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Rayleigh-Bénard convection is investigated with sulfur hexafluoride (SF6) in the vicinity of its critical
point. In the supercritical domain, direct measurements of the heat flux Q as a function of the temperature
difference ΔT are consistent with the usual scaling laws of single-phase turbulent convection. Along the
liquid-vapor coexistence curve, heat fluxes are dramatically enhanced by condensation and boiling. Optical
measurements are performed to document the size and velocity of the bubbles. We reportQðΔT; ϵÞ in both
domains, with ϵ the dimensionless distance to the critical point. Critical scaling laws are observed that can
guide the development of theoretical models. In addition, this documents a system of diverging heat
transfer coefficient, i.e., in which a significant heat flux can be achieved with an arbitrarily small
temperature difference as ϵ → 0.
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Introduction—Engineering routinely exploits phase
change to achieve high heat transfer rates: in particular,
boiling and condensation can be found nearly everywhere
in the industry, from microelectronic cooling to large-scale
nuclear reactors. Despite its ubiquity, relations between
these heat fluxes and simple quantities such as temperature
differences still consist of phenomenological correlations
and semitheoretical models, machine learning being now
considered instead of theory-driven approaches to ration-
alize the various and often inconsistent datasets [1]. This
lack of unified understanding should come as no surprise
given the range of intricate phenomena involved (e.g., the
entrapment of vapor in microcavities with moving interfaces
surrounded by highly turbulent flows) and the reported
dependency on fine experimental properties (e.g., surface
roughness [2,3]). Experiments close to the critical point can
help unveil some fundamental features of this complex
dynamics by probing fluids in which thermodynamic
quantities such as the latent heat can be continuously varied
with a given setup of fixed surface roughness. The seminal
work of reference [4] evidenced a dramatic increase of the
heat flux in Rayleigh-Bénard convection along the liquid-
vapor coexistence curve as the system approaches the critical
point. Since the latent heat vanishes in this limit, the authors
attributed this feature to a divergence of the bubble nucle-
ation rate. In this Letter, we confirm this heat flux enhance-
ment and investigate additional properties. In particular we
report the direct measurement of the heat flux as a function
of the external temperature difference and of the mean
temperature both in the single-phase supercritical domain

and along the liquid-vapor coexistence curve. In addition,
optical measurements reveal that the mean radius of the
bubbles obeys a nontrivial scaling law.
Experimental setup—The experimental setup is sketched

in Fig. 1 and consists of a cylindrical container of inner
radius 80 mm and height 31 mm filled with SF6 of purity
>99.7%. The total density ρ has been set close to the
critical density ρc so that in the vicinity of the critical point
the liquid and vapor phases have similar volumes (they
differ by less than 16% in the data reported here). This
choice was partly motivated by the previous investigation
of Ref. [4] in which the heat flux is maximal for a volume
fraction of liquid of about 1=2. More precisely, comparison

FIG. 1. Experimental setup (all dimensions are in mm). The
focal plane (f.p.) is sketched as a vertical dashed line.*Contact author: guillaume.michel@sorbonne-universite.fr
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of our experimental measurements of the equation of state
in the supercritical domain with the data from Ref. [5]
yields ρ ¼ ð740� 2Þ kgm−3 (reported values of ρc range
between 736 and 742 kgm−3 [6,7]).
We thereafter focus on a subsystem of height h ¼

20 mm and rectangular cross section of size L × L with
L ¼ 30 mm, centered in the middle of the domain and
bounded by 3 mm-thick polymethyl methacrylate walls. It
is connected with the rest of the fluid by a small aperture at
the top. Tracking the position of the interface when it exists
indicates that the mean density in this subsystem can be
considered constant within 1%: the critical point is then
reached by tuning the temperature of the boundaries to the
critical one and we have no direct control of the mean
pressure. Phase diagrams are included in the Supplemental
Material (SM) [8] and evidence the contrast with the
experimental device of Ref. [4] in which the both the
pressure and temperature were fixed (the mean density
being not fixed). We shall see that the same qualitative
behavior is observed in both devices.
The top and bottom temperatures and heat fluxes per unit

