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The small-amplitude in-plane vibrations of an elastic rod clamped at both extremities

are studied. The rod is modeled as an extensible, shearable, planar Kirchhoff elastic rod

under large displacements and rotations, and the vibration frequencies are computed

both analytically and numerically as a function of the loading. Of particular interest is

threshold. While for some modes there are no qualitative changes in the mode

frequencies, other frequencies experience rapid variations after the buckling threshold,

the thinner the rod, the more abrupt the variations. Eventually, a mismatch for half of

the frequencies at buckling arises between the zero thickness limit of the extensible

model and the inextensible model.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The first step in the study of vibrating elastic structures [1] focuses on the dynamical response of the system around its
unstressed configuration. In vibration analysis, the dynamics of infinitely small-amplitude disturbances around the
fundamental equilibrium state are generally first considered, leading to a linear problem. However, nonlinear effects are
known to play a key role in many elastic systems, and in the context of vibrations, nonlinearities can be included by
studying large-amplitude oscillations around the fundamental state [2]. The second step in the analysis of vibrations is to
study the effect of external loads. They have a direct influence on the dynamical response of the system, as easily
demonstrated by tuning the natural frequencies of a string by putting it under tension. Similarly, in compression, the
natural frequencies of a rod decrease. Again nonlinear effects become important when external loads not only change the
vibration response of the rod but also alter its overall stability through buckling. Several studies have investigated
dynamical responses of post-buckled elastic rods around their post-buckled state, see e.g. Chapter 12 of [1] and [3–5]. The
present work also focuses on the problem of small-amplitude vibrations around a pre-strained deformed nonlinear elastic
rod, and shows that vibration frequencies behave singularly at buckling. This problem is relevant for a number of
applications including the manufacturing of piano (or violin) soundboards where the wooden board is bent before being
clamped in the rigid metal frame [6–8]. Other systems where pre-stress and/or pre-strain play an important role for the
vibration response are gongs, cymbals, and steel drums where plastic deformations of the metal plates are used to
introduce separation of response modes [9].

Here, we consider the problem of in-plane vibrations of a pre- and post-buckled Kirchhoff extensible shearable elastic
rod. First, we study the equilibrium configurations of a clamped–clamped rod as the ends are gradually moved together.
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The rod has a straight natural shape and for small axial displacements the rod remains straight until a critical displacement
is reached where the rod buckles in the plane. For each value of the axial displacement we study the small-amplitude
vibrations around the equilibrium state and we follow how frequencies of the natural modes change as the load is
increased. For both equilibrium and vibrations we enforce displacement control boundary conditions, that is, the axial
displacement rather than the axial load is imposed.

The paper is organized as follows: In Section 2 we present Kirchhoff model for elastic rods, in Section 3 we derive the
equations for the small-amplitude vibrations of a rod around its post-buckled equilibrium. We compute equilibriums in
Section 4, vibrations in the extensible case in Section 5 and in the extensible case in Section 6. We then compare the two
cases in Section 7 and a show a discrepancy between them, which is further analyzed analytically in Section 8. Discussion
(Section 9) and conclusion (Section 10) follow.

2. Model

We consider an elastic rod with a rectangular cross-section of width b and thickness h, total length L and arc length S in
its unstressed reference state. In this state the rod lies along the ex axis, from the origin O¼ ð0;0,0Þ to the point at ðL,0;0Þ.
The position vector of the center of the rod cross-section is noted RðSÞ and we have Rð0Þ ¼ ð0;0,0Þ and RðLÞ ¼ ðL,0;0Þ in the
reference state.

2.1. Kinematics

We use the special Cosserat theory of rods [10] where the rod can suffer bending, extension, and shear deformations.
We work under the assumption that the rod cross-section remains planar (and rectangular) as the rod deforms and use a
set of three Cosserat directors ðd1ðSÞ,d2ðSÞ,d3ðSÞÞ embedded in each cross-section: d1 is perpendicular to the section plane,
d2 is along the small span (of length h) of the section, and d3 is along the wide span (of length b) of the section. In the
undeformed state, d1ðSÞ � ex, d2ðSÞ � ey , and d3ðSÞ � ez . We only consider deformed states that are (i) planar (where the rod
centerline RðSÞ lies in the (x,y) plane, the rod being bent along its small span h) and (ii) twist-less (where the director
d3ðSÞ � ez). Note that in the presence of extension and shear, S may no longer be the arc-length of the curve RðSÞ in the
deformed state. We introduce extension and shear strains, e1 and e2, such that

R0ðSÞ ¼
def

dR=dS¼ ð1þe1Þd1þe2d2: (1)

In the absence of extension ðe1 ¼ 0Þ and shear ðe2 ¼ 0Þ, the director d1 is the unit tangent to the centerline
RðSÞ ¼ ðXðSÞ,YðSÞ,ZðSÞÞ. We introduce the angle yðSÞ to parametrize the rotation of the ðd1,d2Þ frame around the ez ¼ d3 axis:

d1ðSÞ ¼

cos yðSÞ
sin yðSÞ

0

0
B@

1
CA

ex ,ey ,ez

and d2ðSÞ ¼

�sin yðSÞ
cos yðSÞ

0

0
B@

1
CA

ex ,ey ,ez

: (2)

2.2. Dynamics

We use the Kirchhoff dynamical equations for elastic rods [10], where the stresses in the section are averaged to yield
an internal force NðSÞ and an internal moment MðSÞ. These internal forces and moments are the loads exerted on the
section at S by the part of the rod at S4S. In the absence of body force and couple, the linear and angular momentum
balance then read

N 0ðS,TÞ ¼ rhb €RðS,TÞ, (3)

M0ðS,TÞþR0ðS,TÞ � NðS,TÞ ¼ rI €yðS,TÞ, (4)

where ð Þ0 ¼
defq=qS, _ð Þ ¼

defq=qT , T is time, r the mass per unit volume of the material, and I the second moment of area of the
cross-section (in the present case I¼ h3b=12).

