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Instabilities in a drop-strip system:
a simplified model
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We study the deformation of an elastic strip by a liquid drop. At small enough scales,
capillarity is the dominant fluid effect and surface tension forces may be sufficient to fold
the beam, resulting in the wrapping of the drop by the beam. However, wrapping of the
drop can be inhibited by the weight of the beam, which creates an energy barrier. The
barrier can be overcome by input of kinetic energy in the form of impact of the drop. We
introduce a semi-analytical model to study equilibria and their stability in three drop-
beam systems: evaporation of a drop wetting and bending an elastic beam; impact of a
drop on an elastic beam; lifting of a heavy elastic beam by a drop and we show the model
reproduces experimental data. In relevant cases, we use the concept of suddenly applied
load to discuss dynamic instabilities.
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1. Introduction

Classical fluid–structure interactions take place in set-ups where fluid flows
apply stress on elastic structures, thereby inducing vibrations of these structures.
At small scales and in quasi-static set-ups, surface tension is the source of another
type of fluid–structure interaction as an elastic structure may be soft enough to
experience strong deformations due to capillary forces (Roman & Bico 2010).
Recent examples involve wet filaments forming bundles (Bico et al. 2004), liquid–
air interfaces buckling an elastic strut (Cohen & Mahadevan 2003; Neukirch
et al. 2007), liquids rising inside elastic walls and deforming the walls (Kim &
Mahadevan 2006; Aristoff et al. 2011; Duprat et al. 2011), liquid drops deposited
on floating thin films and inducing the wrinkling of the film (Huang et al. 2007;
Vella et al. 2010). These elasto–capillary interactions appear in a wide range of
problems and have been studied intensively over the past few years.
The evaporation of a drop lying on a thin elastic sheet may result in the

folding of the sheet around the drop (Py et al. 2007). Use of this ‘capillary
origami’ phenomenon has been proposed for the fabrication of three-dimensional
photovoltaic cells (Guo et al. 2009) or even smaller objects. As a matter of
fact, capillary driven self-folding mechanisms have been shown to be useful
in the fabrication of microelectromechanical systems (MEMSs) to achieve
three-dimensional structures that are otherwise complicated to realize (Gracias
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et al. 2002; Syms et al. 2003; Leong et al. 2007; Mastrangeli et al. 2009). Recent
experiments have shown that elasto-capillary wrapping can be achieved using
drop impact on millimetric and centimetric scales (Antkowiak et al. 2011). The
success of the wrapping has been shown to depend on several parameters, as
elasticity, capillarity and gravity all come into play.
In this paper, we develop a model to understand the interactions between

these three effects and show that a simple theory can reproduce experimental
data and shed light on the wrapping instability. Our goal is to understand the
mechanisms underlying the behaviour of the system, predict equilibrium shapes
and their stability. We also discuss the differences between static and dynamic
instability, the latter involving dynamics of the system and basin of attraction of
equilibrium points.
The paper is organized as follows. We first introduce some general hypotheses

of our framework in §2, and we then validate our model in §3 with a problem
involving only elasticity and capillarity. In §4, we use the concept of suddenly
applied load and dynamic stability to show our model can reproduce experimental
data, and we give a detailed study on static and dynamic stability of an heavy
elastic strip lifted by the capillary action of a drop in §5.

2. Main hypotheses

In this section, we introduce some typical length scales of the problem, explain
the simplifications we perform and describe how we compute equilibrium points
and their stability.

(a)Different length scales

Elasticity of structures involves no typical length scale, but once coupled with
capillarity or gravity length scales arise. An elastic beam loaded axially will buckle
once the force exceeds a threshold. If L is the length of the beam and EI its
bending stiffness, the buckling threshold scales like EI /L2. We note E the Young’s
modulus and I the second moment of area of the cross section. In the present
case of a beam of thickness h and width w, with h!w, we have I = h3w/12,
and the beam preferentially bends in the plane orthogonal to w. If the extremity
of such a beam is brought to contact with a liquid–air interface, then capillary
forces scaling like 2(h + w)g " 2gw are exerted, where g is the surface energy of
the interface. Such forces are sufficient to induce buckling if L! Lec, with

Lec =
√
EI
gw
, (2.1)

where Lec is referred to as the elasto-capillary length (Cohen & Mahadevan 2003;
Bico et al. 2004).
In the same manner, equating buckling forces with the total weight of the

beam, we introduce the gravito-elastic length, Leg

Leg =
(
EI

rghw

)1/3
, (2.2)
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Figure 1. A liquid drop lies on a rigid rectangular surface. (a) Solution of the surface evolver
(Brakke 1992) problem and (b) the approximation used here, where the liquid–air interface is
cylindrical. (Online version in colour.)

where r is the density of the beam and g is the acceleration of gravity. Beams
that are longer than Leg are significantly deformed by gravity.
In this paper, we concentrate our attention on the problem of a drop lying

on a slender beam. On the one hand, the radius R of the drop has to be larger
than Lec to observe significant bending. On the other hand, drop radius is limited
by gravity and one has to keep R< Lgc for the drop to remain spherical, Lgc =
(g/rLg)1/2 being the gravito-capillary length (here rL denotes the liquid density).
Therefore, we work with drops of radii Lec <R< Lgc, neglecting the weight of the
drop, and also its inertia and viscosity.

