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We investigate capillary wave turbulence at scales larger than the forcing one. At such scales, our
measurements show that the surface waves dynamics is the one of a thermal equilibrium state in which the
effective temperature is related to the injected power. We characterize this evolution with a scaling law and
report the statistical properties of the large-scale surface elevation depending on this effective temperature.
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Introduction.—Almost one century after the insight
of Richardson, the phenomenology of turbulence is now
settled: energy injected at the forcing scale is transferred to
small scales, where it is eventually dissipated by viscosity
[1]. For a wave number k in this cascade, the energy
spectrum is found close to Kolmogorov’s k−5=3 law [2]. The
very same description applies to wave turbulence, which
consists in the statistical study of many interacting waves
[3]. For instance, capillary waves are expected to display a
similar behavior: in between the injection and the dis-
sipation scales, the wave field is self-similar, and its energy
spectrum is a power law in k.
The Richardson cascade concerns scales smaller than the

forcing one, and one may inquire about the energy spectrum
of the large scales. In a statistically steady turbulent state [4],
it is a common belief that they follow thermal equilibrium
statistics [2], meaning in particular that all modes share the
same mean energy. This would result from the assumption
of a vanishing mean local energy transfer through scales. In
three-dimensional hydrodynamic turbulence, this has been
recently confirmed by numerical simulations [7] but is so far
in lack of experimental evidence. In wave turbulence, these
equilibrium statistics have been derived in the framework
of weak turbulence [8]. Capillary waves are the simplest
experimental system concerned by these predictions, and
experiments were carried out in a thin layer of liquid helium
to study these large scales [9]. However, because of dis-
sipation, another cascade was found in place of the expected
equilibrium range, and later theoretically understood [10].
In this Letter, we report the observation of a thermal

equilibrium regime in capillary wave turbulence. This
shows that the large scales of this out-of-equilibrium
system are in equipartition and can be described by
equilibrium statistics. It is achieved by using a large depth
of fluid with low kinematic viscosity (mercury), hence
reducing both viscous drag at the bottom and bulk
dissipation. We measure the statistical properties of this
state (energy spectrum and probability distribution function
of the surface elevation) and show how the effective

temperature can be related to the injected power sustaining
the out-of-equilibrium state.
Equilibrium and out-of-equilibrium power spectra.—

Before describing the experiment, we briefly sum up
theoretical results. In the limit of large depth, surface
waves follow the dispersion relation

ω2 ¼ gkþ
�
σ

ρ

�
k3; ð1Þ

where ω is the angular frequency, k is the wave number,
g is the acceleration of gravity, ρ is the density of the fluid,
and σ is the surface tension. The gravity and capillary
terms are equal at a frequency fg.c. ¼ ð2πÞ−1ð4ρg3=σÞ1=4,
and we thereafter consider waves at larger frequencies, i.e.,
capillary waves.
If the system is in thermodynamic equilibrium, the

isotropic energy spectral density per unit density and per
unit surface eð1DÞ

k is given by

eð1DÞ
k dk ¼ kBT ×

2πkdk
ð2π=LÞ2 ×

1

ρL2
⇒ eð1DÞ

k ¼ kBTk
2πρ

: ð2Þ

eð1DÞ
k can be related to the power spectrum density of the

surface elevation via SηðkÞ ¼ ðσ=ρÞ−1k−2eð1DÞ
k ,

SηðkÞ ¼
�
σ

ρ

�
−1 kBT

2πρ
k−1: ð3Þ

Using (1), the power spectrum density in the frequency
domain SηðfÞ ¼ 2πðdk=dωÞSηðkÞ is

SηðfÞ ¼
kBT
3σπf

: ð4Þ

Thermal equilibrium of capillary waves with no external
forcing (i.e., in which T is the room temperature) has been
measured by light scattering in the sixties, for instance, to
investigate the validity of (1) at high frequencies [11] or the

PRL 118, 144502 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
7 APRIL 2017

