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Nonlinear dispersion relation 
in integrable turbulence
Alexey Tikan1,6, Félicien Bonnefoy2, Guillaume Ducrozet2, Gaurav Prabhudesai3, 
Guillaume Michel4, Annette Cazaubiel5, Éric Falcon5, Francois Copie1, Stéphane Randoux1 & 
Pierre Suret1*

We investigate numerically and experimentally the concept of nonlinear dispersion relation (NDR) in 
the context of partially coherent waves propagating in a one-dimensional water tank. The nonlinear 
random waves have a narrow-bandwidth Fourier spectrum and are described at leading order by the 
one-dimensional nonlinear Schrödinger equation. The problem is considered in the framework of 
integrable turbulence in which solitons play a key role. By using a limited number of wave gauges, we 
accurately measure the NDR of the slowly varying envelope of the deep-water waves. This enables 
the precise characterization of the frequency shift and the broadening of the NDR while also revealing 
the presence of solitons. Moreover, our analysis shows that the shape and the broadening of the NDR 
provides signatures of the deviation from integrable turbulence that is induced by high order effects in 
experiments. We also compare our experimental observations with numerical simulations of Dysthe 
and of Euler equations.

Nonlinear dispersion relation (NDR) ( i.e. the relation between wavevectors k and angular frequencies ω for waves 
of finite amplitude) is a powerful tool to highlight dynamical and spectral properties of nonlinear wave  fields1–3. 
The concept of NDR is relevant to all the fields of Physics where the Fourier modes provide a relevant basis to 
describe the waves and their interactions (nonlinear  optics4,  hydrodynamics2,3,5,  hydroelasticity6,  mechanics1, 
quantum  optics7, plasma  physics8,9,...). In particular, it has been extensively used in the context of wave turbu-
lence (WT), where the interaction between random nonlinear waves is dominated by resonances among random 
Fourier  components1–3,10–12.

On the other hand, systems of nonlinear random waves governed by integrable partial differential equations 
such as the Korteweg de Vries, sine-Gordon or the one-dimensional nonlinear Schrödinger equation (1DNLSE) 
represent a profoundly different class of problems because the natural basis for the analysis is provided by the 
inverse scattering transform (IST) sometimes called “nonlinear Fourier transform”13. In this framework, the 
field is decomposed into two components—the radiation and the solitons- identified with two types of nonlinear 
spectra—the continuous spectrum and the discrete spectrum  respectively14.

Integrable wave systems exhibit a remarkable form of turbulence called “integrable turbulence” (IT)15–19. In 
particular, while exact and non trivial resonances play a crucial role in WT, they are not allowed in IT  (see20 
and “Methods”). Moreover, in WT, spectra are often characterized by power laws while the known spectra in 
IT exhibit exponential  tails21. Soliton gas recently investigated in water waves experiments represents a peculiar 
“purely solitonic” case of  IT22–24. However, IT more generally involves the interplay between nonlinear radiation 
(dispersive waves) and solitons. While these two components are naturally distinguished within the framework 
of IST, they cannot be easily separated in the physical space. Even if IT and WT regimes are of strongly different 
natures, the possibility to analyse IT and to reveal the existence of solitons by using conventional tools such as 
the NDR (instead of the complicated machinery of IST) is of crucial importance from the practical and funda-
mental point of  views23.

Surprisingly, despite the universality of the 1DNLSE, little attention has been paid to its NDR up to a very 
recent theoretical  study25 in which various kinds of initial conditions have been investigated. In this interest-
ing work, the authors show that the NDR of weakly nonlinear random waves only experiences the well-known 
frequency  shift26,27, while the NDR of a single soliton is a straight line having a slope corresponding to its group 
velocity (see “Methods”)25,28. To the best of our knowledge, the concept of NDR has not been applied to IT 
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experiments described at leading order by 1DNLSE. In particular the (Fourier) spectral signature of solitons 
has not been reported in this context.