surface, denoted as Tt; Qt; Tb, and Qb, are measured with
Omega 44033 thermistors and Omega HFS-5 coupled with
Keysight 34420A nanovoltmeters. Respectively hot and
cold water provided by Lauda thermostatted baths flows
through the bottom and top copper walls, generating a
mean temperature difference ΔT ¼ hTb − Tti across the
fluid (h·i denotes a time average in a stationary state and we
also define Tm ¼ hTt þ Tbi=2). This temperature differ-
ence Tb − Tt is subject to typical fluctuations of 1 mK.
The temperature of the water surrounding the cell, moni-
tored with a Lauda thermostatted bath, is finely tuned to
enforce hQti ¼ hQbi≡Q. Temperature measurements
with Omega 44033 thermistors at 5 and 15 mm from the
bottom heat flux sensor do not evidence large scale flows
(hTAi ¼ hTBi and hTCi ¼ hTDi; see Fig. 1). Finally, a
Basler acA2500-60uc camera equipped with a 70 mm
Sigma Macro lens is used to record 5 s-long movies of the
two-phases dynamics with 200 frames per second. The
focal plane is represented in Fig. 1.
Parameters and dimensionless numbers—Several physi-

cal properties undergo drastic changes as the mean temper-
ature Tm approaches the critical temperature Tc ¼ 318.7 K,
being proportional to some power of the dimensionless
distance to the critical point ϵ ¼ jTm − Tcj=Tc. In what
follows, we denote with a subscript c (respectively, l and v)
the quantities measured in the supercritical domain along
the critical isochore ρ ¼ ρc (respectively for liquid and
vapor along the coexistence curve). The thermal diffusivity
κ as well as the difference of density between liquid and
vapor ρl − ρv, the surface tension σlv, the latent heat Llv,
and the capillary length llv ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σlv=½gðρl − ρvÞ�
p

van-
ish as ϵ → 0, with g the gravitational acceleration (see,
e.g., Ref. [9]). The kinematic viscosities of all phases
ν are essentially constant in the range of temperature

considered here. The isobaric expansion coefficient α,
the specific heat cp, and the thermal conductivity λ diverge
as ϵ → 0. References [10–14] are used to numerically
evaluate these quantities. In the supercritical domain, we
define the Rayleigh Ra ¼ gh3αcΔT=ðνcκcÞ, Prandtl
Pr ¼ νc=κc, and Nusselt Nu ¼ Qc=ðλcΔT=hÞ numbers.
Along the coexistence curve, the Jakob number Ja ¼
ðρlcp;lΔTÞ=ð2ρvLlvÞ corresponds to the variation of
internal energy between the bottom hot wall temperature
Tb ¼ Tm þ ΔT=2 at which boiling occurs and the mean
bulk temperature Tm, normalized by the latent heat.
Heat fluxes in the supercritical domain—The thermal

properties of this system are first investigated for
Tb > Tt > Tc. Previous studies close to the critical point
of helium [15–18] and SF6 [19] have demonstrated that
(i) extreme Rayleigh numbers Ra can be achieved before
non-Boussinesq effects become significant and (ii) that up
to Ra ¼ Oð1013Þ the turbulent heat flux scales as Qc ∝
ΔT1þβ (i.e., Nu ∝ Raβ), with β ≃ 0.3 usually compared to
theoretical predictions of 2=7 and 1=3 [20,21] (the behavior
of the heat flux at even larger Ra is still thoroughly
discussed experimentally). Only small dependencies of
Nu on Pr are reported. Note that, although accounting
for the adiabatic temperature difference ΔTad is crucial
to capture the onset of convection close to the critical
point [22], this correction can be neglected here given the
comparatively much larger temperature differences con-
sidered (ΔTad < 2 mK).
Our measurements reveal that the heat flux scales as