2.3. Constitutive law

We use the standard linear constitutive relationship relating the bending strain kðSÞ ¼defy0ðSÞ to the bending moment
M3 ¼

def
M � d3:

M3 ¼ EIk, (5)

where E is Young’s modulus. Note that k is not the curvature in general. In a similar way, the tension N1 ¼
def

N � d1 and the
shear force N2 ¼

def
N � d2 are linked to the extension e1 and shear strains e2 through

N1 ¼ Ehbe1, (6)
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N2 ¼ Ghbe2, (7)

where G is the shear modulus.

2.4. Equations in component form

In the planar case considered here, we have ZðS,TÞ � 0, NzðS,TÞ � 0, MxðS,TÞ � 0, and MyðS,TÞ � 0, 8ðS,TÞ so that the
equations for the six remaining unknowns are

X0 ¼ ð1þe1Þcos y�e2 sin y, (8a)

Y 0 ¼ ð1þe1Þsin yþe2 cos y, (8b)

y0 ¼M=ðEIÞ, (8c)

M0 ¼ e2N1�ð1þe1ÞN2þrI €y, (8d)

N0x ¼ rhb €X , (8e)

N0y ¼ rhb €Y , (8f)

where M¼Mz ¼M3, N1 ¼Nx cos yþNy sin y, and N2 ¼�Nx sin yþNy cos y. The strains ðe1,e2Þ are given by Eqs. (6) and (7)
as functions of Nx and Ny.

2.5. Dimensionless variables

We scale all lengths with L, time with t¼def
L2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rhb=ðEIÞ

p
, forces with EI=L2, and moments with EI=L. This naturally

introduces a parameter

Z¼def I

hbL2
¼

1

12

h

L

� �2

, (9)

which takes small values in the present case of slender rods. Dimensionless variables will be written lowercase, e.g.
x¼

def
X=L, or m¼

def
ML=ðEIÞ. The constitutive relations (6) and (7) read: e1 ¼ Zn1 and e2 ¼ 2ð1þnÞZn2, where the Poisson ratio n

arises from the relation E¼ 2ð1þnÞG. Rods with Z40 are extensible, shearable rods for which the rotational inertia is
accounted for. They will be simply called extensible rods. Rods with Z¼ 0 will be simply called inextensible rods, although
they really are inextensible, unshearable rods for which the rotational inertia is ignored. Such rods are frequently called
elastica [16,17].

3. Small-amplitude vibrations around pre- and post-buckled equilibrium

The systems of (8) in dimensionless form reads

x0ðs,tÞ ¼ cos yþZðn1 cos y�2ð1þnÞn2 sin yÞ, (10a)

y0ðs,tÞ ¼ sin yþZðn1 sin yþ2ð1þnÞn2 cos yÞ, (10b)

y0ðs,tÞ ¼m, (10c)

m0ðs,tÞ ¼ �n2þZðð1þ2nÞn1n2þ
€yÞ, (10d)

n0xðs,tÞ ¼ €x, (10e)

n0yðs,tÞ ¼ €y, (10f)

with n1 ¼ nx cos yþny sin y and n2 ¼�nx sin yþny cos y. In our problem, we consider a clamped–clamped rod and control
the end-shortening d¼

def
1�ðxð1,tÞ�xð0,tÞÞ. This setup implies the following boundary conditions:

xð0,tÞ ¼ 0, xð1,tÞ ¼ 1�d, (11a)

yð0,tÞ ¼ 0, yð1,tÞ ¼ 0, (11b)

yð0,tÞ ¼ 0, yð1,tÞ ¼ 0: (11c)

For each given value of the end-shortening d, we find the equilibrium configuration (xe, ye, ye, me, nxe, nye) by solving
system (10) with €xe ¼ 0 and €ye ¼ 0. Then we look for small-amplitude vibrations around this equilibrium configuration,



Fig. 1. Clamped–clamped rod buckled in the (x,y) plane. The end-shortening D is controlled. The point A in the reference configuration moves to point a

in the deformed configuration, introducing horizontal Ur0 and vertical V displacements. The origin is taken at the fixed point O at the left end of the rod.
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that is, we set

xðs,tÞ ¼ xeðsÞþdxðsÞeıot , (12a)

yðs,tÞ ¼ yeðsÞþdyðsÞeıot , (12b)

yðs,tÞ ¼ yeðsÞþdyðsÞeıot , (12c)

mðs,tÞ ¼meðsÞþdmðsÞeıot , (12d)

nxðs,tÞ ¼ nxeðsÞþdnxðsÞe
ıot , (12e)

nyðs,tÞ ¼ nyeðsÞþdnyðsÞe
ıot , (12f)

where d51 is a small parameter, and o is the frequency of the vibration. Inserting (12) into (10) and keeping only linear
terms in d, we obtain equations for the spatial modes ðx,y,y,m,nx,nyÞ:

x 0ðsÞ ¼�y sin yeþZðn1 cos ye�2ð1þnÞn2 sin yeÞþZyð�n1e sin ye�2ð1þnÞn2e cos yeÞ, (13a)

y0ðsÞ ¼ y cos yeþZðn1 sin yeþ2ð1þnÞn2 cos yeÞþZyðn1e cos ye�2ð1þnÞn2e sin yeÞ, (13b)

y
0
ðsÞ ¼m, (13c)

m 0ðsÞ ¼ �n2þZðð1þ2nÞðn1 n2eþn1en2Þ�o2yÞ, (13d)

n 0xðsÞ ¼�o
2x, (13e)

n 0yðsÞ ¼ �o
2y, (13f)

with n1 ¼ nx cos yeþny sin yeþyð�nxe sin yeþnye cos yeÞ and n2 ¼�nx sin yeþny cos yeþyð�nxe cos ye�nye sin yeÞ. The
boundary conditions on the spatial modes are

xð0Þ ¼ 0, xð1Þ ¼ 0, (14a)

yð0Þ ¼ 0, yð1Þ ¼ 0, (14b)

yð0Þ ¼ 0, yð1Þ ¼ 0: (14c)