(b)Two-dimensional model of a three-dimensional problem

In the physical problem we consider, the drop profile is roughly a spherical
cap and the strip behaves as an elastic plate because its thickness h is very small
when compared with its other two dimensions (w,L). Therefore, we face a native
three-dimensional problem and a complete resolution would necessitate complex
numerics solving both liquid and solid phases. The goal of this study being to
find a simple model predicting the general behaviour of the system, we introduce
several simplifications of the problem.
First of all as h!w! L (figure 1), one expects bending in the x–y plane to

be dominant with respect to other planes. Invariance in the z-direction leads to
consider the strip as a (one-dimensional) beam. Even if the strip is invariant in
the z-direction, the drop still has a three-dimensional shape. However, as we will
introduce an energy-based model, only the area of the liquid–air interface will
matter. As the width w of the strip is chosen to be somewhat smaller than the
drop size, the drop will primarily extend in the x–y plane, leaving the z-direction
approximatively invariant. We therefore approximate the shape of the drop with
a cylindrical surface, invariant in the z-direction and bounded by two planar caps
(figure 1). In order to asses the approximation involved in this simplification, we
numerically solve, using surface evolver (Brakke 1992), for the shape and area
of a drop of volume V constrained to lie on a rigid flat strip of length D and
width w. For several combinations of V , w and D, we compare the extent of
the liquid–air interface given by the simulation with that of a cylindrical drop
and we find that, even if the cylindrical drop always has a larger area, then the
ratio between the area of the three-dimensional shape and the cylindrical surface
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Figure 2. Area of the liquid–air interface for a three-dimensional drop calculated with surface
evolver (discs) and with the cylindrical interface approximation (dashed line), as function of the
drop base extent D. Parameters are: width w = 3mm and liquid volumes (a) V = 10mm3 and
(b) V = 20mm3. Solid line is obtained by scaling the dashed line by a corrective factor 0.87.
(Online version in colour.)

(plus caps) does not vary much with parameters. In the parameter range we
are interested in, a good approximation is Athree-dimensional/Acyl " 0.87 (figure 2).
In §4, where we compare our model results with experimental data, we use this
correction coefficient, making the further hypothesis that it does not change as
the strip bends.

(c)Discrete energy approach

We use an energy approach to find equilibrium shapes and their stability. Total
potential energy E of the system is given by the sum of elastic (Eel), capillary (Eg)
and gravitational (Eg) energies. In the case of a one-dimensional beam problem,
this could be formally written as

E = Eel + Eg + Eg =
∫

beam
F (x(s), y(s),4(s)) ds, (2.3)

where (x(s), y(s)) is the deformed position of the beam in the plane, 4(s) is the
angle between the horizontal axis and the tangent of the beam, and 4′(s)= k(s)
is the curvature of the beam. The variable s is the arc-length along the beam.
Looking for stationary points of this functional leads to classical Euler–Lagrange
equations. This exact resolution requires to solve a system of differential equations
with boundary conditions. In order to simplify the problem, we strongly restrict
the functional space in which the unknown functions (x(s), y(s),4(s)) live, that
is we choose the shape of the deformations, leaving amplitudes unknown. This
Galerkin-type reduction is performed in such a way that the kinematics and
physical constraints are satisfied. The unknown function k(s) is, for example,
approximated as

k(s)=
n∑

i=1
ciji(s), i = 1, 2, . . . ,n, (2.4)

where the basis functions ji(s) are given. This introduces unknown variable
coefficients ci and changes the total energy (2.3) from being a functional to
being a mere function of the ci : E = E(c), with c= (c1, c2, . . . , cn). Looking for
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extremums of the energy (i.e. equilibrium points) now requires to solve only a
(possibly nonlinear) system of equations

vE
vc

= 0. (2.5)

In the problems considered in the following sections, we minimize E(c) in the
presence of m constraints fa(c)= 0, a = 1, 2, . . . ,m. We therefore introduce
Lagrange multiplier(s) la and the Lagrangian function L = E − ∑

a lafa.
Lagrangian multipliers add new equilibrium equations to the system

vL
vc

= 0 and vL
vla

= 0 ∀a. (2.6)

Once an equilibrium point c0 satisfying the constraints fa(c0)= 0 ∀a is found,
we test its stability. The equilibrium solution c0 is said to be stable, if it locally
minimizes E among all admissible variations c= c0 + edc:

E(c0)< E(c0 + edc) ∀dc such that fa(c0 + edc)= 0 ∀a, (2.7)

where e ! 1. A variation dc is said admissible if fa(c0 + edc)= 0. Because
we already have fa(c0)= 0, this requires dc · vfa/vc= 0, ∀a. Consequently, we
compute the Hessian matrix

H = v2L
vc vc

(2.8)

and evaluate H 0 =H (c0). Stable solutions are such that dc ·H 0 · dc> 0 for all
admissible variations dc. It can be shown that this is equivalent to having only
positive eigenvalues for the ‘projected’ Hessian (Luenberger 1973)

H ′ =KT ·H 0 ·K , (2.9)

where the columns of the matrix K are the vectors of the basis of the kernel of
the matrix whose lines are vfa/vc. The ‘projected’ Hessian H ′ is a square matrix
of dimension (n −m)× (n −m).

