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The fluctuation theorem characterizes the distribution of the dissipation in nonequilibrium systems
and proves that the average dissipation will be positive. For a large system with no external source of
fluctuation, fluctuations in properties will become unobservable and details of the fluctuation theorem are
unable to be explored. In this Letter, we consider such a situation and show how a fluctuation theorem can
be obtained for a small open subsystem within the large system. We find that a correction term has to be
added to the large system fluctuation theorem due to correlation of the subsystem with the surroundings.
Its analytic expression can be derived provided some general assumptions are fulfilled, and its relevance is

checked using numerical simulations.
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Introduction.—In classical thermodynamics, nonequi-
librium systems are irreversible. That is, the second law
of thermodynamics stipulates that a macroscopic system
evolves in one direction and fluxes have a definite sign.
However, the second law is strictly applicable only to large
systems or where properties are measured over long time
scales. As the size of the system decreases, unusual events
caused by thermal fluctuations become more frequent, and
average values of the flux with the opposite sign to that
predicted for a thermodynamic system are observable over
finite periods. These effects are quantified by the fluctua-
tion theorem (FT), which states that for a system in a
known initial state and driven out of that state,

m(%) —4 (1)

where (), is an extensive function, the dissipation function,
measured over a period of ¢ [1], which describes how irre-
versible a process is. It is formally defined as (), =
In[f(I')/f(S'T")] — A, where f is the initial phase space
distribution function, I is a point in phase space, S’ is the
time evolution operator, and A, is the phase space expansion
over the period, ¢. In (1), p({), = A) refers to the probability
that A takes on a value A = dA. Equation (1) is also asymp-
totically valid for steady states. Initially based on a heuristic
derivation and numerical evidence [2], fluctuation relations
have been derived for closed systems in many different
frameworks (see [1,3-5] for early results). Recently, the
fluctuation theorem has been used to measure physical quan-
tities in experiments, for instance, the torque of a molecular
motor [6]. In general, the use of the FT is relevant when the
work done by the external forces is similar to the thermal
energy kgT (or its equivalent if another kind of thermal
equilibrium is reached, e.g., [7]). Otherwise, it reduces to
stating irreversibility, because the probability of observing a
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negative dissipation is so small that it can be considered
impossible. Therefore, in large systems, (1) cannot be prop-
erly tested or applied. To deal with such a situation, one
can record the dissipation over a small open subsystem
where thermal fluctuations are sizable. The dissipation in
the subsystem will not satisfy Eq. (1) in general, and in this
Letter, we consider if an analytical expression for a local
fluctuation theorem (LFT) can be obtained.

Some experimental and theoretical work has been
carried out on local fluctuation theorems since 1998.
Measurements of local properties for steady states have
been shown to satisfy fluctuation relations [7-10].
However, these studies employ an effective temperature,
which can be considered to provide an ad hoc correction
coefficient to the fluctuation relations. Gallavotti showed
why the fluctuation theorem is expected to be valid at
long times for the local entropy creation rate for a class
of weakly coupled systems [11]. Ayton et al. [12] obtained
a local fluctuation theorem for the dissipation function (1),
and provided numerical results. In the present Letter, we
show that in a highly correlated system, the local dissipa-
tion obeys a LFT which is (1) with a linear correction
term. This may be the reason effective temperatures were
required to explain some previous results. The correction
term can be analytically described in some cases, and it
vanishes in the low correlation limit.

In the next section we derive a LFT, then we numerically
investigate the relevance of our assumptions in a realistic
system.

