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We study the mechanical response of elastic rods bent into open knots, focusing on the case of trefoil
and cinquefoil topologies. The limit of a weak applied tensile force is studied both analytically and
experimentally: the Kirchhoff equations with self-contact are solved by means of matched asymptotic
expansions; predictions on both the geometrical and mechanical properties of the elastic equilibrium are
compared to experiments. The extension of the theory to tight knots is discussed.
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Knots have long been considered mainly from a mathe-
matical perspective but this topic has today spread to
different areas in science. Fishermen and sailors know
that tying a knot on a rope severely reduces its tensile
strength [1]. More recently knots have been tied on bio-
logical molecules [2], micrometric silica wires [3], or lipid-
bilayer nanotubes [4] and their properties were compared
to unknotted configurations. Sufficiently long polymers
often adopt knotted configurations spontaneously [5]. A
recent survey identified 273 knotted proteins [6,7],
although the biological function of these knots remains
unclear. Knots are also found in DNA plasmids, and the
electrophoretic mobility of a knotted DNA molecule is
related to its topological properties [8].

To date, the tightening of knots has been studied based
on molecular dynamics or ab initio methods [9], methods
from statistical physics [10], purely geometrical models
[11], or perfectly flexible rod models [12]. In this Letter,
we investigate the mechanical response of knots based on
the theory of elasticity. The equilibrium configurations of
open trefoil (31) and cinquefoil (51) knots are analyzed, see
Fig. 1; other knot types can be handled similarly.

Consider an infinitely long elastic rod with circular cross
section of radius h, flexural modulus EI, bent into an open
knot. The rod is held by a tensile force T applied at both
ends and contacts itself in a braided region. In the h � 0
case, the solution consists of two straight, half-infinite tails
connected by one circular loop with radius R. Minimizing
the sum of bending energy ��2�R� 1

2
EI
R2� and potential en-

ergy 2�RT accounting for the applied tension yields [2]:

 T � EI=�2R2�: (1)

Here, we determine the shape and mechanical response of
knots for small but nonzero h. The entanglement, which
takes place at a point for h � 0, remains localized for small
h [13]. We solve the Kirchhoff equations, which express
the equilibrium of a thin rod made of a linearly elastic
material with a circular cross section [14]:
 

r0 � t; t0 � �M=EI� � t (2a)

M0 � t�N � 0; N0 � p � 0; (2b)

where s is the arclength, t�s� is the unit tangent to the 3D
center line r�s�, M�s� the internal moment, N�s� the inter-
nal force, and p�s� the contact pressure (homogenous to a
force per unit length). Primes denote derivatives with
respect to s. The main difficulty lies in the nonpenetration
condition:

 jr�s1� � r�s2�j 	 2h (3)

that must hold for all s1 and s2 (with js1 � s2j=h large
enough to exclude neighboring points from the test). In
such self-contact problems, the contact set and contact
pressure p�s� have to be determined in a self-consistent
way. Another difficulty is that the topology of the contact
set is not known beforehand [15]. Problems involving
isolated points of contact [16], or contact sets comprising
straight lines [17], have been treated. An axial tension is
applied at both ends but the latter can freely twist; as a
result, the twisting moment M 
 t, which is uniform along
the rod, is zero everywhere.

We build a solution of Kirchhoff equations (2) for a
knotted configuration in the small h limit. The rod is
divided into three regions: two outer regions (tails and
loop) and an inner region (braid) where contact takes place.
We introduce the small parameter � � �h=R�1=2 and per-
form a matched asymptotic expansion of solutions to (2) in
the different regions. We first derive a scaling law for the
length ‘ of the braid, assuming ‘ is an intermediate quan-
tity, h� ‘� R. In the braid, of length ‘, transverse
displacements are of order h: the center line has a slope

FIG. 1. Geometry of an open trefoil knot (31) under tension.
Inset: open cinquefoil knot (51).
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of order h=‘ with respect to the z axis. Points in the loop at
a distance of order ‘ from the axis of symmetry y have a
slope �‘=R. Equating these two slopes requires ‘ to be of
order

�������
hR
p

.
The rod configuration in the tails is found, to first order

in �, by solving Eqs. (2) linearized near the straight con-
figuration (t � ez, M � 0, and N � Tez), where ex;y;z are
unit vectors defined in Fig. 1. The first order correction for
the tails is found to have an exponential profile, propor-

tional to e�jzj
��������
T=EI
p

. Similarly, the loop part is solved to
first order by linearizing Eqs. (2) near a circular configu-
ration t � sin�s=R�ey � cos�s=R�ez, M � �EI=R�ex, and
N � 0, where ��R< s < �R. The perturbed loop con-
figuration is found to remain planar, although in a plane
that is slightly tilted about the y axis. The details of the
calculations are omitted.