3. Evaporation of a drop bound to an elastic strip

In figure 3, a liquid drop is brought into contact with an elastic strip of length
L. Surface tension tends to make the drop circular, thereby bending the strip
and resulting in a trade-off between elastic and capillary energies. As the drop
evaporates, the quasi-static evolution of the system is monitored and the final
configuration of the system depends on the ratio L/Lec (Py et al. 2007). We
show that our simplified discrete model can capture the different responses of the
system, allowing us to draw bifurcation diagrams and give an approximation
value for the threshold ratio L/Lec computed by Py et al. (2007) with the
continuous model. As in Py et al. (2007), the gravitational energy is not
considered here.
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Figure 3. Model for the capillary adhesion of a drop and an elastic strip. The strip has length L
and constant curvature k. The interface between the drop and the air has curvature 1/R. The
system is invariant along the direction z and has depth w. The shaded (blue) region has area Ac,
see equation (3.3). (Online version in colour.)

(a)Model

As shown in figure 3, in the present model, the strip centre line is a circular arc
of radius 1/k, centre Ck and central angle 2b; the liquid–air interface is a circular
arc of radius R, centre CR and central angle 2a. In this approximation of uniform
curvature k, the elastic deformation energy of the elastic strip is then

Eel =
1
2

∫L/2

−L/2
EI k2(s) ds = 1

2
EI k2L. (3.1)

During evaporation of the liquid, the drop remains pinned to the extremities of
the elastic strip, leaving the area of the liquid–solid interface constant. We then
have to consider only the energy of the liquid–air interface. In our cylindrical
model approximation (figure 1), this interface consists of three parts: the arc of
cylinder (of axis z and radius R) from s = −L/2 to s = +L/2, and the two planar
caps in the x–y plane, bounded by the strip and the circular arc of radius R
(figure 3). The interface energy is then

Eg =
∫∫

vV
g dA= g(2awR + 2Ac), (3.2)

where Ac is the area of a planar cap

Ac =
1
k2

(
b − sin 2b

2

)
+ R2

(
a − sin 2a

2

)
. (3.3)

The total energy of the system is

E(k,a, b,R)= Eel + Eg. (3.4)

We make use of the two geometric constraints (1/k) sin b =R sina and L= 2b/k
(figure 3) to reduce the set of variables to {k,a}. For each fixed value Vi
of the liquid volume V =wAc(k,a), we look for stable equilibrium solutions
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Figure 4. Bifurcation diagram for system in figure 3. The distance d between the two ends of the
strip is plotted as a function of liquid volume V =Acw. Paths of stable (solid curves) and unstable
(dashed curves) configurations are shown. (a) Thick curves are for L= 3.9Lec for which evaporation
ends with an open system. Thin lines are for the limiting case L= 4.09Lec. (b) Case with L= 4.2Lec
where evaporation ends with an encapsulated system. (Online version in colour.)

by minimizing the energy E under the constraint f =V −Vi = 0, using the
Lagrangian L = E − lf

L(k,a)= 1
2
EI k2L + 2gaw

sin(Lk/2)
k sina

− l(wAc(k,a)−Vi), (3.5)

where the constant 2gAc has been removed. Equilibria are found by numerically
solving equation (2.6), here (v/vk, v/va, v/vl)L = 0, and their stability is assessed
with the corresponding projected Hessian matrix.

(b)Results

Equilibria and stability are shown in figure 4, where the distance d between
the extremities of the strip is plotted as a function of the liquid volume. As
already shown in Py et al. (2007), depending on the ratio L/Lec, two different
behaviours exist during evaporation of the drop. We start with a drop gently
bending the strip (large values of Ac =V /w) and let evaporation take place (i.e.
decreasing Ac). On the one hand, when L/Lec is small, the strip first starts
to bend but eventually becomes flat as the volume vanishes (figure 4a). On
the other hand, if L/Lec is large enough, the strip progressively bends and the
liquid–air interface decreases to finally vanish when the extremities of the strip
touch, like the right-most curve of figure 4b. The transition between these two
regimes happens at L= 4.09Lec (thin line in figure 4a), where a transcritical
bifurcation takes place. The present value is an approximation of the value
found in the full resolution, L= 3.54Lec Py et al. (2007). A similar model was
introduced by de Langre et al. (2010), where a more distant value of the threshold
L=

√
2pLec " 4.44Lec was obtained by merely comparing energies of closed and

open configurations.
We conclude that our discrete model is precise enough to capture instabilities

and bifurcations of drop-strip systems, and we now use it to compute the
encapsulation threshold of an impacting drop.
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4. Encapsulation of an impacting drop