For given parameters Z and n and given end-shortening d, the equilibrium ðxe,ye,ye,me,nxe,nyeÞ is first computed from (10)
with €xe ¼ 0 and €ye ¼ 0. Then the 6D system (13) with the six boundary conditions (14) is a well-defined boundary value
problem, but with the additional unknown o. For computational purpose, we normalize the linear solution of this problem
by imposing the condition

m2
ð0Þþn2

x ð0Þþn2
y ð0Þ ¼ 1: (15)

4. Equilibrium

We use a ‘home-made’ predictor–corrector path-following code to address the problem numerically. For each value of
p¼

def
�nxe ¼�NxeL2=ðEIÞ in the interval ð0;8p2Þ, we compute the equilibrium solution ðxe,ye,ye,me,nxe,nyeÞ satisfying

clamped–clamped boundary conditions (11).
In Fig. 2 equilibrium paths are given for both inextensible (i.e. Z¼ 0) and extensible (Z40) rods. In the latter case, we

see that the displacement d starts to increase as soon the curve leaves the origin: due to extensibility the rod shorten
before buckling. Buckling happens at p¼ 4p2 for the inextensible case and at lower values for extensible cases. These
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Fig. 3. Frequencies for the lowest four vibration modes of a clamped–clamped rod around its fundamental and post-buckled equilibrium configurations

in the extensible case: (a) for Z¼ 1=1200, (b) for Z¼ 1=4800, (c) for Z¼ 1=19 200 (plain). The labels Ai, Bi, Ci with i¼ 1;2,3;4 correspond to the shapes

given in Figs. 4–6.
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equilibrium paths show that extension and shear play a minor role in the buckling load and that the inextensible rod
solution is obtained in the limit Z-0 of the extensible rod solution, as expected. Closed-form formula for the dotted (red)
curve is given in Appendix A.

5. Vibrations in the extensible case

5.1. Vibrations around the straight state

We first consider the equilibrium solution where the axially loaded rod is straight, but compressed:

yeðsÞ ¼ 0, xeðsÞ ¼ ð1�ZpÞs, nyeðsÞ ¼ 0, nxeðsÞ ¼ �p, yeðsÞ ¼ 0, meðsÞ ¼ 0: (16)

The vibrations around this straight equilibrium are either extensional of flexural. Extensional vibrations modes are
solutions of

x 0ðsÞ ¼ Znx, (17a)

n 0xðsÞ ¼ �o
2x, (17b)

with boundary conditions xð0Þ ¼ 0¼ xð1Þ. This yields vibration frequencies of the form o¼ jp= ffiffiffiZp (with j¼ 1;2, . . .), which
do not vary with the load p. The upper curve, before buckling of Fig. 3(a) is such a solution. Flexural vibrations modes are
solutions of

y 0000 þmpy 00�m2
oy ¼ 0, (18)

with boundary conditions yð0Þ ¼ 0¼ yð1Þ and ðZ2
%
o2þ½1�pðZ�Z

%
Þ�2Þy 0ð0;1ÞþZ

%
y 000ð0;1Þ ¼ 0. We introduced the notations

Z
%
¼ 2Zð1þnÞ, mp ¼ ð1�pðZ�Z

%
ÞÞpþo2ðZþZ

%
Þ, and m2

o ¼o2ð½1�pðZ�Z
%
Þ�2�½1�pðZ�Z

%
Þ�pZ

%
�ZZ

%
o2Þ. The general solution is
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of the form

yðsÞ ¼ A cos kþ sþB cosh k�sþC sin kþ sþD sinh k�s, (19)

where we used the two wavenumbers k7
¼ ð1=

ffiffiffi
2
p
Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

pþ4m2
o

q
7mp

r
. The boundary conditions require that

2aþa�kþ k�ðcos kþ cosh k��1Þþððaþ kþ Þ2�ða�k�Þ2Þ sin kþ sinh k� ¼ 0, (20)

with a7 ¼ ½1�pðZ�Z
%
Þ�2þZ

%
ð8ðk7

Þ
2
þZ

%
o2Þ, which is an equation for o. The analytical solutions oðpÞ given by (20)

match numerical solutions given in Fig. 3(a)–(c). Buckling occurs when o¼ 0¼ mo, i.e. for kþ ¼
ffiffiffiffiffiffimp

p
¼ 2p and k� ¼ 0. This

yields

p¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ16p2ðZ

%
�ZÞ

p
�1

2ðZ
%
�ZÞ ¼ 4p2�16p4ðZ

%
�ZÞþOðZ2Þ: (21)

5.2. Vibrations around the buckled state

Once the equilibrium solution is known, we solve the boundary value problem (13)–(14) numerically with a shooting
method: (i) we first use a guess for the unknown parameters w¼ ðmð0Þ,nxð0Þ,nyð0Þ,oÞ and we integrate the system (13) up
to s¼1; (ii) we then check if the boundary conditions (14)–(15) are satisfied. If not, we change the guess w accordingly
(using a Newton–Raphson scheme) until the boundary conditions at s¼1 are satisfied.

Once a solution wi is found for a given p¼ pi, we set p¼ piþ1 and use the value wi as starting guess (predictor step) for
the shooting method at p¼ piþ1 (corrector step). In this setup, each curve o¼oðpÞ represents a path in the numerical
bifurcation diagram, and we have numerically computed the four first paths (i.e. lowest four curves o¼oðpÞ) for several
values of the parameter Z¼ I=ðhwL2

Þ.
In Fig. 3, frequencies for the first four modes are given as a function of the parameter p, for different values of Z. It

should be noted that the computations performed here are for a displacement control experiment, that is d (and not p) is
controlled. Nevertheless, as there is a one-to-one correspondence between d and p, for each value of the applied
longitudinal displacement d, the equilibrium axial load p is read from Fig. 2 and then the frequency is computed and
plotted in Fig. 3. We see in Fig. 3 that as Z-0, frequencies globally increase and tend toward limiting curves. Finally we
note that every curve oðpÞ is continuous, but that the curves for the odd modes experience a rapid increase just after
buckling. As Z-0 this rapid increase becomes more abrupt to eventually turn into a discontinuity in the case Z¼ 0, see
Section 6. In each of Figs. 4–6, dynamical shapes (xðs,tÞ ¼ xeðsÞþxðsÞ cos ot, yðs,tÞ ¼ yeðsÞþyðsÞ cos ot) of the vibrating rod
are plotted.