QcðΔT; ϵÞ ¼ Acϵ
−0.75�0.08ΔT1þβ with β ¼ 0.43� 0.13

and Ac ¼ 39 Wm−2, see Fig. 2. The power-law scaling

FIG. 2. Mean heat fluxes in the supercritical regime fitted by
QcðΔT; ϵÞ ¼ AðϵÞΔT1.43. The size of the symbols is comparable
to the standard deviation of the time series. Inset: AðϵÞ as a
function of ϵ follows a critical law of exponent −0.75� 0.08.
These data correspond to Rayleigh numbers Ra∈ ½2 × 109;
2 × 1011� and Prandtl numbers Pr∈ ½5; 60�.
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with ϵ confirms the expectation of a critical scaling
behavior, and the negative exponent indicates that heat
transfer coefficient Qc=ΔT becomes extremely large as the
system approaches the critical point. Using dimension-
less numbers, the compensated Nusselt number NuRa−β is
found almost constant and independent of Pr (NuRa−β ∈
½0.03; 0.04� for Pr∈ ½5; 60�). The obtained value of β is
slightly larger than the ones usually reported but we stress
that, given the experimental uncertainty, it remains com-
patible with previous observations. Indeed this experiment
is not designed to measure precisely this exponent, which
would require larger variations of the Rayleigh numbers
(see, e.g., Ref. [15]). The temperature is homogeneous in
the bulk (hTAi ¼ hTBi ¼ hTCi ¼ hTDi) and does not signi-
ficantly differ from Tm. These first results serve as a proce-
dure to confirm the adequacy of our experimental setup for
the study of heat fluxes close to the critical point, and shall
be used for comparison with the two-phase regime.
Heat fluxes along the liquid-gas coexistence curve—We

now investigate heat fluxes as the system approaches the
critical point from below, i.e., Tc > Tb > Tt. The fluid is
now constituted of both liquid and vapor phases, with
boiling occurring at the bottom (hot) boundary and con-
densation at the top (cold) one. As reported in Fig. 3,
heat fluxes evidence different scaling laws than in the
supercritical domain. More specifically, we find that the
heat flux QlvðΔT; ϵÞ ¼ Alvϵ

−1.00�0.09ΔT2.00�0.13, with
Alv ¼ 53 Wm−2. Similar to the previous investigation of
Ref. [4], a divergence of the heat flux as ϵ → 0 is observed.
However, we are able with the present experiment to docu-
ment the exponents of this divergence and to demonstrate

that it is more pronounced than in the supercritical domain
(Qlv=Qc ¼ 1.4ϵ−0.24ΔT0.57). A wide range of correlation
laws Qlv ∝ ΔTm can be found in the literature for nucleate
pool boiling, with m∈ ½1; 4� and substantial discrepancies
between heaters of different roughness [2,3,23–25].
The reported scaling Qlv ∝ ϵ−1.00�0.09ΔT2.00�0.13 can be
used to provide a constraint for future models, given that
most thermodynamic properties of SF6 are well docu-
mented as ϵ → 0.
Temperature is homogeneous in both phases (hTAi ¼

hTBi and hTCi ¼ hTDi) but is systematically larger in the
vapor than in the liquid. This inversion, which makes the
vertical temperature profile nonmonotonic, was previously
reported in Ref. [26] and ascribed to heat fluxes being
mainly driven by cold falling droplets and hot rising
bubbles not in thermal equilibrium with their surrounding
phases. While Ref. [26] only investigates transient two-
phase convection, our results confirm that this inversion
persists in a steady state.
Bubble dynamics—To get a further insight into the

dynamics leading to these enhanced heat fluxes, the movies
recorded in the liquid-gas coexistence domain are analyzed.
They evidence both rising bubbles from nucleate pool
boiling in the liquid phase and falling drops resulting from
condensation on the top cold boundary. A few qualitative
features can be directly drawn from the observation of
snapshots. For fixed temperature Tm, Fig. 4 shows that both
the typical radius and number of bubbles increase with ΔT.
We also note that although the capillary length llv relates
to the wave number of the most unstable mode kRT of the
inviscid Rayleigh Taylor instability (2π=kRT ¼ ffiffiffi