In this manuscript, we first use numerical simulations of 1DNLSE to investigate the NDR and the power 
spectral density -PSD- (in the space-time (ω, k) Fourier plane) in IT. We show that the PSD and the NDR present 
clear signature of the growing influence of solitons when the nonlinearity strength is increased. We then report 
on an experiment in which partially coherent (random) deep water surface gravity waves propagate along a long 
one-dimensional flume. We demonstrate that removing the carrier wave enables the accurate measurement of 
the NDR of wavefields having a narrow Fourier spectrum by using a very limited number of gauges. In experi-
ments, the NDR is found to reveal both the existence of solitons embedded in the random field and a deviation 
from IT induced by higher-order nonlinear effects not taken into account in the 1DNLSE model. Simulations 
of Euler and Dysthe equations confirm the influence of high order terms and provide a deeper insight into the 
mechanisms behind the formation of coherent structures observed in the experiment.

Results
Numerical simulations (nonlinear Schrödinger equation). Considering unidirectional deep water 
gravity waves having a narrow spectrum, the surface elevation η(τ , z) is:

where ψr is the slowly-varying complex envelope, f0 = ω0/(2π) and k0 = ω2
0/g are the frequency and the modu-

lus of the wavevector of the carrier wave respectively, z is the propagation distance and τ is the time measured 
in the laboratory frame. For deep water gravity waves, the dynamics of ψ(t, z) = ψr(τ , z) is described at leading 
order by the focusing  1DNLSE29:

where t = τ − z/cg , cg = g/(2ω0) is the group velocity evaluated at the frequency f0 , γ = k30 and g is the gravity 
acceleration. In simulations and in experiments, the initial conditions are partially coherent waves produced 
from the linear superposition of numerous independent Fourier components having a Gaussian spectrum (see 
“Methods”  and19,21,30). It is useful to introduce the degree of nonlinearity of the wave propagation, which is given 
by the parameter Ŵ:

where �f ≪ f0 is the initial spectral bandwidth evaluated at z = 0 and where 〈...〉 denotes the averaging over 
time and/or realizations. Note that �|ψ |2� = 2�η2� and that Ŵ = BFI2 where BFI is the Benjamin-Feir  Index31,32 
(see “Methods”). It has been shown that large values of Ŵ lead to the formation of rogue waves characterized by 
heavy-tailed statistical distributions of the surface  elevation16,19,30,31,33–35.

We have first performed numerical simulations of Eq. (2) for three values of Ŵ (see “Methods” for details). 
Fig. 1a, represents the typical spatio-temporal dynamics of IT developing from partially coherent waves in the 
focusing regime of 1DNLSE. Remarkably, the number of isolated pulses emerging in the random wave field 
increases with the nonlinearity. Note that our numerical simulations reveal the presence of elastic collisions (see 
for the example the white circle in Fig. 1), a signature of solitons in integrable  systems13.

We define the space-time double Fourier transform as:

The power spectrum (PSD) |ψ̃(ω, k)|2 of one realization of ψ(z, t) is plotted in blue in Fig. 1b. As pointed out  in25 
and reported below in “Methods”, the straight lines in the k − ω space are signature of the solitons observed in 
the spatio-temporal dynamics (Fig. 1a). Note that the theoretical description of the statistical distribution of the 
slopes of the straight lines—associated to the velocities of the solitons—is a theoretical open question. We also 
plot the spectrum �|ψ̃(ω, k)|2� averaged over several realizations in Fig. 1c. The linear dispersion of 1DNLSE reads 
k(ω) = ω2/g36 and is plotted in dashed black lines in Fig. 1b,c. The NDR can be defined as the peak wavevectors 
k̃ of the PSD for each value of ω in the (ω, k)  plane25. For moderate nonlinearities and narrow Fourier spectra, 
the nonlinear NDR gets shifted from the linear one and  reads25,36:

As expected from Eq. (5), the NDR computed from numerical simulations shifts toward negative values of k 
(see red dashed lines in Fig. 1b,c). The Fig. 1c,d show that, the PSD broadens around the NDR when Ŵ increases 
because of the energy exchange among Fourier modes. This broadening phenomenon is well-known in stand-
ard WT with resonant  interactions1–3,37 but, to the best of our knowledge, it has not been reported in IT where 
resonances are forbidden (see “Methods”).