In Antkowiak et al. (2011), a water droplet of volume V0 falls and impacts a strip
lying on a rigid support. The impact point lies at distance L from the right end
of the strip, and at distance L′ from the left end, with L′ ( L. These authors
study the influence of the impact velocity U and of the length of the free end L
on the final configuration of the system. Two different final states exist: (i) an
encapsulated state where the free end of the strip has flipped over and wrapped
the drop and (ii) an open state in which the strip is only slightly deformed by
the drop.
We use our discrete model to predict the final state of the drop-strip system

with an energy criterion. It was shown in Antkowiak et al. (2011) that the
three-dimensional experiment could be correctly described with two-dimensional
calculations. During impact, the drop spreads on the strip until it reaches a
maximum extent D. At this point, most of the initial kinetic energy has been
transformed into surface energy (Clanet et al. 2004; Eggers et al. 2010), and it
is experimentally observed that the contact line will not recede but will remain
pinned to the strip (Antkowiak et al. 2011). As a consequence, capillary forces,
striving for a reduction of the extent of the liquid–air interface, tend to fold the
strip, thereby increasing the elastic energy. Moreover, as the strip flips over the
drop, gravitational energy of the strip is also increased. This amount of elastic
and gravitational energy acts as an energy barrier that has to be compared
with the initially available kinetic energy in order to predict the final state of
the system.

(a)Model

In the experimental set-up (Antkowiak et al. 2011), the maximal extent of the
drop D is related to impact velocity U with the empirical law

D − D0

2R
= 0.32We1/2, (4.1)

where We = rRU 2/g is the Weber number and D0 is the extent of the wet region
when U = 0. In subsequent dynamics, the contact line never recedes and may
advance only if the dynamic contact angle q reaches the critical value q∗. We
therefore have D = D/2 as long as q < q∗ (see figure 5 for notations). Moreover, as
the length L′ −D is very large, the left-end tail is considered immobile. Impact
of the drop and dynamics of the system take place in milliseconds and, therefore,
the volume V of the drop stays constant, V =V0, as no evaporation occurs.
As in §4, the liquid–air interface is a circular arc of radius R, centre CR and

central angle 2a (figure 5).
However, in the present model, the strip has total length (L + L′) and is only

partly wetted. The left tail s ∈ (−L′;−D) lies flat on a rigid support, whereas
the wetted part s ∈ (−D;D) and the right tail s ∈ (D;L) are free to move.
In the wetted region, the strip centre line is a circular arc of radius 1/k, centre
Ck and central angle 2b. The right tail is a straight segment of inclination 2b.
As configurations are symmetric with regard to the axis passing through points
CR and Ck, the wetting angle q (between the strip and the liquid–air interface) is
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Figure 5. Model of a drop partially wetting an elastic strip. The strip, of length L + L′, has uniform
curvature k in the wetted region, and is straight otherwise. The liquid–air interface has uniform
curvature 1/R. The Young contact angle q is equal to a + b. The weight of the strip is accounted
for and a rigid support prevents the system from globally falling down. The system is invariant
along the z direction and has depth w. (Online version in colour.)

the same at s =D and at s = −D. The elastic deformation energy of the elastic
strip is then

Eel =
1
2

∫D

−D
EI k2(s) ds =EI k2D. (4.2)

The weight of the strip, responsible for the energy barrier, is now accounted for.
The elevation of the strip in the three different regions is

y1(s)= 0 for s ∈ (−L′;−D), (4.3)

y2(s)=
1− cos(ks + kD)

k
for s ∈ (−D;D) (4.4)

and y3(s)=
1− cos(2kD)

k
+ (s −D) sin(2kD) for s ∈ (D;L). (4.5)

We integrate to obtain the gravitational energy (Eg)

Eg
rgwh

=
∫−D

−L′
y1(s) ds +

∫D

−D
y2(s) ds +

∫L

D
y3(s) ds

= 1
k

(
2D − sin(2kD)

k

)
+ 1− cos(2kD)

k
(L −D)+ 1

2
(L −D)2 sin(2kD).

(4.6)

As in §4, we employ a cylindrical approximation for the drop so that the liquid–
air interface comprises three parts: the arc of cylinder (of axis z and radius R)
from s = −D to s =D, and the two planar caps in the x–y plane, bounded by the
strip and the circular arc of radius R (figure 5). As the contact line may move,
we also have to consider the surface energy 2gslDw associated with the solid–
liquid interface (spanning from s = −D to s = +D) as well as the surface energy
gsvw(L −D)+ gsvw(L′ −D) associated with the solid–air interface, for |s| ≥D.
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Then, the surface energy can be written as

Eg = 0.87
∫∫

vV
g dA+ 2gslDw + gsv(L + L′ − 2D)w

= 0.87g(2aRw + 2Ac)− 2gDw cos qY + gsv(L + L′)w, (4.7)

where we make use of the Young construction gsv − gsl = g cos qY , where qY is the
static contact angle. Note the presence of the 0.87 correction factor introduced in
§2b. The two constant terms gsvw(L + L′) and 2× 0.87gAc are withdrawn from
the energy expression. Adding the energies (4.2), (4.6) and (4.7), we obtain

E(a, b,R, k,D)= Eel + Eg + Eg. (4.8)