A local fluctuation theorem.—Consider a large system
that fulfils the assumptions of the FT, i.e., the invariance
of the initial distribution function under time-reversal
mapping, ergodic consistency, and time reversibility of the
equations of motion [1]. The FT can then be derived for an
arbitrary phase function ®(I") odd under time reversal [13],
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where (...)q 4 is the conditional ensemble average over
points for which ®, = A * dA. If ® is chosen to be the
dissipation function, (2) becomes the usual FT. Here, we
split €} into two contributions ), and )7, where () is the
dissipation function measured over an arbitrary volume of
length €, and choose ® = (),. In this case, (2) becomes a
local fluctuation theorem

P(Qé’,t =A)
‘“(pme,t —"y

This equation provides an exact expression for the correc-
tion term. If there is no correlation between the two local
dissipations, this term vanishes and (), obeys a bare FT (1).
Otherwise, some assumptions have to be made to obtain an
effective description of this term. We will make two main
assumptions. The first one is that one can consider the local
dissipation as a random variable instead of a phase function
so that,

) =4 -0, ). O

0, =aQy, + & )

where « is a coefficient that depends on the shape and size
of the subvolume, and ¢ a random variable that is not
correlated with €),,. Physically, the first term describes
the very strong correlations that exist near the boundaries
between the two domains, and ¢ stands for the dissipation
far away from the volume of interest, which does not depend
on (). Quadratic and higher order terms are neglected in
(4), but do not seem relevant. This relation between the two
local dissipations leads to an exact expression for the LFT
[14],

ln( p(Qf,t = A)
p(Q{’,t = —A)

This model may explain why the left hand side of (5), called
the asymmetry function, has been experimentally found
to be a linear function of A with a slope that is not unity in
a number of experiments (e.g., [7]). Given our assumption
of noncorrelation between ¢ and (), the coefficient « is

_ (05, Q¢0 — {QF X Q)
<Q%,> - <Q€,t>2 .

In solid states, diffusion of atoms or molecules is limited
and typical lengths of correlation in the dissipation depend
on details of the system, the property considered, and the
field. In some cases, they are smaller than the subvolume
that has to be considered for a LFT to be relevant. In other
cases, such as systems close to a phase transition, an ana-
lytic expression for a can often be derived (e.g., for the Ising
model). In fluids, molecules travel throughout several sub-
volumes, so correlation lengths are large, and, as we shall
see, they can be related to diffusion lengths. We focus on

) — (1 +aA 5)

(6)

such systems, consisting of a fluid driven out of equilibrium
by an external field that produces a dissipative flux. This is
very general and includes the studies on a fluidized granular
medium [7] and Rayleigh-Bénard convection [8], but can
also model Poiseuille or Couette flows, diffusion processes,
and so on. To simplify the notation we consider the case
where the field, F, and dissipative flux J are in the same
direction and then the dissipation function reads

O, = pr,J, (7)

where B is the inverse temperature to which the system
would relax in the absence of the field, and we adopt the
notation that the average value of J is positive in a dissipa-
tive system. Then « refers to the spatial correlations of the
integrated flux J,

i e = T N0
T = ey

Another expression for this coefficient can be derived after
defining details about the subvolume. We consider a rect-
angular unit cell of length £ and with a field applied in the
x direction. The subvolumes are obtained by dividing
the cell into slices orthogonal to the direction of the field
with width € (see Fig. 1), but note that the following
computations can be adapted to other situations. In this
case, the relevant correlations are fully described by the
function C(x) defined by

Clo) — GO = GONG@)

0P = Gi(0)?

where for J,, centered on x, j,(x) = lim,_qJ, /€ is the flux
density at x. This function describes the decay of spatial
correlations: if there is no correlation between the flux in
these two sections, as when x goes to infinity, this term
is equal to zero. On the other hand, C(0) = 1 due to the
normalization. A typical correlation length in the fluid can
then be defined by

8)