We now focus on the first mode, which emerges from o¼ 0 at buckling. In Fig. 7(a), we plot o as function of the rise of
the buckled rod at its mid-point: yeð1=2Þ ¼ YeðL=2Þ=L. Each curve corresponds to a different value of the parameter Z, from
Z¼ 1=1200 (i.e. L¼ 10h) to Z¼ 1=480 000 (i.e. L¼ 200h). We see that all curves emerge from o¼ 0 at buckling
(yeð1=2Þ ¼ 0) and asymptotically tend to the curve computed in the inextensible case (see Section 6) when yeð1=2Þ
becomes large. For very small Z values, curves rise sharply from o¼ 0 and quickly approaches the inextensible asymptote.
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As a matter of fact these curves can be made to almost collapse on a master curve if the horizontal axis is plotted in unit of
the rod thickness h: in Fig. 7(b) we plot the frequency o as function of YeðL=2Þ=h, for the same set of Z values. All curves
nearly collapse on a master curve which has a (numerically determined) slope C28 at the origin. Using h¼

ffiffiffiffiffiffiffiffiffi
12Z

p
L we

obtain

oC
8:1ffiffiffiZp Yeð1=2Þ

L
, (22)

which means that the limit Z-0 is singular for this first mode. The same phenomenon happens for all odd modes.
In dimensional form (i.e. O¼o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ðrhbÞ

p
=L2) we have the following expression for the frequency O (in rad/s):

OC8:1
YeðL=2Þ

L2

ffiffiffiffi
E

r

s
for YeðL=2Þt2h: (23)

The presence of the celerity c¼
ffiffiffiffiffiffiffiffiffi
E=r

p
of compression elastic waves in this expression shows that directly after buckling

and for a short loading interval (i.e. YeðL=2Þ ¼ 0 to YeðL=2ÞC2h), the lowest mode of vibration of a buckled rod is of
extension–compression type. We also see in Fig. 7(b) that for YeðL=2Þ\8h the behavior is of flexural type (i.e. curves have
reached the inextensible asymptote). This separation between two different behaviors in the elastic response of the rod
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Fig. 7. Post-buckled frequency of the mode emerging from o¼ 0 at buckling (for Z40). (a) From bottom to top: 1=Z¼ 1200;4800,19 200;120 000;480 000.

(b) Same data but with horizontal axis rescaled with h. The curves nearly collapse on a master curve whose slope at the origin is C28. The dashed curve (red

online), whose slope at the origin is 2
ffiffiffi
2
p

p2 C27:9 and which is hardly distinguishable from the previous ones, is the first mode solution of (25). (c) Same data as

in (a) but with d¼D/L on the horizontal axis. (d) Same data but with the horizontal axis rescaled with ð4p2ZÞ; as in (b) the curves nearly collapse on a master

curve. The dashed curve (red online), which is hardly distinguishable from the previous ones, is the first mode solution of (25). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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could be a way to define the notion of a shallow (resp. deep) buckled equilibrium shape: a shallow (resp. deep) equilibrium
shape has a vibrational response that is primarily extensional (resp. flexural).

We now focus on the second mode and show that it does not suffer the same singularity as the first one. The mode
frequency emerges from a finite value ob ¼obðZÞ at buckling, and we see in Fig. 3 that its variation (with p) after buckling
is much slower than for the first mode. In Fig. 8 the variation of the second mode frequency is plotted as a function of
yeð1=2Þ ¼ YeðL=2Þ=L. We numerically extract the approximation:

oCobðZÞ�ð9�5400ZÞ YeðL=2Þ

L

� �2

: (24)

In conclusion, the limit Z-0 is smooth for the second mode (and in fact for all even modes).
An alternative equation is used in (for example) [12–15] for the vibrations of post-buckled extensible rods. The

transverse displacement YðS,TÞ is the solution of the equation:

EIY 0000 þrhb €Y þPY 00 ¼ 0, (25a)
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with P¼
Ehb

L
D�

1

2

Z L

0
Y 02 dS

� �
: (25b)

In this model a certain number of assumptions on the nonlinear terms are made, see e.g. Eq. (B.3). Calculating the
frequency of the first mode just after buckling, we find

OC
ffiffiffiffiffiffiffiffiffi
2=3

p
p2 YeðL=2Þ

L2

ffiffiffiffi
E

r

s
, (26)

where
ffiffiffiffiffiffiffiffiffi
2=3

p
p2C8:06, in agreement with our result (23). We plot in Fig. 7(b) and (d) the first mode solution of Eq. (25),

and we note that this solution is independent of Z, which is not the case for Kirchhoff equations. Moreover the second
mode of (25) is found to be independent of YeðL=2Þ (see Fig. 8), in contradiction with (24). A more comprehensive
comparison of the two models is the subject of a forthcoming paper.

6. Vibrations in the inextensible case

6.1. Vibrations around the straight state

We consider an inextensible unshearable rod of length L, strongly held at both sides by clamps separated by a distance
L. The rod is held straight and hence no flexural dynamics at all can take place, i.e. flexural vibrations (that would be given
by the Z¼ 0 version of Eq. (18)) are impossible here as they would require shortening of the ends.