0031-9007=17=118(14)=144502(5) 144502-1 © 2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.118.144502
https://doi.org/10.1103/PhysRevLett.118.144502
https://doi.org/10.1103/PhysRevLett.118.144502
https://doi.org/10.1103/PhysRevLett.118.144502


behavior of surface tension in the vicinity of the liquid-
vapor critical point [12].
On the other hand, if an energy input at a single

frequency finj is considered, the system is no longer in
thermal equilibrium but eventually reaches a nonequili-
brium steady-state. It is then expected to display a direct
energy cascade characterized by [13]

SηðfÞ ∼ ϵ1=2
�
σ

ρ

�
1=6

f−17=6; ð5Þ

where ϵ is the mean energy flux through scales (per unit of
density and surface). Wave turbulence theory predicts that
even if such a system is very far from equilibrium, (4)
should still be observed in the range fg.c. < f < finj while
(5) describes frequencies from finj up to a dissipative scale.
Matching (4) and (5) at the single energy input scale of
frequency finj gives

kBT ∼ ϵ1=2σ7=6ρ−1=6f−11=6inj ; ð6Þ

that was obtained within the weak turbulence framework in
[8]. Note that all these results are derived in the absence of
gravity waves, which follow a different path since another
quadratic quantity called wave action is conserved. From a
practical point of view, they are expected to hold as long as
the energy density at frequency fg.c. is small enough [(1)
and (2) show that energy density increases with frequency
in the thermal range]. Finally, we point out that the
derivation of (4) reduces surface waves to harmonic
oscillators: at very high temperatures, nonlinear corrections
are expected.
Experimental setup and results.—The experimental setup

consists of a rectangular plastic vessel (225 × 180 × 45 mm)
filled with mercury up to 30 mm. For this fluid, the
density is ρ ¼ 13.5 × 103 kg=m3, the surface tension is
σ ¼ 0.485 N=m, and the kinematic viscosity is
ν ¼ 1.15 × 10−7m2=s. This parameters give fg:c: ≃ 16 Hz
and a corresponding wavelength of 12 mm, making drag
friction at the bottom irrelevant. To get reproducible results,
care has been taken to keep the surface free from pollution:
similarly to clean water in which damping increases during
approximately one hour until surface gets fully contaminated
[14], oxydation affects mercury. This effect can be signifi-
cantly reduced by cleaning the surface after every acquisition
(every ten minutes).
Three wave makers (oscillating paddles of size

120 × 80 × 4 mm plunged 10 mm below the free surface)
are placed regularly around a home-made capacitive height
sensor (see Fig. 1). This size of cavity has been chosen so
that the frequencies of the first eigenmodes are a few hertz,
thus reducing substantially the gravity range. The diameter
of the wire, 0.35 mm, imposes a high-frequency cutoff of a
few hundred Hertz. Each wave maker is driven by a Brüel
and Kjær 4810 shaker, and its motion ξiðtÞ (i ¼ 1, 2, 3) is

tracked with a Brüel and Kjær 4393 accelerometer.
Functions ξiðtÞ are different realizations of a random noise
excitation supplied by a function generator (Agilent
33500B) and selected in a frequency range finj–200 Hz
by a SR 650 filter. Several forcing amplitudes and frequen-
cies finj have been considered, the latter varying from
50 Hz to 100 Hz. After each acquisition, the motions of the
wave makers have been checked to be of similar power
spectra, localized in the range finj–200 Hz. Finally, the
wave height η and the accelerations ̈ξi are recorded with a
NI acquisition card and 50 Hz electrical noise is filtered out
and not considered in the following data treatments.
A typical elevation signal is shown in Fig. 2, together

with the same sample filtered in the range fg:c: to 0.85finj:
we observe that a sizable amount of energy is located
at frequencies lower than the forcing ones. In all the
reported experiments, the standard deviation of the height

FIG. 1. Experimental setup, consisting in three wave makers
and a capacitive height sensor in a rectangular vessel.