We have to study the energy E subjected to the following constraints. The first two
constraints are geometrical relations linking the variables, namely (1/k) sin b =
R sina, D = b/k. These two relations are used to eliminate k and R from the
energy (4.8). The constraint of constant liquid volume, V =Ac and w =V0 with
Ac given by equation (3.3), is used to (numerically) eliminate the variable a from
the energy. The energy (4.8) is then a function of the two remaining variables:
E = E(b,D). The last constraint is due to the the pinning of the contact line.
Pinning of the contact line happens whenever a drop is deposited of a non-ideal
surface where chemical and physical defects are present. In this case, the static
contact angle q is not unique and takes values in an interval around qY , that is,
the contact line is immobile as long as q remains larger than the receding angle
and smaller than the advancing angle (de Gennes 1985). In our case, we never
observed retraction of the contact line, and will consider only its advancing when
q reaches q!, the advancing contact angle. We introduce the distance D∗, which
is the extent of the wet region at the beginning of the dynamics when the strip is
flat, computed from equation (4.1) with D∗ = D/2. The contact angle is q = a + b
and the pinning leads to D =D∗ as long as q < q∗. Furthermore, we assume that
once the contact line advances, the angle is constant and equal to q∗ (de Gennes
1985). This can be summarized in the form (D −D∗)(q∗ − q)= 0, where we have
to be careful that both terms must be positive when not zero: the contact angle
cannot exceed q∗ and the contact line never retracts. This last constraint makes
the energy E a function of only one variable: E = E(b) with D either given by
D =D∗ (during contact line pinning) or solved from a(b,D)+ b = q∗ (during
advancing of the contact line).

(b)Results

We start our study of the evolution of the system right after the maximal
spreading of the impacting drop. There, the kinetic energy is zero, and we
compute the potential energy E(b) and use its graph to predict the final state
of the system. The impact of the drop is viewed as a suddenly applied load
(Simitses & Hodges 2006, ch. 12), and we look for basin of attraction of final states
in the presence of dissipation. This dynamical point of view is different from the
one seen in §3, where we were looking at a quasi-static succession of equilibrium
points, during evaporation. The strip starts its dynamics b = b(t) (t is physical
time) with no speed (i.e. no kinetic energy) at the flat configuration b(0)= 0,
evolves and eventually reaches its final state, either flat b(+∞)= 0, folded around
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Figure 6. Non-dimensional total energy Ẽ(b)= ELec/EI for a drop with V = 92.4L3ec and D∗ =
2.93Lec, for different lengths: (a) L= 15.0Lec, (b) L= 18.4Lec, (c) L= 19.2Lec, and (d) L=
22.8Lec. Insets in (a) and (d) give the shape of the system at the final state, whereas insets
in (b) and (c) show a zoom of the energy curve. (Online version in colour.)

the drop b(+∞)= p/2 (encapsulated configuration) or in an intermediate state.
The level E(0) represents the initial total mechanical energy of the system and as
we here assume the presence of a small amount of dissipation, E(t)≤ E(0) for all
time t. As we do not compute the time evolution of the system, we do not give
any information on the duration of the encapsulation time, but we nevertheless
show that we can predict the asymptotic dynamics (t→ +∞) of the system. We
use experimentally measured qY = 110◦ and q∗ = 150◦. We use Lec = 0.55mm and
Leg = 3.6mm (Antkowiak et al. 2011).
Figure 6 shows the shape of the total potential energy E(b) for given volume

V = 92.4L3ec and wetted region extent D∗ = 2.93Lec, and for four different values
of the length L= 15.0, 18.4, 19.2, and 22.8Lec. Energy curves all exhibit a tip point
at b " 0.6. Before the tip point, the constraint D =D∗ is active and q < q∗; after
the tip point, the constraint q = q∗ is active and D >D∗. As the volume of the drop
has been chosen in such a way that its radius exceeds the elasto-capillary length,
all curves have their global energy minimum for the encapsulated state b = p/2.
Nevertheless, we see in the following that in some cases there can be alternative
stable final state and that an energy barrier can arise. In the first case (figure 6a),
the global maximum is at b = 0. The system then starts its dynamics with a flat
configuration b = 0, accelerates and reaches the final state b = p/2 where the
strip encapsulate the drop. In the second case (figure 6b), an intermediate stable
equilibrium state lies at b " 0.35, corresponding to a open configuration. As the
global energy maximum still lies at b = 0, the system will pass the tip point
and evolves towards the state at b = p/2, provided dissipation is not too strong.
In the third case (figure 6c), there still is an intermediate equilibrium state (at
b " 0.2) and this time the energy level of the tip point is above the energy level
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Figure 7. Comparison between theoretical and experimental phases diagram. Experiments: filled
circles (respectively, open circles) correspond to encapsulated (respectively, non-encapsulated)
final states. Model: solid line is the boundary between the two final states. Rhombs situate the
four configurations described in figure 6. The dotted curve corresponds to the boundary found in
Antkowiak et al. (2011) using numerical simulations. (Online version in colour.)

of the origin. In this case, the initial mechanical energy is not large enough for
the system to achieve encapsulation. The final state of the system will be at
b " 0.2, on the intermediate equilibrium state. In the fourth case (figure 6d), no
intermediate equilibrium exists and as the slope of the energy curve is strictly
positive at the origin, the system will not depart from b = 0.
In conclusion, we use the following criterion: encapsulation occurs if the origin

is the global maximum of the energy E(b), and we plot in figure 7 the threshold
between encapsulated and open final states as function of the length L and of
the initial extent of the wet region D∗. We compare our theoretical curve with
the experimental data of Antkowiak et al. (2011) and find good agreement. Also
shown on the figure are the four cases (a)–(d) of figure 6 with the threshold curve
passing between cases (b) and (c). Finally, we note that the agreement between
experiment and model is less good when L/Lec > 25: for such L, the hypothesis
of straight tail is clearly violated as the beam become largely bent in the tail
region s ∈ (D;L), owing to its own weight. Consequently, the gravitational barrier
computed with the present model is too large, resulting in a threshold curve being
too pessimistic.