Axial vibrations are given by

x 0ðsÞ ¼ 0, (27a)

n 0xðsÞ ¼ -o2x, (27b)

with boundary conditions xð0Þ ¼ 0¼ xð1Þ. The solution is xðsÞ � 0, and nxðsÞ � constant, where we see that any o is
admissible. Even if no extensional deformation is present, the load in this statically indeterminate problem can fluctuate
with any frequency. This is illustrated in Fig. 9 by the (red) shaded region in the interval 0rpr4p2.

6.2. Vibrations around the buckled state

As in the extensible case we solve the boundary value problem (13)–(14) numerically with a shooting method. The
results are shown in Fig. 9 and in particular we see that at the buckling threshold, the first four frequencies are: oC44:36,
74.4, 182.1, and 259.4. Only one out of two of these frequencies is close to what was found in Fig. 3(c).

Dynamical shapes (xðs,tÞ ¼ xeðsÞþxðsÞ cos ot, yðs,tÞ ¼ yeðsÞþyðsÞ cos ot) of the vibrating rod are plotted in Figs. 10 and 11.

7. Comparison of the extensible and inextensible results

We here compare the post-buckled vibrations frequencies obtained numerically for the extensible (Z40) and
inextensible (Z¼ 0) cases. On the one hand, we see in Fig. 9 that in the inextensible case there is no curve emerging
from o¼ 0 at buckling, whereas there is always one for all Z values in the extensible case (Fig. 3). On the other hand, in the
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inextensible case there is a curve emerging from oC74:4, nowhere near any of the extensible curves. We plot in Fig. 12(a)
a comparison of the inextensible Z¼ 0 and extensible Z¼ 1=19 200 cases, for the first two modes. We see that the second
extensible mode (emerging from oC44 at buckling) is always very close to its inextensible counterpart, but that the first
extensible mode (emerging from o¼ 0 at buckling) is first very far from its inextensible counterpart and only approaches
it later in the post-buckling regime. The consequence is that for a short interval after buckling the inextensible model
wrongly predicts a fundamental mode at oC44 whereas for any ‘real life’ elastic rod there is a vibration mode with lower
frequency.

A full comparison between extensible and inextensible cases shows that all extensible odd modes experiences a similar
mismatch with their inextensible counterpart, see Fig. 12(b) for the first four modes. For the solution at buckling, with p

given by (21), we further investigate numerically the variation with Z of the frequencies of the first four modes in the
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extensible case and compare them with the first four frequency of the inextensible case Z¼ 0. In Fig. 13, we see that as
Z-0 the even extensible modes are converging to solutions of the inextensible case, but that the limit Z-0 of the odd
extensible modes does not correspond to the frequency values found in the inextensible case.

8. Analytical study for the inextensible case

In order to understand the mismatch of the odd modes’ frequencies at buckling between the extensible and
inextensible cases, we look at the problem analytically. In the inextensible case, buckling happens for p¼ 4p2. We look
for the frequencies that emerge from the continuum present for pr4p2. If the Z-0 limit was not singular we would just
look for the solutions of (20) for Z¼ 0 and p¼ 4p2, that is

2kþ k�ðcos kþ cosh k��1Þþ4p2 sin kþ sinh k�, (28)

with k7
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p4þo2
p

72p2
p

. The solutions are listed in Table 1 and we see that, for the odd modes, they do not match
what is found numerically.

To investigate matter further we set Z¼ 0 in (10), and look for the frequency values that exist just after buckling (i.e.
around post-buckled configurations). In the post-buckled configuration, the equilibrium equations and the boundary
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Table 1

Frequencies and wavenumbers for the lowest eight modes of vibration as given by Eq. (20) for p¼ 4p2 and Z¼ 0. This also

corresponds to the first eight solutions of P1ðo0Þ ¼ 0 (see Eq. (38)).

i 1 2 3 4 5 6 7 8

o 0 44.36 103.5 182.1 280.6 398.8 536.8 694.6

kþ 2p 8.26 11.18 14.25 17.35 20.5 23.6 26.7

ðkþmod 2pÞ=ðp=2Þ 1.26 3.12 1.07 3.04 1.03 3.02 1.02

k� 0 5.37 9.25 12.8 16.2 19.5 22.7 25.98
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conditions are given by

nye ¼ const, (29a)

nxe ¼�p, (29b)

y00e ¼�p sin ye�nye cos ye with yeð0Þ ¼ 0¼ yeð1Þ, (29c)

x0e ¼ cos ye with xeð1Þ�xeð0Þ ¼ 1�d, (29d)

y0e ¼ sin ye with yeð0Þ ¼ yeð1Þ (29e)

and without loss of generality, we choose xeð0Þ ¼ yeð0Þ ¼ 0. For equilibrium modes whose shapes are invariant when
reflected along the line parallel to the ey axis and containing the point ðxð1=2Þ,0Þ, we have nye ¼ constant¼ 0 in Eq. (29a).
The first bifurcated equilibrium mode, represented in Fig. 1 we focus, is such a mode. We address the behavior of the
solutions after but close to buckling. Therefore, we expand the variables yeðsÞ and ye(s) in powers of e, a small parameter
measuring the distance from buckling:

yeðsÞ ¼ ey1ðsÞþe2y2ðsÞþe3y3ðsÞþOðe4Þ, (30a)

xeðsÞ ¼ ex1ðsÞþe2x2ðsÞþe3x3ðsÞþOðe4Þ, (30b)

yeðsÞ ¼ ey1ðsÞþe2y2ðsÞþe3y3ðsÞþOðe4Þ, (30c)

p¼ p0þep1þe2p2þe3p3þOðe4Þ: (30d)

We substitute these expansions in the equilibrium equations (29), which have to be satisfied to all orders in e. The solution
up to order 3 reads:

yeðsÞ ¼ e sin 2psþ
e3

48
cos2ð2psÞ sinð2psÞþOðe4Þ, (31a)

xeðsÞ ¼ sþ
e2

16p ðsin 4ps�4psÞþOðe4Þ, (31b)
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yeðsÞ ¼
e