The k−spectrum at ω = 0 , i.e. nk = �|ψ̃(0, k)|2� is plotted in Fig. 1d. For small values of Ŵ , the maximum 
of this curve coincides with the value predicted by the weakly nonlinear theory (i.e. Eq. (5), red dashed line 
in Fig 1d). Note that, in this weakly nonlinear regime, nk can be empirically fitted by a Lorentzian distribution 
(purple dashed line in Fig. 1d). To the best of our knowledge, this remarkable fact, not known yet in IT, has 
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not been described theoretically. At higher nonlinearities, the number of straight lines associated with solitons 
(individually observed in Fig. 1a,b for Ŵ = 0.65 ) increases. The NDR of a single soliton follows the straight line 
k = cs ω + (ks − csωs − 1

2γ |ψ0|2) where cs is the group velocity of the soliton in the (t, z) plane, ωs is the central 
frequency of the soliton and ks = k(ωs) = ω2

s /g follows the linear dispersion  (see25 and “Methods”). As a con-
sequence, the nonlinear phase shift acquired by solitons during their propagation places the solitonic lines well 
below the dispersion parabola described by Eq. (5) (see Fig. 1b).

Consequently, the strong and asymmetric broadening of the PSD profile nk toward negative values of k 
(Fig. 1d) can be considered as a signature of the increasing number of solitons in the strongly nonlinear regime 
of IT.

Experiments. In order to investigate experimentally the NDR described above, we have used the setup 
described  in38 and schematically shown in Fig. 2a. Regimes close to IT can be achieved in unidirectional deep 
water waves having a narrow Fourier spectrum. Such waves are generated at one end of a 148 m long, 5 m wide 
and 3 m deep wave flume by a computer-assisted flap-type wavemaker (see Fig. 2a). The flume is equipped with 
an absorbing device strongly reducing wave reflection at the opposite  end38. The surface elevation η(τ , z) is 
measured by using 20 equally spaced resistive wave gauges that are installed along the water tank at distances 
zj = 6 j m, j = 1, 2, ...20 from the wavemaker located at z = 0 m. This provides an effective measuring range of 
120 m and a resolution of the k−spectrum of 2π/120 rad m−1 (see “Methods”). The envelope ψ(t, z = 0) of the 

Figure 1.  Numerical simulations of the 1-D NLS equation. Three columns correspond to three different values 
of Ŵ 0.12, 0.33, and 0.65, respectively. The central frequency of the carrier wave and the initial width of the 
wave spectrum are set to f0 = 1.15 Hz and �f = 0.2 Hz. (a) Spatiotemporal diagram for the complex envelope 
amplitude |ψ(t, z)| . (b) Corresponding nonlinear dispersion relation |ψ̃(ω, k)|2 normalized to the maximum. 
(c) Nonlinear dispersion relation averaged over 1000 realizations and normalized to the maximum. Propagation 
distance is 500 m. (d) Cross-section of the averaged nonlinear dispersion relation at ω = 0 (along the blue line 
in c). Dashed purple line shows a Lorentzian fit. In (b–d), vertical black and red dashed lines represent the linear 
dispersion k(ω) and its nonlinear correction of Eq. (5) respectively.
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surface elevation has a central frequency f0 = 1.15 Hz and it is designed using the same procedure as the one 
used in our numerical simulations, i.e. by performing the linear superposition of a large number of independent 
random Fourier modes. The degree of nonlinearity is varied by changing either the averaged amplitudes or the 
initial spectral width �f  of the waves generated in the water tank.

A typical temporal evolution of the surface elevation experimentally recorded at the first gauge ( z = 6 m) is 
plotted in the Fig. 2b. The slowly varying amplitude ψ(z, t) is determined by using Hilbert Transform following 
techniques described, e.g., in Ref.29. Typical spatio-temporal evolution of |ψ | is plotted in Fig. 3a where we use 
the retarded time t = τ − z/cg . When Ŵ increases, we observe the emergence of pulses localized in space and 
time. The emerging pulses become narrower and most of them achieve a negative speed in the (t, z) diagram 
(see below).

