergence of counter-propagating dispersive
dam break flows remains qualitatively well observed. White lines plotted in Fig. 6 represent the
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FIG. 6. Space-time evolution of the envelopes of three rectangular wave packets (�T1 = 30 s, �T2 = 45 s,
�T3 = 60 s) in the regime where higher-order nonlinear effects have a perturbative influence. The carrier
frequency f0 = 1/T0 is 1.28 Hz. Other experimental parameters are k0 = 6.58 m−1, a = 0.014 m (the wave
steepness is k0a = 0.09). White lines represent breaking curves that are determined using the methodology
described in Sec. IV A.

breaking lines that are computed from the semiclassical theory presented in Sec. III [see Eq. (8)]. At
a qualitative level, the breaking lines still clearly separate regions where DSWs (genus 1) are found
from regions where the (unmodulated) plane waves (genus 0) are found. Therefore, these breaking
lines retain some relevance to the description of the dynamics, even in the presence of perturbative
higher-order effects.

B. Nonlinear spectral analysis

In the regime where higher-order nonlinear effects influence the dynamics, the wave system is
no longer described by the 1D-NLSE and rigorously speaking, the dynamics is no longer of an
integrable nature. However, mathematical tools of nonlinear spectral analysis can still be used to
advantage for getting relevant information about the wave system. For instance, it has been shown
in Ref. [86] that dissipative effects occurring in a water tank produce some slow modulation of
the spectral (IST) portrait of the Peregrine soliton recorded in water wave experiments reported in
Ref. [92]. More recently the IST has been applied to characterize coherent structures in dissipative
nonlinear systems described by the cubic Ginzburg-Landau equation [93].

Here, we apply nonlinear spectral analysis to examine the soliton content of the rectangular wave
packets in the propagation regime displayed in Fig. 6. For the sake of simplicity, we only present
here the numerical results that are associated with the box of duration �T2 = 45 s (central box in
Fig. 6). As described in Sec. IV B and also more in detail in Refs. [77,86], the determination of the
discrete IST eigenvalues relies on the numerical resolution of Eq. (9) for the potentials ψ0 that are
measured in the experiment.

Figure 7(a) shows the rectangular envelope of the central box of Fig. 6 that has been measured
at z1 = 6 m, close to the wave maker. Figure 7(b) shows the corresponding discrete IST spectrum
which is composed of seven eigenvalues located well above the real axis. Let us recall that the
discrete IST spectrum of the same box was only composed of five eigenvalues in the regime where
the dynamics was described by the integrable focusing 1D-NLSE, see Sec. IV B. The result of
an increased nonlinearity is therefore that the number of solitons embedded within the box has
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FIG. 7. (a) Envelope of the central wave packet of Fig. 6 measured at z1 = 6 m, close to the wave maker.
(b) Discrete IST spectrum of the wave field plotted in (a). (c) Envelope of the central wave packet of Fig. 6
measured at z20 = 120 m, far from the wave maker. (d) Discrete IST spectrum of the wave field plotted in
(c). (e) Local IST spectrum of the coherent structure highlighted in red in (c). (f) Local IST spectrum of the
coherent structure highlighted in magenta in (c).

increased, which is not that surprising but which is here substantiated and quantified with the
IST.

Figure 7(c) shows the envelope of the central box of Fig. 6 that has been measured at z20 = 120 m,
far from the wave maker. Figure 7(d) shows the corresponding discrete IST spectrum. Comparing
Figs. 7(d) and 5(d), we obtain the clear signature that higher-order effects significantly perturbate
the discrete IST spectrum (i.e., the soliton content of the rectangular wave packet). Six eigenvalues
well above the real axis are observed instead of seven near the wave maker; see Fig. 7(a). Moreover,
the real parts of most of these eigenvalues become nonzero which means that the solitons embedded
within the box have acquired some velocity, a feature that is fully compatible with the fact that the
rectangular box exhibits some slow drift in the space-time plot; see Fig. 6.

To investigate the change of the genus [60] of the coherent structures emerging in the space-time
evolution shown in Fig. 6, we have used the tools of local IST analysis introduced in Ref. [77]
and already applied for the analysis of experimental signals in Ref. [86]. In the approach used for
local IST analysis, the analyzed coherent structure is isolated by truncating the wave profile over
some given time interval. The truncated wave field is then periodized in time. This produces some
local finite-band approximation of the wave field which can be interpreted within the framework of
finite gap theory [75,94,95]. Numerically solving Eq. (9) for the periodized potential ψ0, we obtain
a spectrum that is composed of bands. The number N of bands composing the nonlinear spectrum
determines the genus g = N − 1 of the solution that can be viewed as a measure of complexity of
the space-time evolution of the considered solution.

Figure 7(e) shows the local IST spectrum of the peaked structure highlighted in red in Fig. 7(c)
and located at the left-edge of the box. Rigorously speaking the spectrum is composed of three bands
but the small-amplitude band crossing the real axis can be seen as being perturbative. Therefore,
the local IST spectrum can be seen as being mainly composed of two complex conjugate bands,
confirming the nearly genus 1 nature (solitonlike) of the structure analyzed at the left edge of
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the box. Note that the spectrum plotted in Fig. 7(e) is qualitatively very similar to the spectrum
computed in Fig. 2(e) from numerical simulations of the focusing 1D-NLSE.