2p ð1�cos 2psÞþ
e3

384p ð�20þ23 cosð2psÞ�3 cosð6psÞÞþOðe4Þ, (31c)

p¼ 4p2þe2p2=2þOðe4Þ: (31d)

In order to relate e to the control parameter d and the amplitude after bifurcation, we compute the end-shortening

d¼ 1�ðxeð1Þ�xeð0ÞÞ ¼ e2=4þOðe4Þ ¼ 2
p

4p2
�1

� �
þOðe4Þ (32)

and the rod maximum deflection

yeð1=2Þ ¼
e
p 1�

5

48
e2

� �
þOðe4Þ: (33)

8.1. Vibration around the post-buckled equilibrium

We expand all modal variables ðx,y,y,m,nx,nyÞ and the frequency o in powers of e. For instance, we have
o¼o0þeo1þe2o2þe3o3þOðe4Þ, and so on. We can now solve Eqs. (13) (with Z¼ 0) with boundary conditions (14),
using the equilibrium solution (31). To order e0 we have

x 00 ¼ 0 with x0ð0Þ ¼ 0¼ x0ð1Þ, (34a)

n 0x0 ¼�o
2
0x0, (34b)

y 00000 þ4p2y 000�o
2
0y0 ¼ 0 with y0ð0Þ ¼ y0ð1Þ ¼ y 00ð0Þ ¼ y00ð1Þ ¼ 0: (34c)

The first two equations describe the longitudinal mode and are decoupled from the third one which is associated with the
transverse mode. More precisely, the longitudinal mode is given by

x0ðsÞ ¼ 0 and nx0ðsÞ constant, (35)

whereas for the transverse mode, the solution y0ðsÞ is

y0ðsÞ ¼ A0
cos kþ0 s�cosh k�0 s

cos kþ0 �coshk�0
�

k�0 sin kþ0 s�kþ0 sinh k�0 s

k�0 sin kþ0 �kþ0 sinhk�0

 !
, (36)

with k7
0 ¼

def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p4þo2

0

q
72p2

r
. The boundary conditions impose that

A0P1ðo0Þ ¼ 0, (37)

with

P1ðo0Þ ¼
def

2kþ0 k�0 ðcos kþ0 cosh k�0�1Þþ4p2 sin kþ0 sinh k�0 , (38)

which is an equation for o0. The first eight solutions of P1ðo0Þ ¼ 0 are listed in Table 1. Note that to order e0 there is no
frequency jump. To order e1 we have

x 01 ¼ y0 sin 2ps with x1ð0Þ ¼ 0¼ x1ð1Þ, (39a)

n 0x1 ¼�o
2
0x1�2o0o1x0, (39b)

y00001 þ4p2y 001�o
2
0y1 ¼ 2o0o1y0þ2pnx0 cos 2ps, (39c)

with

y1ð0Þ ¼ y1ð1Þ ¼ y 01ð0Þ ¼ y 01ð1Þ ¼ 0: (39d)

We start by solving Eq. (39a). The boundary condition x1ð1Þ ¼ 0 implies

A0P2ðo0Þ ¼ 0, (40)

with

P2ðo0Þ ¼
def

kþ0 k�0 ððk
þ

0 2�2p2Þðcos kþ0 �cosh k�0 Þþ2p2ðcos kþ0 cosh k�0�1ÞÞþðkþ0 2k�0 2þ8p4Þ sin kþ0 sinh k�0 : (41)

The solutions have to satisfy Eqs. (37) and (40), which are transcendental equations for o0. A numerical root finding
analysis reveals that P1ðo0Þ ¼ 0 and P2ðo0Þ ¼ 0 share half of their roots, see Table 2 where columns with an even index
correspond to common roots and match numerical values at p¼ 4p2 for the continuous curves plotted in Fig. 3(d).

In the case of a common root, Eqs. (37) and (40) are fulfilled for non-vanishing A0, and the corresponding modes have
frequencies that are continuous in the control parameter close to buckling.



Table 3
First eight solutions of P3ðo0Þ ¼ 0 (see Eq. (46)).

i 1 2 3 4 5 6 7 8

o0 0 44.36 74.4 182.1 259.4 398.8 517.4 694.6

kþ0 2p 8.26 9.83 14.25 16.7 20.5 23.2 26.7

ðkþ0 mod 2pÞ=ðp=2Þ 1.26 2.26 1.07 2.65 1.03 2.76 1.02

k�0 0 5.37 7.56 12.8 15.5 19.5 22.3 25.98

Table 2
First eight solutions of P2ðo0Þ ¼ 0 (see Eq. (41)).

i 1 2 3 4 5 6 7 8

o0 0 44.36 169.4 182.1 390.6 398.8 688.5 694.6

kþ0 2p 8.26 13.8 14.25 20.3 20.5 26.6 26.7

ðkþ0 mod 2pÞ=ðp=2Þ 1.26 0.78 1.07 0.90 1.03 0.95 1.02

k�0 0 5.37 12.3 12.8 19.3 19.5 25.8 25.98
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In the case of distinct roots, we are compelled to set A0 ¼ 0. In this case where P1ðo0Þa0, we solve Eqs. (39a) and (39b)
to obtain x1ðsÞ ¼ 0 and nx1ðsÞ constant. The general solution of Eqs. (39c), (8.1) is then

y1ðsÞ ¼
2pnx0

kþ0 2k�0 2P1ðo0Þ
½c1kþ0 cos kþ0 s�c1kþ0 cosh k�0 s�c2k�0 sin kþ0 sþc2kþ0 sinh k�0 sþP1ðo0Þðcos kþ0 s�cos 2psÞ�, (42)

where

c1 ¼ k�0 ðcos kþ0 �1Þðcosh k�0 þ1Þþkþ0 sin kþ0 sinh k�0 , (43)

c2 ¼ kþ0 sin kþ0 ðcosh k�0�1Þþk�0 ðcos kþ0 �1Þ sinh k�0 : (44)