5. Drop lifting a heavy elastic strip

In previous sections, we first studied the competition between capillary and elastic
energies (§3), and we then introduced the gravitational energy of the strip and
used the concept of dynamical instability (§4). We now consider a heavy elastic
strip that deforms under capillarity and gravity (figure 8), and we discuss the
difference between static and dynamic instabilities.
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Figure 8. An elastic strip of length 2L is bent by capillary forces and self-weight. The drop is
wetting the strip along a fixed distance 2D. The model for the deformation of the elastic strip is
such that the curvature is uniform in the wetted region s ∈ (−D;D) and linearly decreasing in the
two dry regions s ∈ (D;L) and s ∈ (−L;−D). (Online version in colour.)

(a)Model

The strip is divided into two regions (i) a wetted region that has uniform
curvature and (ii) a dry region with linearly decreasing curvature. Both regions
are subjected to gravity. The wet part spans over s ∈ (−D;D), and for simplicity,
we work with strong contact line pinning and keep D fixed, irrespective of the
contact angle. Finally, we consider only shapes symmetric on the y-axis, and
we fix the point s = 0 at the origin, thereby preventing the entire system from
falling down during the energy minimization procedure. As in §4, the wetted
region, s ∈ (−D;D), is a circular arc of radius 1/k1, centre Ck and central angle 2b
(figure 8). For the first region, the elastic and gravitational energies are as follow

Eel,1 = 2
∫D

0

1
2
EI k21 ds =EIDk21 (5.1)

and

Eg,1 = 2
∫D

0
rgSy(s) ds = 2rgS k1D − sin(k1D)

k21
. (5.2)

For the second region, the approximation of straight tails was used in §4, valid
in the case of short tails (L −D)! Leg. We here relax this constraint and for s ∈
(D;L) (and symmetrically for s ∈ (−L;−D)), we assume a shape where curvature
k(s) varies linearly from k(D)= k2 to k(L)= 0, zero curvature at s = ±L being
consistent with the absence of external moment at the strip ends. The curvature
in this second region then reads

k(s)= k2(L − s)
L −D . (5.3)
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The deflection angle 4(s) and height of the strip y(s) are then found by integrating
4′(s)= k(s) and y ′(s)= sin4(s). We obtain

4(s)= p

2

(
L − s
c1

)2
+ c2, with c1 =

√
p(D − L)

k2
and c2 = b − 1

2
k2(D − L)

(5.4)
and

y(s)= 1− cos b
k1

− c1 cos c2
[
S

(
L − s
c1

)
− S

(
L −D
c1

)]

− c1 sin c2
[
C

(
L − s
c1

)
− C

(
L −D
c1

)]
, (5.5)

where these formulas have been written for k2 < 0 (similar formulas can be
written in the case k2 > 0), and where S(x)=

∫x
0 sin(py

2/2) dy and C(x)=∫x
0 cos(py

2/2) dy are Fresnel integrals. The elastic and gravitational energies for
the second region are then

Eel,2 = 2
∫L

D

1
2
EI k2(s) ds = 1

3
EI (L −D)k22 (5.6)

and

Eg,2 = 2
∫L

D
rgSy(s) ds

= 2rgS(L −D)
(
1
k1
(1− cos b)+ 1

k2

[
cos b − cos

(
b + 1
2

k2(L −D)
)])
.

(5.7)

As in the previous sections, the liquid–air interface is a circular arc of radius R,
centre CR and central angle 2a (figure 8). In the present case of strong contact
line pinning, where the wet region spans from s = −D to s = +D irrespective of
the contact angle, the surface energy simplifies to

Eg = 2gaRw, (5.8)

adding the energies (5.1), (5.2), (5.6), (5.7), and (5.8), we obtain

E(a, b,R, k1, k2)= Eel,1 + Eg,1 + Eel,2 + Eg,2 + Eg (5.9)

subjected to two geometrical constraints k1 = b/D and R=D(sin b/b sina), and
to the drop volume conservation V =V0. The first two constraints are used to
eliminate k1 and R from the variables, leading to an energy that is the function
of three variables: E = E(a, b, k2).