FIG. 2. Typical elevation signal and filtered data
(finj ¼ 50 Hz).
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signal ση ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hη2ðtÞi

p
ranges from 0.02 mm to 0.1 mm,

corresponding to significant typical steepnesses since the
forcing is at high frequencies (kinjση is between 0.04 and
0.2). Moreover, we checked that all the results presented
here do not strongly rely on the specific value of the cutoff
frequency 0.85finj.
Four power spectra of the wave height η are displayed in

Fig. 3 alongwith the theoretical ones of a thermal equilibrium
state at temperature Teff ¼ 1.2 × 1012 K and of a direct
energy cascade. They were obtained with finj ¼ 50 Hz and
different forcing amplitudes, or with finj ¼ 70 Hz. From
fg:c: to the forcing frequency finj, they display a f−1 power
law, characteristic of a thermal equilibrium state. In some
spectra, the f−1 slope develops below fg:c:: similarly to the
gravity-capillary transition observed in surface wave turbu-
lence forced at low frequencies, fg:c: is only an indicator of
the crossover, that may reasonably differ from it (see, e.g.,
[15]). From200Hz to a dissipative scale, another self-similar
regime is observed. Because the energy flux is in practice not
conserved during this energy cascade [16,17] and as a
consequence of the high-frequency cutoff of the measure-
ment device, steeper power laws than the theoretical scaling
(5) are observed. This cascade has been the subject of an
extensive literature over the past two decades and will not be
further investigated here (see for instance [15,17–21] and
references therein).
For each of these spectra, we compute the effective

temperature by integrating the height power spectrum in the
thermal range,

Teff ¼
3πσ

kB

R 0.85finj
fg:c:

SηðfÞdf
lnð0.85finj=fg:c:Þ

: ð7Þ

The power spectrum SηðfÞ is fitted by a power law
cst × fα in the same frequency range (fg:c: to 0.85finj), and
values of α are reported in Fig. 4. They stand close to -1, as
expected for a thermal equilibrium range.
Four probability distribution functions (PDF) of the

height signal filtered in the same range (fg:c: to 0.85finj)
and corresponding to the spectra reported in Fig. 3 are
shown in Fig. 5. The PDF are found to be Gaussian at low
forcing, and tails turn to exponentials as the injected power
increases. To be more precise, the kurtosis of the signal,
equal to 3 in the case of a normal distribution, is reported in
Fig. 6 and is found to increase with the effective temper-
ature, i.e., the steepness of the waves. The same phenome-
non was reported in other experiments of wave turbulence
[9,15] and ascribed to extreme events as rogue waves
[22,23] that can also take place in a thermal equilibrium
state when the steepness of the waves is high enough. Note

FIG. 3. Power spectra of the wave height for three forcing
amplitudes with the same bandwidth (50 to 200 Hz) and one from
70 to 200 Hz. A theoretical capillary thermal equilibrium state
and direct energy cascade are shown in dotted and dashed lines.
hPinji is the mean injected power.

FIG. 4. Exponent of the large-scale range (fg:c: to 0.85finj) as a
function of the effective temperature.

FIG. 5. Probability density functions of the large-scale wave
height for the spectra reported in Fig. 4 (same color key). Data
and error bars are multiplied by ×1, ×10, ×100, and ×1000 for
clarity. A fit by a normal distribution is shown in dotted line.
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that departure from a normal law is a sign of sizeable
nonlinear interactions between modes, as the central limit
theorem fails in presence of correlated random variables. As
for the other moments of this filtered signal, the standard
deviation evolves as the square root of Teff [a consequence of
(7)] and the skewness is roughly constant and close to 0.20.
The sign of the skewness is related to the shape of the

wave trains: for gravity waves, nonlinearities sharpen the
crests and flatten the troughs [24], whereas the opposite
occurs for capillary waves [25]. These phenomena directly
reflect on the skewness of the PDF for a random wave field.
A positive skewness it routinely observed in experiments of
wave turbulence involving gravitocapillary waves [15,19].
For pure capillary waves, these effects are scarce: a recent
numerical simulation of capillary wave turbulence [21],
even though involving large wave steepnesses (∼0.3), has,
for instance, not evidenced any negative skewness. In our
experiments, the skewness is positive since the height
spectra of the signal filtered between fg:c: and 0.85finj is
dominated by components at fg:c: and vanishes as the low-
pass filtering frequency increases.
We now consider the dependence of the effective