= fo " Cx)dx. (10)
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FIG. 1 (color online). A schematic diagram of the system studied.
Wall particles are thermostated and represented in black (¢; = 0),
whereas fluid particles can be light gray (¢; = 1, blue online) or dark
gray (c; = —1, red online).
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For a periodic system, we can replace this with €, =
(f 2 C(x)dx provided the correlations have decayed at
x < L/2. This length is to be compared to that of the
subvolume so as to know whether a bare fluctuation theorem
(1) is expected to be valid (€ > €,) or if a LFT is required.
We then make a second general assumption: noting that
the function C satisfies C(0) = 1, C(c0) = 0 and has a
typical decay length of €,, we assume it is modeled by
an exponential decay C(x)=e /% where x=0.
Considering (9), this implies that (j,(0)j,(x)) — {(j,(0)) X
(j,(x)y = Be /% where B is a constant. « is then explic-
itly computable and assuming L is large, (5) becomes

1n<—p(9“ A )= (1 — )A. (1)
p(Qe, = —A) =T 1

This LFT provides an analytic expression for the correction
term, which vanishes in the low correlation limit (€ > €)
and can be used instead of an effective temperature. In the
derivation of (11), we consider the large system limit,
L—E€> 4.

We now consider a particular case and show that it is
possible to derive an expression for the correlation length
under some conditions. Our system consists of N particles
of charge c; subject to a field in the x direction, and the
dissipative flux becomes J, = [{ ¥V | c;v,;ds where v, ;
is the x component of the velocity for particle i. For a
system close to equilibrium, the correlation length, € takes
its origin in the Brownian motion of the particles, and for
large L the following equalities hold

Lo (BODEN
| G0 nax = T2 2EE )
N 2
Gy~ TEDZEG )

where Ax = x(t) — x(0) is the x displacement for one
particle and L the length of the system, which does not
appear in the final equilibrium expression for €,

A a0
O 2(Ax ) 8

The last equality comes from the assumption of a Gaussian
distribution for Ax. If the external field is not too high, €,
will be close to its equilibrium value.

Therefore, we have seen that for a fluid (or gas) driven
out of equilibrium by an external field, the local dissipation
recorded in a section of length € fulfills (11) provided the
system is large and the decay of correlations is reasonably
described by an exponential function. Moreover, at equi-
librium the typical length scale of correlations in the flux
density is given by the diffusion length. As we shall see, if
the field is not too large, €, is close to this value which
provides a useful way of determining whether or not a bare

(14)
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FIG. 2 (color online).

Probability distribution functions for
the local dissipation function in a subvolume 14.4 times smaller
than the total volume and its Gaussian fit. Its mean value is
(Q,) =25 and the asymmetry function, p¢(A)=In[p(Q,, =
A)/p(Q¢,=—A)] is found to be a straight line of slope
3.147 = 0.001.

fluctuation theorem can be applied without measuring the
flux correlations.

Numerical study.—To demonstrate an application of this
LFT, check the relevance of our assumptions and verify
that the coefficient € is related to a diffusive length scale,
a system of color-charged particles between atomic walls
was numerically studied. This model is one of the first used
in nonequilibrium molecular dynamics and is a simplified
model of an ionic liquid where the particles do not have
Coulomb interactions with each other but experience a
force proportional to their color charge when subject to
a field. Its simplicity allows fast computation without loss
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FIG. 3 (color online). Evolution of the correlation length €,
determined out of equilibrium using a fit of C(x) = ¢~/ to the
simulated data at various times. The dashed line is a fit to a
function of /7.
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FIG. 4 (color online). The decay of spatial correlations in the
integrated flux calculated with (9) (crosses) and a fit to the
exponential model e/t where {y is the correlation length
(solid line).