Figure 7(f) shows the local IST spectrum of the peaked structure highlighted in magenta in
Fig. 7(c) and located in the center of the box. This spectrum is composed of three main bands
confirming that the observed object represents a coherent structure of genus 2 (i.e., of breather
type). Note that the spectrum plotted in Fig. 7(f) is qualitatively similar to the spectrum computed in
Fig. 2(f) from numerical simulations of the focusing 1D-NLSE. Contrary to Fig. 2(f), the spectrum
of Fig. 7(f) presents a marked asymmetry that we interpret as arising from the higher-order effects
that perturbate the integrable dynamics.

VI. SUMMARY AND CONCLUSION

In this paper, we have reported experiments showing the evolution of nonlinear deep-water
surface gravity waves having their initial envelopes in the form of large-scale near-rectangular
barriers. We have shown that nonlinear wave packets are not necessarily disintegrated by the
Benjamin-Feir instability and that there exist some regimes in which a specific, strongly nonlinear
modulation, propagates from the edges of the wave packet toward the center with finite speed.
The observed counter-propagating dispersive dam break flows represent modulated nonlinear wave
trains that can be described within the framework of the semiclassical 1D-NLSE. They could be
viewed as examples of DSW dynamics persisting in focusing (modulationally unstable) nonlinear
media.

Our experimental results are shown to be in good quantitative agreement with predictions of
the 1D-NLSE semiclassical theory [60,61], confirming the robustness of the observed dynamical
scenario with respect to perturbative higher-order nonlinear effects inevitably present in a water
wave experiment. We have also shown that nonlinear spectral analysis [86] can be used to
advantage to determine the soliton content of the generated wave packets while also providing useful
information about the local wave dynamics in terms of the number of fundamental nonlinear wave
modes (the genus) comprising the observed structure at a given space-time point.

By confirming that DSW dynamics can be observed in deep water waves, our work opens
way to further experimental and theoretical investigations on the subject of DSW formation in
focusing nonlinear media. In particular, several scenarios [52] associated with the so-called Riemann
problems—i.e., the evolution of a jump discontinuities (not necessarily dam breaks) between two
uniform states of the initial field—could be also possibly observed in deep water waves.

Interesting questions are related to the competition between the DSW formation and the
Benjamin-Feir instability. Our experiments are performed in a regime where the DSW dynamics
plays the dominating role and the effects of the Benjamin-Feir instability can be neglected, but
it would be interesting to examine in detail how the Benjamin-Feir instability affects the DSW
structure at longer propagation times. Finally, our experiments have shown that the generated DSWs
exhibit certain robustness to higher-order nonlinear effects. It is another interesting and challenging
question to investigate these higher order effects more in detail from the theoretical perspective.
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APPENDIX: FINITE DEPTH EFFECTS

As shown in Ref. [96] the weakly nonlinear, narrow-banded approximation of the fully nonlinear
irrotational and inviscid water wave equations is the 1D-NLSE under the following form:

∂A

∂t
+ 1

2

ω0

k0
ν
∂A

∂z
+ i

1

8

ω0

k2
0

κ
∂2A

∂z2
+ i

1

2
ω0 k2

0 γ |A|2A = 0, (A1)

where A is the complex envelope of the water wave. ν is the correction to the group velocity for
finite depth. κ and γ are coefficients that in general depend on the water depth h at the dominant
wave number k0 and at the corresponding angular frequency ω0.

The general expressions of ν, κ, and γ are given by (see, e.g., Ref. [66], and see Ref. [96] for the
derivation)

ν = 1 + 2k0h

sinh (2k0h)
, (A2)

κ = −ν2 + 2 + 8(k0h)2 cosh (2k0h)

sinh2 (2k0h)
, (A3)

γ = cosh (4k0h) + 8 − 2 tanh2 (k0h)

8 sinh4 (k0h)
,

− (2 cosh2 (k0h) + 0.5ν)2

sinh2 (2k0h)

(
k0h

tanh (k0h)
− ν2

4

)
. (A4)

For a hydrodynamic wave-maker problem, it is convenient to use the 1D-NLSE in the form of an
evolution equation in space. Using changes of variables described in Refs. [75,97], one obtains the
following evolution equation:

i
∂A

∂z
+ κ

ν3

k0

ω2
0

∂2A

∂t2
+ γ

ν
k3

0 |A|2A = 0, (A5)

in the frame of reference moving with the group velocity of the wave packets.
In the experiments reported in Fig. 1(b), the numerical value of k0h is 12.3 and the numerical

values of the corrective terms ν and κ given by Eqs. (A2) and (A3) are very close to unity.
However, the numerical value of γ is ∼0.91 which means that the finite-depth correction to the
cubic nonlinearity is small but not negligible. Therefore, our experiments are described by Eq. (A5)
in which the values of the corrective terms are set to κ = ν = 1 and γ = α = 0.91.
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