In order to select a mode, we need to proceed to order e2, which reads

x 02ðsÞ ¼ �y 01ðsÞ sin 2ps with x2ð0Þ ¼ 0¼ x2ð1Þ: (45)

The boundary conditions at s¼1 impose P3ðo0Þ=P1ðo0Þ ¼ 0 where

P3ðo0Þ ¼ 2k�0 2kþ0 2ðcosh k�0 cos kþ0 �1Þ�4kþ0 ðk
�

0 2þkþ0 2Þ sin kþ0 ðcosh k�0�1Þ

þð4k�0 ðk
�

0 2þkþ0 2Þð1�cos kþ0 Þþ4p2k�0 kþ0 sin kþ0 Þ sinh k�0 : (46)

Oddly enough this function P3ðo0Þ has the same set of common roots as P1ðo0Þ and P2ðo0Þ, see Table 3. The other roots
correspond to the frequency values at which the (discontinuous) odd mode curves emerge from p¼ 4p2 in Fig. 3(d).
Moreover one can verify that

P3ðo0Þ ¼ kþ0 k�0 P1ðo0Þ�8ðkþ0 2þk�0 2Þ kþ0 cos
kþ0
2

tanh
k�0
2
�k�0 sin

kþ0
2

� �
sinh k�0 sin

kþ0
2

, (47)

which implies that the common roots must verify:

kþ0
2

tanh
k�0
2
¼

k�0
2

tan
kþ0
2
: (48)

These roots correspond to frequencies that do not vary abruptly after buckling has occurred. An approximate formula is
kþ0 Cp=2þ2jp (with positive integers j), which yields o0Cðp=2Þ2ð4jþ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4j�3Þð4jþ5Þ

p
(corresponding to columns with

i41 even in Table 3).
Formulas for the roots of the three functions P1, P2, and P3 in the limit of large kþ0 are given in Appendix C. In particular

it is shown that the set of roots of P3 which is not in common with P1 and P2 is such that kþ0 C3p=2þ2jp (with positive
integers j). This implies that the frequencies emerging from buckling are such that o0C ðp=2Þ2ð4jþ3Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4jþ7Þð4j�1Þ

p
(corresponding to columns with i41 odd in Table 3).

9. Discussion

In [11] it is shown that, under certain hypotheses, in the zero thickness limit a slender cylinder behaves either as a
flexible rod or as an extensible string and that one does not need to consider both bending and extension in a slender rod
problem. Result in [11] was obtained for the statics of a clamped–free rod subjected to body and concentrated forces. We
showed here that for displacement control clamped–clamped boundary conditions a model including both bending and
extension is necessary to correctly describe the vibrations of the rod. One could then ask which constraint should be
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relaxed in order to fall back into the results of [11]. We simply remark that in the load control case, see Appendix D, the
inextensible limit is smooth and hence a model including bending alone correctly captures the vibrational behavior of
the rod.

From a theoretical point of view, the singular inextensible limit in the displacement control case is rather surprising
and unexpected. Indeed, Eqs. (13) can be easily recast in the form of a classical eigenvalue problem

LX¼o2MX, (49)

where X is the 6D vector build from the six normal mode variables, L is a first-order linear operator in L2
ð½0;1�Þ (the set of

square integrable functions on the unit interval) and M is an inertia matrix. Therefore, a naive application of the classical
theory of perturbation of eigenvalues for linear operators would suggest that once the eigenvalues have been found for a
value of the parameter Z, they can be locally continued in this parameter. That is we would expect the curves oðpÞ of Fig. 3
to vary continuously as the parameter Z is decreased to zero. While it is true for some curves, other curves behaves
singularly in the Z-0 limit. The fundamental mathematical reason for this phenomenon is that both the null spaces of the
inertia matrix M and the linear operator L have a non-empty intersection in the inextensible (Z¼ 0) case. Mathematically,
the classical theory does not apply and new conditions for the analytic continuation of frequencies with respect to the
parameters emerge. Some frequencies satisfy these relations (and hence can be analytically continued) while others do
not. Finally, also due to the joint degeneracy of M and L, there exists for Z¼ 0 a continuous family of solutions at the
critical load, given by an arbitrary increase along nx (i.e. solutions of Eq. (27)). For larger values of the load but still at Z¼ 0,
some of these solutions are selected and emerge, apparently out of the blue. The mathematical structure of these linear
problems and how they are related to various limits (nearly inextensible rods) deserves further attention.

A tentative classification for the modes is given by the number of nodes present in 0oso1, a mode i having i�1 nodes
and i antinodes. We see that this classification works for the modes in the pre-buckling regime (Fig. 4), but fails for the
third mode in the inextensible (Z¼ 0) case (see shape B03 in Fig. 10 and C03 in Fig. 11), as well as in the extensible rod (Z40)
case provided we are far enough in the post-buckling regime (see shape C3 in Fig. 6).

An interesting situation arises when the first mode intersects with the second mode. This can easily be obtained by
computing an approximation of the buckled rod rise YeðL=2Þ for which the first mode frequency oð1ÞC28YeðL=2Þ=h meets
the second mode frequency oð2ÞC44. This happens for YeðL=2ÞC1:6h. At this height the shape of the fundamental mode
changes from a single bump wave to a double bump wave. Anecdotically, we note that piano soundboards are precisely
tuned in this parameter range (e.g. h¼1 cm, L¼2 m, and YeðL=2Þ ¼ 1 cm). To which extent this toy model is relevant for the
real problem of the piano soundboard and whether piano manufacturers are using the distinction between shallow shapes
(where extension prevails) and deep buckled shapes (where bending prevails) to enrich the sound is a tantalizing idea that
deserves further attention. We also note that in the case of the piano, the soundboard is a plate and not a rod, and that
furthermore the soundboard is linked to the piano strings by a bridge, so really the whole system should be studied.
10. Conclusion

We have studied the in-plane vibrations of a slender extensible and shearable elastic rod around its post-buckled
equilibrium configuration, in the displacement control case. We have shown that after buckling there is a narrow window
in the loading parameter values in which half of the vibration frequencies vary abruptly. As the thickness of the rod is
decreased, the vibration frequencies tend toward limiting values which do not correspond to what is found with a fully
inextensible, unshearable model (i.e. an elastica). This mismatch present for half of the vibration frequencies has been
found numerically and proved analytically. We conclude that we have identified a loading setup where the elastica model
for slender rods fails to give the correct answer.
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Appendix A. Closed form solution for the planar elastica

In the inextensible, unshearable case, the solution of system (10) with €xe ¼ 0 and €ye ¼ 0 corresponds to the equilibrium
of the planar elastica, first studied by Euler [16] (see [17] for a historical account).