of physical details relevant to the analysis presented in
this Letter. The model and its fluctuation relations are
discussed in detail in [1]. The system is a high density
gas in a long channel surrounded by thermostated walls.
The dynamics are,

q= &, (15a)
m
p; = Fi(@) + c;F.e, — Slap; + k(q — q.,)]  (15b)

where q;, p;, and ¢; = (—1)' are the coordinates, momenta,
and color of the ith particle (¢; = 0 for wall particles) and
S; is a switch equal to 1 for the wall particles and zero
otherwise. F; is the interparticle force on a particle, derived
from a Weeks-Chandler-Anderson short-ranged repulsive
pair potential [15], k the strength of the traps that fix the
positions of wall particles, and F, the external field which
induces a flux J =Y, c;v,;. Finally, a is a Gaussian
thermostat that fixes the kinetic energy of the walls: the
fluid particles are not thermostated and obey their natural
dynamics. The simulation used 320 particles in a two-
dimensional space with periodic boundary conditions.
The wall temperature was set at 1, the wall density at 0.8,
the fluid density at 0.4, the field at F, = 0.08, the length
of system at L = 50.6, and the integration time at ¢t = 80.
All trajectories started from the equilibrium distribution.
The volume was divided into subvolumes as described
above. This system is shown in Fig. 1.

The mean value of the total dissipation is ({),) ~ 36 and
in 500000 samples, no negative value was observed. On
the other hand, the local dissipation recorded in the volume
of length € shown in Fig. 1, was 14.4 times smaller than
the total volume. It consequently produced a number of
negative values of (), and its asymmetry function can be
computed. As expected, it is a linear function with a slope
larger than one, see Fig. 2.

Length of the recording box ¢

FIG. 5 (color online). Slope of the asymmetry function [left
hand side of Eq. (11)] versus the length of the subsystem. The
dashed line is the theoretical result [right hand side of Eq. (11)],
with the coefficient €, estimated using the data from Fig. 3.

The correlation length €, was measured out of equilib-
rium by fitting C(x) = e /% to the simulated values of
C(x) and was found to grow as the square root of the
integration time, see Fig. 3. Close to equilibrium, £, is still
expected to be well approximated by a diffusive process,

and in this simulation we find €, = 0.64/((Ax)?), where the

equilibrium value of +/((Ax)?) is obtained using the
Einstein relation. This tends to show that €, would often
be well approximated by its equilibrium value in real
experiments, as external fields used in molecular dynamics
simulations are very large in comparison (in this simula-
tion, the mean velocity eventually reaches a few percent of
the thermal one). The main assumption of the derivation
was that an exponential decay e /% would fit the function
C(x), which is not exact, cf. Fig. 4.

Using the calculated value of €, = 4.56 at t = 80, and
€ = 3.52, the slope predicted by (11) is 3.30 which is in
good agreement with the numerically determined slope of
3.146 * 0.001 determined from the data shown in Fig. 2.
In Fig. 5, the predicted and actual slopes are compared for
a range of €, and are shown to be in very good agreement.
Therefore, even if the correlation decay is not exactly
exponential, which could happen as this function is likely
to be system dependant, the predictions of this LFT remain
robust. This result will be verified by application to other
systems and in other conditions.

Conclusion.—In this Letter, we considered a class of
systems (liquid or gas) driven out of equilibrium by an
external field. A local fluctuation theorem is derived for the
dissipation measured in a section orthogonal to the field
and provides an explicit expression for the slope of its
asymmetry function. The proof can be adapted to describe
other shapes of subvolumes. These results suggest that
arbitrary effective temperatures used to account for the

260602-4



PRL 110, 260602 (2013)

PHYSICAL REVIEW LETTERS

week ending
28 JUNE 2013

effect of measuring a local property can be attributed to a
physical effect. This result holds provided some assump-
tions are fulfilled, mainly a low external field and expo-
nential decay of correlations in the flux. According to the
numerical study, this last condition is not restrictive, and a
reasonable accordance is enough for this LFT to be veri-
fied. Finally, we pointed out that the need to resort to a LFT
depends on the ratio €/€,, where € is the length of the
subvolume over which the local dissipation is measured
and € is related to an equilibrium diffusion process and
can be easily measured via the Einstein relation. As dis-
cussed in [13], this FT is also asymptotically valid for
steady states with an additional assumption of a form of
decay of correlations in the dissipation with time.
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helpful discussions.
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