temperature on the mean injected power hPinji. This
quantity is estimated from the measured velocities _ξi,

hPinji ∼ ρSw:m:hj_ξ1j3 þ j_ξ2j3 þ j_ξ3j3i; ð8Þ

where Sw:m: ¼ 12 × 10−4 m2 is the submerged section of
each wave maker. It should not be confused with the mean
energy flux though scales ϵ of wave turbulence theory,
as most of the injected energy drives bulk flows [16]. A
careful experimental study of the relationship between
these two quantities has evidenced the scaling hPinji ∝
ρS

ffiffiffi
ϵ

p
(see [16]), and (6) thus predicts kBT ∝ hPinji.

Experimental data are reported in Fig. 7 and follow a
linear law Teff ∝ hPinji over three decades.

We finally discuss the role of dissipation. In wave
turbulence, damping has been recognized as a source of
discrepancy between theory (that assumes a dissipation
localized in a restricted frequency range) and experiments,
for surface waves [16] as well as for other wave fields
(e.g., vibrating plates [26]), in which this hypothesis is not
fulfilled. More precisely, energy in wave turbulence theory
is injected at a given frequency and fully transferred to a
dissipative scale (similarly to the Kolmogorov picture of
hydrodynamic turbulence), whereas it is essentially dis-
sipated at the injection scale in experiments [16]. The latter
description also applies in this experiment, one reason
being that a f−1 height spectrum is not steep enough for
low-frequency waves to reach a sizable amplitude, hence to
dissipate a significant part of the injected energy. This can
be seen from the dissipation spectrumDηðfÞ that character-
izes the amount of energy dissipated by surface waves of
frequency f [16]: SηðfÞ ∝ f−1 leads to DηðfÞ ∝ f5=3 or
DηðfÞ ∝ f3=2 depending on the source of dissipation
considered (respectively, viscosity in the bulk and surface
contamination). Dissipating energy at the injection scales
does not prevent the observation of the equilibrium range
studied here: in contrast with an energy cascade whose
aim is to eventually dissipate energy, the existence of the
equilibrium range relies on the hypothesis that no energy is
dissipated at these frequencies. It also constrains the setup
for such observations: experiments have to be carried out in
small vessels, with fluids of low kinematic viscosities and
with a large number of efficient resonant interactions at
injection scales; otherwise, bidirectionnal energy cascades
would be generated [9]. For instance, with our setup, we
could not observe thermal equilibrium states if water was
used instead of mercury, as well as if the forcing was
narrow band, monochromatic, too low or if finj > 100 Hz.
Conclusion.—We experimentally evidenced a thermal

equilibrium state over an out-of-equilibrium background
in capillary wave turbulence. Its power spectrum density can

FIG. 6. Kurtosis of the probability density functions as a
function of the effective temperature.

FIG. 7. Evolution of the mean injected power hPinji with the
effective temperature.
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be used to define an effective temperature that is strongly
linked with the statistical properties of this range of scales
(e.g., shape of the PDF) and to the ones of the out-of-
equilibrium state (e.g., energy flux). The temperatures
obtained are more than 10 orders of magnitude higher than
the room temperature, and we emphasize that such equilib-
rium states display nonlinear phenomena, such as strong
coupling between modes. The precise conditions required
for the observation of such equilibrium state, as well as the
role of the transition to gravity waves remain open questions.
Being able to characterize some scales of an out-of-

equilibrium system by equilibrium statistics seems prom-
ising. In particular, one may wonder if other tools of
equilibrium statistical mechanics can be used. For instance,
the equation of state, the response coefficients, and the
fluctuation-dissipation relations could be investigated and
compared to their equilibrium counterparts.

This work is supported by CNES and Grant No. ANR-
12-BS04-0005-02.
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