As expected from our numerical simulations, the experimental PSD broadens and shifts toward the negative 
values of k (Fig. 3b). However, at high nonlinearity, the measured NDR deviates significantly from the numeri-
cal simulations and becomes asymmetric with ω . This phenomenon is the well-known “frequency downshift” 
of surface gravity waves induced by high order nonlinearities responsible for the negatives speeds observed in 
the (t, z) diagram shown in Fig. 3a39. The numerical simulations of Dysthe equation (see below) and of the Euler 
equations (see Supplementary Material) confirm that this shape of the NDR is indeed induced by effects (not 
included in 1DNLSE) which break integrability of the wave equation.

Simulations of the Dysthe equation. The 1DNLSE (Eq. 2) is established under the assumptions of weak 
nonlinearity of the wave field as well as the narrowbandedness of its energy content. As it could be expected, at 
high values of the nonlinear parameter Ŵ , the measured NDR deviates from the one computed by performing 
numerical simulations of the 1DNLSE. The Dysthe equation (a higher-order nonlinear and not integrable gen-
eralized version of the 1DNLSE) provides a simple model that reproduces qualitatively the ω asymmetry of the 
NDR observed in experiments. Dysthe equation can be expressed as  follows40:

where H stands for the Hilbert transform defined as follows:F (H(f (t))) = −i sign(ω)F (f (t)) , where F 
represents the Fourier transform and sign is the signum function. The extra terms labelled ’a’, ’b’ and ’c’ in Eq. 
(6) represent higher order terms in a perturbative approach of Euler equation where the small parameter is 
the spectral width �f  . If �f → 0 , the derivatives terms ’a’, ’b’ and ’c’ vanish whereas the dominant cubic term 
ik

3
0|ψ |2ψ remains unchanged.

In order to investigate the influence of additional terms present in Dysthe equation, we have simulated the 
nonlinear propagation of identical initial conditions used in Fig. 1a, Ŵ = 0.65, including Dysthe terms labeled ’a’, 
’b’, and ’c’ separately as shown in Fig. 4. Parameters used in the numerical simulations are the same as those used 
for the numerical integration of the 1DNLE reported above.

As one can see in Fig. 4, the derivatives included in the terms ’a’ and ’b’ contribute to the nonlinear spectral 
shift, leading to the change of solitons’ group velocity (asymmetry in ω ). The term ’c’ reduces the shift of solitons 
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Figure 2.  Experimental facility. (a) Schematic representation of the 120m-long water tank facility at École 
Centrale de Nantes. The surface elevation is recorded by a set of probes placed every 6 m of the water tank 
length. (b) Typical experimental wave train (surface elevation η , blue line) and its envelope (orange line) 
reconstructed by using the Hilbert transform.
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Figure 3.  Experimental reconstruction of the nonlinear dispersion relation. Four columns correspond to 
four different values of Ŵ 0.12, 0.33, 0.65, and 6.18, respectively. (a) Spatiotemporal diagram of the wave 
envelope amplitude |�(t, z)| . Data received from 20 probes have been post-processed and arranged in 20 
vertical rows subtracting waves’ group velocity ( t = τ − z/cg ). (b) Nonlinear dispersion relation reconstructed 
from the evolution of the complex wave envelope. Ŵ = 0.12, 0.33, 0.65 correspond to an initial spectral width 
�f = 0.2 Hz and �|ψ̃(ω, k)|2� is averaged over several realizations (see “Methods”). In order to observe the 
signature of a single soliton, the NDR is not averaged for Ŵ = 6.18 (corresponding to �f = 0.037 Hz). (c) 
Cross-section of the nonlinear dispersion relation at ω = 0 . Dashed purple line shows a Lorentzian fit, blue line 
shows corresponding results of NLS simulation.

Figure 4.  Numerical simulation of Dysthe model. Parameters correspond to Fig. 1a of the manuscript Ŵ = 0.65, 
ε = 0.14 (see “Methods”). Label ’NLS’ corresponds to simulations of 1DNLSE. Labels ’a’, ’b’, ’c’, and ’a + b + c’ 
indicate terms of Eq. (6) are added to the 1DNLSE core.
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leading to a picture similar to 1DNLSE but with a smaller amplitudes of the localized structures which can be 
seen in the corresponding NDR plots.