3
p

llv), it
compares neither to the sizes of the droplet nor to the ones
of the bubbles. This feature is evident in Fig. 5, in which no
drastic diminution of the size of the bubbles is observed,
although the capillary length llv drops by a factor of 2.5.
A quantitative analysis of the bubbles properties is now

performed by measuring their position and radius rb with
the two-stage circular Hough transform [27]. When only a
few isolated bubbles rise (Qlv < 20 Wm−2), they can be
tracked and their vertical velocity vb can in addition be
measured. Given that the bubble Reynolds numbers
vbrb=νl ∈ ½3; 37�, vb results from a balance between buoy-
ancy and drag and we checked that it can be accurately
estimated using the rigid sphere approximation of Ref. [28]
for the drag coefficient. To analyze more complex states in
which a swarm of Nb ≫ 1 bubbles continuously rises, a
mean rise velocity hvi is measured by finding the largest
cross correlation between successive pictures. A mean
volumetric flux Φv ¼ hviNbhr3bi can then be estimated,
defined as the product of this mean rise velocity with the
mean vapor volume on the snapshots area. Given that the
procedure to find the bubbles is found to be accurate only
for a radius larger or equal than 3 pixels (20 μm), we
thereafter restrict ourselves to datasets for which the mean
radius is found larger than 5 pixels (33 μm), in order for the

FIG. 3. Mean heat fluxes along the liquid-vapor coexistence
curve fitted by QlvðΔT; ϵÞ ¼ AðϵÞΔT2. The size of the symbols
is comparable to the standard deviation of the time series. Inset:
AðϵÞ as a function of ϵ follows a critical law of exponent
−1.00� 0.09. Note that, to improve readability, the main plot
does not show data for all mean temperatures Tm (the inset does).
These data correspond to Jakob numbers Ja∈ ½0.004; 0.025�.

PHYSICAL REVIEW LETTERS 134, 104001 (2025)

104001-3



small neglected bubbles not to significantly alter the results.
Note that Φv is a local measurement outside the domain of
interest (see Fig. 1) that depends on the depth of field and
therefore only roughly approximates the total volume of
bubbles being generated by unit time. Nevertheless, it is
found approximately proportional to Qlv; see Fig. 6. In
addition, as evidenced by the inset of Fig. 6, the slope
dΦv=dQlv is consistent with a divergence as ϵ−0.325: since
the latent heat vanishes as Llv ∝ ϵ0.325, this confirms that

the heat flux in this system is dominated by phase changes
(Qlv ∝ LlvΦv). Coupled with the direct measurement
Qlv ∝ ϵ−1ΔT2, it yields Φv ∝ ϵ−1.3ΔT2. A detailed analy-
sis of each term of Φv (hvi and Nb are reported in the SM;
hr3bi is discussed below) shows that the heat flux diverges
close to the critical point as a consequence of a rapid
increase of the number and size of the nucleated bubbles.
Finally, we discuss the radius of the bubbles as a func-

tion of the temperature difference ΔT for various mean
temperatures Tm. The Sauter mean radius r32 ¼ hr3bi=hr2bi
is investigated to minimize the bias resulting from small
bubbles not being optically detected, but very similar
observations are reached based on the mean radius hrbi. As
shown in Fig. 7, our data can be modeled by r32ðϵ;ΔTÞ ¼
r0 þ r1ϵ−0.58�0.05ΔT, with r0 and r1 two constants. The
range of Jakob numbers Ja ≪ 1 (Ja∈ ½0.004; 0.025�) that
has been explored rationalizes the experimental observation
that the bubbles do not grow or shrink as they rise, and we
therefore access their radius at nucleation. A large number
of models have been proposed for the mean radius of
bubbles in nucleate pool boiling as they leave the bottom
boundary; see, e.g., Table 3 of Ref. [29]. They essentially
consider that it depends on a combination of (i) the contact
angle θ, (ii) the capillary length llv, and (iii) the Jakob
number Ja. The roughness length scale rr also plays a
crucial role in nucleation. Close to the critical point, perfect
wetting occurs [30] and θ can be disregarded in the present
experiment. For the range of finite ϵ that is explored (for
which the theoretical critical scaling laws derived in the