(b)Results

We first study equilibrium solutions and their stability for different values of
the parameters. Using Lec as unit-length and EI /Lec as unit-energy, the problem
has four independent parameters: L, D, L3eg =EI /(rgS) and V =wAc the volume
of the drop, with Ac being given by equation (3.3) with k = k1. We introduce the
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Figure 9. Bifurcation diagram for the drop-strip system of figure 8. Solid (respectively dotted)
paths correspond to stable (respectively unstable) states. On each path, the length L is fixed, with
L/Lec = 14 for path (A), 16 for path (B) and 20 for path (C ). Instabilities occurring at fold points
Cenc. and Cop. are indicated by arrows. Fixed parameters are R0/Lec = 2, Leg/Lec " 6.51. (Online
version in colour.)

equivalent radius R0 such that V0 = pwR20, and use the parameter R0 instead of
V0. We therefore use the following Lagrangian

L(a, b, k2)= E(a, b, k2)− l(Ac(a, b)− pR20) (5.10)

and study equilibrium and stability as explained in §2. Results for R0/Lec = 2,
Leg/Lec " 6.51 are shown in figure 9, where the curvature k2 is plotted as a function
of the extent of the wet region D. Configurations with negative k2 are called open
(see e.g. configuration A1 in figure 10), and configurations with positive k2 are
called encapsulated or closed (see e.g. configuration A2 in figure 10). For each
value of the three different lengths L/Lec=14, 16 and 20 chosen, we start with an
open configuration having small D (e.g. configuration A1 or C1 in figure 10). On
the one hand, we see in figure 9 that curve (A) contains only stable configurations,
which means that in the case of small lengths, increasing D gradually leads to
encapsulated configurations without going through instability. On the other hand,
we see that curve (C ) contains both stable and unstable configurations. Hence, in
the case of large lengths, increasing D leads to an instability at the fold point Cenc.,
where the system jumps from being open to encapsulated. If one were to decrease
D from that point, the way back would be different with an opening instability
happening at the other fold point Cop., i.e. hysteresis would be observed. This
phenomenon is the signature of a cusp catastrophe (Poston & Stewart 1996).
To illustrate this, we plot in figure 11 the loci of the fold points Cenc. (upper
curve) and of the fold points Cop. (lower curve), both curve meeting at the cusp
point (L,D)/Lec " (16.1, 3.46), near curve (B). The encapsulating (respectively,
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Figure 10. Equilibrium shapes for the drop-strip system of figure 8 for the points (a) A1, (b) A2,
(c) C1, (d) C5, (e) C4O , (f ) C4U , and (g) C4C of figure 9. Fixed parameters are R0/Lec = 2,
Leg/Lec " 6.51. The length is L/Lec = 14 for configurations Ai , and L/Lec = 20 for configurations
Ci . All configurations are stable, expect C4U . (Online version in colour.)

opening) instability happens when the system crosses the (SIenc.) (respectively
(SIop.)) curve towards low L values (see arrows in figure 11).
We now investigate how these two curves change when the volume of the drop

(i.e. R0) and the weight of the elastic strip (i.e. Leg) vary. We compute these two
curves for various values of R0/Lec in the range 1.2≤R0/Lec ≤ 4 and of Leg/Lec in
the range 2001/3 ≤ Leg/Lec ≤ 10 0001/3 and plot them in figure 12. The axes of the
figure have been re-scaled in such a way that the (nearly 50) curves approximately
collapse on a master curve. We conclude that (i) if (L −D)/Leg " 2, only one
equilibrium solution exits and no instability occurs; (ii) if 2" (L −D)/Leg " 3.3,
one or two equilibrium states can exist and instabilities can occur; and (iii) if 3.3"
(L −D)/Leg, two states exist and no instability occurs. These instabilities are
quasi-static instabilities occurring when a parameter (e.g. D or L) is slowly varied.

Proc. R. Soc. A (2012)

 on March 27, 2012rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


1320 M. Rivetti and S. Neukirch

12 14 16 18 20 22 24
0

1

2

3

4

5

6

D
/L

ec

L /Lec

(A) (B) (C)

A2

A1

C1

C2

C3

C4

C5

Cenc.

Cop.

(SIop.)

(SIenc.)

(DI)

Figure 11. Phases diagram for the drop-strip system of figure 8. The vertical dotted lines correspond
to the paths in figure 9. The lower (respectively upper) solid curve SIop. (respectively SIenc.)
corresponds to fold points where opening (respectively encapsulation) occurs. The dotted curve
DI corresponds to the locus of dynamic instability. Fixed parameters are R0/Lec = 2, and
Leg/Lec" 6.51. (Online version in colour.)

We now consider a different kind of set-up where instability in the dynamics
occurs. For the same parameter values R0/Lec = 2, Leg/Lec " 6.51 and L/Lec = 20,
we consider a set-up where a drop is deposited on a flat strip. For different values
of the extent D of the wetted region, we look for the long time evolution of the
system. As in §4, we are in the case of a suddenly applied load (Simitses &
Hodges 2006) where instabilities and shape selection are no longer given by
stability properties of equilibriums, but rather by energy-level curves and basins of
attraction. To illustrate the phenomenon, we plot energy landscapes of the system
for several values of D. Using the constraint Ac(a, b)= pR20, we (numerically)
eliminate a from the energy E(a, b, k2) and end up with an unconstrained energy
function of only two variables E = E(b, k2). For each point C1–C5 of figure 11, we
plot in figure 13 curves of constant energy level E(b, k2)=G for several values of
the constant G. For each level set plot, stable and unstable equilibrium points
are shown, and the level set corresponding to E(0, 0)=G0 is distinguished. Upon
deposition of the drop on the flat strip, the system starts its dynamics at the
origin (b, k2)= (0, 0), and owing to dissipation the dynamics may evolve only
towards regions where the energy is lower: the evolution is possible only inside
the level set G0, i.e. for points (b, k2) such that E(b, k2)≤G0. The system will
eventually stabilize on (one of) the stable equilibrium point(s) present inside the
level set G0. In case C1, there is only one stable equilibrium point corresponding
to an open configuration. Going to case C2, we cross the (SIop.) curve in figure 11,
that is two equilibria are created in a saddle–node bifurcation. The energy plot of
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Figure 12. Phases diagram of figure 11 for various values of volume of the liquid drop, 1.2≤
R0/Lec ≤ 4 and weight of the strip, 200≤ (Leg/Lec)3 ≤ 10 000. The chosen scaling of the axes is
such that all the curves nearly collapse of a master curve which separates two regions: on the
left only one equilibrium solution exists, whereas on the right two equilibrium solutions coexist.
(Online version in colour.)