Importantly, we have also run numerical simulations Euler equations by using high-order spectral (HOS) 
method (see Supplementary Material). The results of these simulations are close to those obtained with the 
Dysthe equation.

Nonlinear shift and broadening of the nonlinear dispersion relation. Our data analysis reveals 
that higher-order effects discussed above reduce the number of solitons embedded in random waves: indeed, 
we found that for Ŵ ≤ 1 , the straight lines in the (ω, k) space—signatures of solitons—appear much less fre-
quently than in 1DNLSE simulations. Nevertheless, we have also observed these spectral signatures of solitons 
at extremely high nonlinearity (which is achieved with small values of the �f  , see the fourth column of Fig. 3).

The shapes of the PSD and of the NDR provide another signature of the deviation from IT: while the 
NDR predicted from the 1DNLSE becomes asymmetric at high nonlinearity, the experimental PSDs profiles 
nk = �|ψ̃(0, k)|2� in Fig. 3c coincide with a Lorentzian fit for all values of Ŵ , a result also observed for HOS 
simulations.

The influence of the nonlinearity and of high order effects can be quantified with the help of the position 
k = kM(Ŵ) of the maximum and of the full width at half maximum �k(Ŵ) of nk (see Fig. 5a,b respectively). 
Figure 5a shows that, both in experiments and simulations, kM(Ŵ) evolves more slowly than predicted by the 
weakly nonlinear theory—see Eq. (5). Moreover, because of the smaller number of solitons, the shift of the NDR 
toward negative values of k is weaker in experiments and HOS simulations than in IT (1DNLSE simulations).

Discussion
Our work provides new insight into the spectral properties of unidirectional nonlinear random waves. Our 
numerical simulations of the 1DNLSE show how the number of emerging solitons is directly related to the 
strength of nonlinearity in IT. Moreover, while a previous study has focused on the position of the maxima of 
the  NDR25, we also investigate the broadening of the NDR. Simulations reveal that the NDR provides a spectral 
signature of the solitons embedded in the random waves (asymmetric broadening in the k direction at high 
nonlinearity). Further investigations are needed to establish the theoretical link between the nonlinear spectra 
computed in the framework of IST and the broadening of the NDR (Fourier spectra).

From the experimental point of view, by focusing our analysis on the slowly-varying amplitude ψ , we were 
able to measure very accurately slight deviations from the predicted nonlinear dispersion relation. The results 
reported here provide new insights into an old fundamental problem of hydrodynamics: the measurement of the 
dispersion relation of random surface gravity waves (see for  example5 and refs. therein). Various theoretical and 

Figure 5.  Quantitative comparison of the experimental results with different numerical models as a function of 
Ŵ . (a) Value of k at the NDR maximum for ω = 0 . Blue and green dots correspond to NLS and HOS simulations; 
orange dots show experimental data. Red line represents the theoretical curve (Eq. 5). (b) Full width at half 
maximum of the NDR for ω = 0 . Note that the vertical scale is different for experiments/HOS simulations (left 
scale) and 1DNLSE simulations (right scale). For all points in (a,b), f 0 = 1.15 Hz, � f = 0.2 Hz.
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experimental works have been devoted to this question, see e.g.5,36,41–47. For water tanks equipped with transpar-
ent side walls, cameras may be used to record the full spatio-temporal  dynamics23. Otherwise, a large number of 
gauges is  needed5. The central point of our strategy is to remove the carrier wave frequency in order to retrieve 
the NDR of the slowly varying amplitude of waves having a narrow spectrum. Our simple experimental technique 
can be easily implemented in further investigations of the NDR of unidirectional water waves by using a very 
limited number of probes (20 probes here instead of 384 probes  in5 for example, see “Methods”).