Closed-form solutions of these equations can be written in terms of elliptic functions, see e.g. [18]. In particular the
dotted (red) curve in Fig. 2 has the parametric expression:

p¼ 16 KðlÞ2, (A.1)



S. Neukirch et al. / Journal of Sound and Vibration 331 (2012) 704–720 719
d¼ 2 1�
EðlÞ
KðlÞ

� �2

, (A.2)

with l 2 ½0;1Þ. The elliptic integrals are defined as KðlÞ ¼
R p=2

0 ð1�l sin2yÞ�1=2 dy and EðlÞ ¼
R p=2

0 ð1�l sin2yÞ1=2 dy.
Developing Eqs. (A.1) and (A.2) for l51 yields Eqs. (31d) and (32) with e2 ¼ 4l.

Appendix B. Von Karman kinematics and ‘strength of materials’ notations

In Section 2, we have introduced the Cosserat–Kirchhoff notations where the normal force N1 is related to the extension
e1 through the constitutive law (6) and where the current position (X,Y) of the central axis of the rod is given by (8a) and
(8b), all these quantities being functions of the arc-length S of the reference configuration ðXref ,Yref Þ ¼ ðS,0Þ. In ‘strength of
materials’ notations one uses the displacements (see Fig. 1):

U ¼ X�S, V ¼ Y (B.1)

also functions of the arc-length S of the reference configuration. In the current configuration the derivative of the current
position with regard to S will not yield a unit vector if extension occurs. If we restrict to the case where shear is not present
(i.e. e2 ¼ 0), we have X0ðSÞ2þY 0ðSÞ2 ¼ ð1þe1Þ

2 which yields

U0 þ1
2 V 02�e1 ¼

1
2ðe

2
1�U02Þ: (B.2)

Usually the right-hand side is neglected and the following von Karman approximation is used

U0 þ1
2V 02�e1C0: (B.3)

Appendix C. Analytical formulas for the roots of the functions P1, P2, and P3

In the limit of large kþ0 , that is in the limit of large k�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ2

0 �4p2

q
and high frequencies o0 ¼ kþ0 k�0 , we have

k�0 Ckþ0 �
2p2

kþ0
�

2p4

kþ3
0

þO
1

kþ5
0

 !
: (C.1)

Function P1ðo0Þ (see Eq. (38)) then reads:

P1ðo0ÞCek�0 ½kþ2
0 cos kþ0 þ2p2ðsin kþ0 �cos kþ0 Þ� (C.2)

and the solutions to P1ðo0Þ ¼ 0, for large kþ0 , are

kþ0 C
p
2
þ

1

2j2
þ2jp with i¼ 2j, (C.3)

kþ0 C
3p
2
þ

1

2j2
þ2jp with i¼ 2jþ1, (C.4)

where j is a large integer, and i is the mode number (i.e. column number in Table 1). In the same limit of high frequencies,
function P2ðo0Þ (see Eq. (41)) reads:

P2ðo0ÞC1
2 ek�0 ½kþ4

0 ðsin kþ0 �1Þþ2p2kþ2
0 cos kþ0 þ6p4� (C.5)

and the solutions to P2ðo0Þ ¼ 0, for large kþ0 , are

kþ0 C
p
2
�

3

2j2
þ2jp with i¼ 2j�1, (C.6)

kþ0 C
p
2
þ

1

2j2
þ2jp with i¼ 2j, (C.7)

where j is a large integer, and i is the mode number (i.e. column number in Table 2). In the same limit of high frequencies,
function P3ðo0Þ (see Eq. (46)) reads

P3ðo0ÞCek�0 ½4kþ3
0 ð1�sin kþ0 Þþkþ4

0 cos kþ0 þ2p2kþ2
0 � (C.8)

and the solutions to P3ðo0Þ ¼ 0, for large kþ0 , are

kþ0 C
p
2
þ

1

2j2
þ2jp with i¼ 2j, (C.9)

kþ0 C
3p
2
�

4

pj
þ2jp with i¼ 2jþ1, (C.10)

where j is a large integer, and i is the mode number (i.e. column number in Table 3). We see that in this limit the three
functions P1, P2, and P3 share half of their roots, namely those given by (C.3)–(C.7) or (C.9).
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Fig. D.1. Frequencies for the lowest four vibration modes of a clamped–clamped rod around its fundamental and post-buckled equilibrium

configurations, in load-control boundary conditions. Plain curves are for the extensible case with Z¼ 1=4800, and dotted (red) curves are for the

inextensible case (Z¼ 0). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix D. Smooth inextensible limit in the load control case

We here show that in the case where the axial load p is controlled, the inextensible limit (Z-0) is no longer singular.
The boundary conditions for this case read:

xð0,tÞ ¼ 0, nxð1,tÞ ¼�p, (D.1a)

yð0,tÞ ¼ 0, yð1,tÞ ¼ 0, (D.1b)

yð0,tÞ ¼ 0, yð1,tÞ ¼ 0: (D.1c)

Vibrations of an inextensible rod are then possible before buckling as the right end is allowed to move axially. We see in
Fig. D.1 that the inextensible case Z¼ 0 is obtained as the smooth limit Z-0 of extensible case, and that no mismatch is
present (in particular there is a mode starting from o¼ 0 after buckling in the inextensible case).
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