figure 13b therefore exhibits two new equilibria, one stable C2C and one unstable
C2U , a saddle point. There are now two competing stable equilibria C2C and
C2O , but only C2O lies inside the E0 level set and therefore the system will
stabilizes on this point. As we move from C2 to C3 (and further), the level set
G0 encloses wider regions of the (b, k2) plane. In case C3 precisely, G0 reaches
point C3U , giving the system access to the second stable equilibrium point during
the dynamics. Consequently, in case C4, G0 encloses both C4C and C4O and the
dynamics may evolve towards an encapsulated or an open configuration. The
value of D corresponding to case C3 is then the threshold above which the system
can evolve towards encapsulation. This new instability from open to encapsulated
configurations takes place during the dynamics of the system. We have plotted
the locus of this dynamic instability in figure 11, see curve (DI ). Going from case
C4 to case C5, we cross the (SIenc.) curve in figure 11, that is the encapsulated
and unstable states merge and disappear in a saddle–node bifurcation. Case C5
in figure 13e consequently exhibits only one (stable) equilibrium on which the
system always stabilizes.

(c)Discussion

We have not specifically studied the behaviour of the system during
an evaporation experiment, in particular whether an open (respectively,
encapsulated) system may become encapsulated (respectively, open) through
instability, as evaporation takes place. Partial answer can be sought for in
figure 13 where we see that upon evaporation (i.e. decreasing R0 =

√
V /(pw)),

an open system initially lying on the right and under the upper instability curve
could cross it, thereby experiencing an encapsulation instability. The possibility
of encapsulated systems undergoing an opening instability during evaporation
remains to be studied.
In the impacting drop experiment of Antkowiak et al. (2011), the behaviour

of the encapsulation threshold curve as the impact speed U (or Weber number
We) vanishes is not given: fig. 3 of Antkowiak et al. (2011) stops at

√
We ∼ 0.4.
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Figure 13. Level sets of the energy E(b, k2) for the fixed parameters: R0/Lec = 2, Leg/Lec "
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The present results can be used to infer the curve behaviour as We→ 0. From
equation (4.1), we see that as We→ 0 the extent D = 2D of the wetted region
goes to D0. On the one hand, if D = D0/2 is larger than the cusp value D/R0 ∼ 2,
there is a threshold value in L under which the system will encapsulate (given the
curve SIenc. or DI of figure 11). Consequently, the behaviour of the encapsulation
threshold curve will be as in figure 14a. On the other hand, if D = D0/2 is smaller
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Figure 14. Behaviour of the encapsulation threshold of Antkowiak et al. (2011) as the impacting
speed vanishes (i.e. smallWe numbers) (a) in the case where D0/2R0 ! 2 and (b) in the case where
D0/2R0 " 2.

than the cusp value D/R0 ∼ 2, no encapsulating instability is possible as the
length L is decreased. As a result, the behaviour of the encapsulation threshold
curve will be as in figure 14b.
Finally, we note that the present discrete model can be extended to include

dynamics of the strip by adding the kinetic energy
1
2

rwh
∫

beam
(ẋ2 + ẏ2) ds (5.11)

in the Lagrangian.

6. Conclusion

We have introduced a simplified model for the interaction of an elastic beam with
a liquid drop. In the scales considered here, the dominant fluid effect is surface
tension, and liquid weight, inertia and viscosity are altogether neglected. The
deformations of the elastic beam are also simplified is such a way that equilibrium
and stability of the system are found by minimizing a potential energy function
of a small number of variables. We have applied our model to three different case
studies. In the first one, where a liquid drop bending an elastic strip is let to
evaporation, we have found an approximation of the critical length separating
the two different behaviours of the system. In the second one, where a drop
impacts an elastic strip and depending on the impact speed wrapping of the drop
by the strip is achieved or not, we have reproduced the experimental threshold
separating encapsulation and non-encapsulation. In the third one, where a drop
lifts a heavy elastic strip, we have computed the static and dynamic thresholds for
encapsulation, obtaining a universal phases diagram showing the possible states
of the system.

We thank A. Antkowiak for discussions. This work was supported by ANR grant no. ANR-09-
JCJC-0022-01. Financial support from ‘La Ville de Paris - Programme Émergence’ is also gratefully
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