Our work contributes to the understanding of the NDR in nonlinear waves systems that involve solitons. 
Recently, a non trivial NDR has been established for finite gap solutions in the context of NLS soliton  gases48. The 
possible relationship between this NDR derived for soliton gases and the Fourier NDR studied here is an open 
fundamental question. On another side, the concept of NDR is receiving interest in the photonics community, 
where it has been for example recently used to explain the effect of dissipative soliton hopping in a photonic 
 dimer49 or to describe noise properties of a soliton frequency comb in a synchronously pumped  cavity50. In this 
article, we have demonstrated that the NDR measured in deep water waves experiments is close to the one pre-
dicted by using the 1DNLSE for low nonlinearity. For high nonlinearity, the measured NDR exhibits a signature 
of solitons but experiments deviates from IT because perturbative effects not taken into account in the 1DNLSE 
limit the emergence of solitons. It has been demonstrated that optical fiber experiments can be very close to 
integrability for high  nonlinearity19,30. The measurement of the NDR in optical fibers is extremely challenging 
but it has been recently demonstrated in a double loop fiber  devices51. We hope that our work will also stimulate 
further investigation of the NDR of IT in photonics.

Methods
Nonlinear Schrödinger equation (1DNLSE). Strength the nonlinearity: Benjamin‑Feir index. In order 
to compare nonlinearity and group velocity dispersion in the framework of the 1DNLSE (Eq. 2), it is useful to 
introduce a linear and a nonlinear propagation length as follows:

where �f  is a typical initial spectral bandwidth and P0 = �|ψ(t, z = 0)|2� where 〈...〉 is the averaging over time 
and/or realizations. The degree of nonlinearity of the wave propagation is given by the parameter Ŵ = zlin/znlin 
(see Eq. 3).

Note that in the context of ocean waves, Ŵ = BFI2 where BFI is the Benjamin-Feir  Index31,32. BFI index can 
also be expressed as follows:

where ε = k0

√
2σ is the wave steepness with σ 2 = �η2� = �|ψ |2�/2 and �f  and f0 are the average spectral width 

and the central frequency of the initial wave packets respectively.

Numerical simulations of 1DNLSE. In simulations and in experiments, the initial conditions are par-
tially coherent waves made of the linear superposition of independant Fourier components at z = 0 and read:

where fl = l/Tmax , Tmax is the temporal duration of the experiments and φl are independently and randomly 
distributed over [0, 2π] . Real part and imaginary part of such partially coherent waves exhibit Gaussian statistics 
at z = 0  (see21 for details).

Along the propagation in the focusing regime of 1DNLSE, the statistics deviates from Gaussianity and the 
probability density function of the wave amplitude becomes heavy-tailed. Note that the statistical characteristics 
of partially coherent waves are very different than plane waves initially perturbed by noise which is also inves-
tigated  in25. For a comparison between the two cases, refer e.g.  to52.

Numerical simulations of Eq. (2) are realized using step-adaptive high order Runge-Kutta method. We con-
struct different initial conditions using the random phase approach where a uniformly distributed phase is added 
to every Fourier component of a Gaussian spectrum with �f = 0.2 Hz. Typical temporal windows used in the 
numerical simulations correspond to 100 seconds. Three parameters of simulations depend on the value of the 
steepness: the number of points N, the length of propagation Lmax and the number of realizations Nsample . We 
separate the numerical studies into three ranges of steepness ε (see Table 1).

(7)zlin =
g

(2π�f )2
and znlin =

1

γP0
,

(8)BFI =
ε

(�f /f0)
=

√
Ŵ,

(9)ψ(t, z = 0) = ψ0

+N/2∑

l=−N/2

e−
1
2 (fl/�f )2ei 2π fl t eiφl

Table 1.  Parameters of numerical simulations of 1DNLSE.

Ranges of ε N Lmax(m) Nsample

ε ≤ 0.05 2048 500 10,000

0.05 < ε ≤ 0.09 2048 500 500

0.09 < ε ≤ 0.19 1024 2000 100
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In order to reconstruct numerically NDR, we multiply the spatiotemporal diagram by a Super-Gaussian 
window with power 15 along z direction avoiding thereby undesirable effects related to the Fourier analysis of 
non-periodic signals.