FIG. 5. Typical snapshots for various Tm at similar Qlv ∼
17 Wm−2. (a) Tm ¼ 35 °C, ΔT ¼ 0.08 K, llv ¼ 1.8 mm.
(b) Tm ¼ 44 °C, ΔT ¼ 0.04 K, llv ¼ 0.7 mm.

FIG. 6. Mean volumetric flux estimated from the movies as a
function of the heat flux. Each set of data obtained at a given
mean temperature Tm is fitted by a straight line whose slope is
reported in the inset as a function of the distance to the critical
point ϵ. A power law of slope ϵ−0.325, proportional to the inverse
latent heat Llv, is also shown. Note that, to improve readability,
the main plot does not show data for all mean temperatures Tm
(the inset does).

FIG. 4. Typical snapshots at a fixed Tm ¼ 40.25 °C for increas-
ing ΔT. A lot of rising vapor bubbles are observed in the liquid
phase and a few liquid droplets falling in the vapor phase.
(a) ΔT ¼ 0.064 K, Qlv ¼ 11 W=m2; (b) ΔT ¼ 0.12 K, Qlv ¼
42 W=m2; (c) ΔT ¼ 0.15 K, Qlv ¼ 61 W=m2; and (d) ΔT ¼
0.20 K, Qlv ¼ 103 W=m2. The capillary length at that temper-
ature is llv ¼ 1.3 mm. The corresponding movies are included
in the SM.
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limit ϵ → 0 do not systematically hold), we can approxi-
mate rr ∝ ϵ0, llv ∝ ϵ0.5 and Ja ∝ ϵ−1.1ΔT. Our dataset
could therefore be interpreted as r32 ¼ rr þ c × Ja × llv,
with c a dimensionless constant and rr ¼ 26 μm. It corres-
ponds to the scaling law obtained by [31] (r32 ∝ Ja × llv)
corrected by a finite roughness rr that becomes signifi-
cant since both Ja ≪ 1 and llv remain small (llv ∈
½0.6; 2� mm). In contrast, a typical boiling experiment in
water corresponds to Ja ¼ Oð10Þ and llv ¼ 17 mm.
Conclusion—A Rayleigh-Bénard device filled with fluid

at critical density allows the comparison of monophasic
convection (supercritical fluid domain) with biphasic con-
vection (liquid-vapor coexistence range). The major differ-
ence between these is the possibility of phase change driven
heat fluxes involving the nucleation of bubbles and the
condensation of drops. The present experiment evidences
that, although in both domains the heat transfer coefficient
Q=ΔT diverges as ϵ → 0, this divergence is much more
pronounced in the biphasic domain. In particular, the usual
single-phase turbulent scaling law for the heat flux that
describes our results in the supercritical domain does not
hold in the liquid-vapor regime and a new scaling is
observed. We have shown that this new regime results
from heat fluxes being driven by phase change, with a
number of nucleated bubbles that rapidly increases as the
critical point is approached. This also generates nonmono-
tonic vertical temperature profiles. Our reported measure-
ments of QlvðΔT; ϵÞ both as a function of ΔT and ϵ can
help develop models to capture this complex dynamics.
Moreover, direct measurements of the radius of rising
bubbles evidence a nontrivial scaling law that depends
on both the surface roughness, the capillary length and the

Jakob number. In particular, nucleation close to the critical
point is found associated with very small bubbles, whose
size compares to the surface roughness that therefore
becomes a key parameter.
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