Integrable turbulence: absence of non trivial resonances in the 1DNLSE. In general, WT is 
described by the resonant interactions among the Fourier components of the wave  field53,54. On the contrary, 
the non trivial resonances are forbidden in integrable  turbulence20,55. We consider the third order nonlinear 
interaction of four monochromatic waves i = 1, 2, 3, 4 of pulsation ωi and wavenumber ki(ωi) in a unidirec-
tional dispersive media. In this context, the resonances conditions of four wave mixing in the standard wave 
turbulence read ω1 + ω2 = ω3 + ω4 and k1 + k2 = k3 + k4 where ki = k(ωi) satisfies the linear dispersion 
relation k(ω) . The linear dispersion relation of deep water waves is k(ω) = ω2/g and exact resonances thus 
lead to:ω2

1 + ω2
2 = ω2

3 + (ω1 + ω2 − ω3)
2 and then to : ω1(ω3 − ω2) = ω3(ω3 − ω2) . Finally, ω1 = ω3 and 

ω2 = ω4 or ω2 = ω3 and ω1 = ω4 i.e. exact resonances of non trivial interactions ( ω1  = ω3 and ω1  = ω4 ) are 
forbidden.

Nonlinear dispersion of an isolated soliton. The fundamental soliton solution of the 1DNLSE (Eq. 2) 
 reads56:

where the duration of the soliton is τ =
√

2/(γ g|ψ0|2) . ks = k(ωs) obeys the linear dispersion relation, 
cs = c(ωs) = dk/dω = 2ωs/g  is the group velocity of the soliton in the (z, t) plane and A = γ |ψ0|2/2 . The 
double Fourier transform of ψS(t, z) is given by:

As a consequence, the NDR of a single soliton follows the straight line k = cs ω + (ks − csωs − 1
2γ |ψ0|2)25.

Measurement of the nonlinear dispersion relation
Resolution of the measurement of k. The key point in our approach is to remove the carrier wave 
before computing the NDR. This allows us to reveal the details of the NDR of the slowly varying envelop. In the 
water tank, the gauges are separated by 6 m and the maximum measurable wavevector is around 1.05 m−1 . As a 
consequence, contrary to Taklo et al. who use 384 probes, we do not resolve the wavevectors of the carrier wave 
2π/�0 ≃ 5.3 m−1 and of the harmonics. Our strategy enables the accurate measurement of the NLDR of the slow 
varying envelop of the wave by using only 20 probes. This provides an effective measuring range of 120 m with a 
resolution of the measurement of the k−spectrum of �kmin = 2π/120 rad m−1 . Note finally that,  in5, the accu-
racy of the measurement of k given by the length of the water tank is �kmin/k0 = 0.014 while our setup enables 
an accuracy of �kmin/k0 < 0.01.

In order to measure the averaged spectra and NDR, we use 3, 6 and, 3 experimental runs with a duration of 
512 s for Ŵ = 0.12 , 0.33, 0.65, respectively. One run of 128 s have been used for Ŵ = 6.18.

Note that in NLS and HOS (high-order spectral, see Supplementary Material) simulations, the chosen lengths 
of propagation depend on the parameters and vary typically from 300 to 500 m. The uncertainty of measurement 
of kM and �k is therefore significantly lower in simulations than in experiments.

Evaluation of the full width at half maximum �k of the position of the maximum k
M

. In Fig. 4, 
we report the evaluation of the full width at half maximum �k and of the position of the maximum kM of the 
function f (k) = |ψ̃(k,ω = 0)|2 in 1DNLSE, HOS simulations and in experiments. The accuracy of the meas-
urement of �k and kM is limited both by the discretization of k (see above the uncertainty �kmin ) and by the 
random fluctuations of f(k). In order to overcome these difficulties, when it is appropriate, we evaluate �k and 
kM by using best fitting procedure with Lorentzian function.

Data availability
The datasets generated and/or analysed during the current study are available in the Figure data: Nonlinear 
dispersion relation in integrable turbulence repository, https:// zenodo. org/ record/ 65954 29.
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