Let us proceed to the inner solution. The braid is the
crucial region where the external tensile load T in the tails
is transformed, with the help of contact forces, into the
internal bending moment EI=R in the loop. According to
the previous scalings, the slope in the braid is small, of
order �. Geometric nonlinearities can then be neglected
and the leading order of system (2) for strand ‘‘a,’’ with
center line ra � �xa; ya; za�, reads EIx0000a � pxa , EIy0000a �
pya , z0a � 1, where pxa � jpj�xb � xa�=�2h� and pya �
jpj�yb � ya�=�2h� are the components of the contact force,
assuming that there is no friction. The equations for the
other strand ‘‘b’’ are similar, with pxb � �p

x
a and pyb �

�pya by the action-reaction principle. We take advantage of
the linearity of these equations and separate the inner
problem into an average and a difference problem. To
this end, we introduce the new variables hr�s�i � �ra�s� �
rb�s��=2 and r � �rb�s� � ra�s��=2.

The average problem gives the position of the curve
lying halfway in between the two strands. It obeys the
linearized Kirchhoff equations: EIhxi0000 � 0, EIhyi0000 �
0, with the asymptotic conditions hxi00 � 1=�2R� at both
ends to allow matching with the loop. Note that the contact
forces cancel out in the average problem. As a result, it has
an obvious solution, namely, an arc of circle with radius
2R, up to a rigid-body rotation and translation.

The difference problem tells how the two strands contact
and wind around each other. The components of r satisfy
the Kirchhoff linearized equations: EIx0000 � jpjx=h,
EIy0000 � jpjy=h. Based on the previous scaling analysis,
we introduce the rescaled quantities:

 u �
xb � xa

2h
; v �

yb � ya

2h
; w �

z

�2hR�1=2
: (4)

Since the tangent deviates only slightly from ez, the arc-
length s ’ z, or w in rescaled coordinates, can be used to
parametrize the deflection given by u and v. The unknowns
of the difference problem are the functions u�w� and v�w�.
As mentioned earlier, the contact set is not known before-
hand in this kind of problem. However, the nonpenetration
condition (3) takes a simple form:

 u2�w� � v2�w� 	 1 for all w: (5)

The self-contact problem then reduces to finding the con-
figuration of an effective ‘‘difference’’ Kirchhoff rod in
(partial) contact with a fixed external object, namely, a
cylinder, as shown in Fig. 2(a). Making use of the varia-
tional structure underlying the Kirchhoff equations, we
seek the solutions u�w� and v�w� as minimizers of the
following energy:

 E � �
Z �W
�W

u002�w� � v002�w�
2

dw� v0�W� � v0��W�;

(6)

subjected to the nonpenetration constraint (5), and to the
constraint that the ‘‘difference’’ rod makes a prescribed
number of turns around the cylinder: one and a half turns
for trefoil knots and two and a half turns for cinquefoil
knots. The first term in this energy is the bending energy,
proportional to the curvature squared. The last two terms
are the work done by the moments Q along eu coming from
the loop region, as shown in Fig. 2(a). The length 2W of the
domain is an arbitrary, large number: the minimizers do not
depend on W as long as W is beyond the end point of the
contact region.

We solve the variational problem (5) and (6) with stan-
dard numerical routines for constrained minimization.
Note that there is no numerical parameter left in the for-
mulation. The solution for a trefoil knot is shown in
Fig. 2(b) and 2(c). The topology of the contact is nontrivial:
around the center (w � 0) of the braid, there is an extended
region jwj  0:348 with continuous contact. Further away
from the center, the ‘‘difference’’ rod lifts off from the
cylinder to reach, at w � �1:823, a maximum gap of�����������������
u2 � v2
p

� 1 � 0:021 in rescaled units [implying a gap
of 0:021� �2h� � 4:3%� h in physical units]. This open-
ing ends up with an isolated contact at w � �2:681, where
the strands eventually separate for good. The two symmet-

FIG. 2. Difference problem for the braid region. (a) Geometry.
(b) Visualization of the solution for a trefoil knot, projected in
the �v;w� plane, and (c) in the plane �u; v� perpendicular to the
axis of the cylinder. Only one half of the symmetric solution is
shown. Contact is denoted with thick curves and points.
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ric gaps (for positive and negative w) can be observed
experimentally, as shown in Fig. 3. The contact topology
is the same in the case of cinquefoil knots (51), the central
region with continuous contact being wider. The solution
v�w� to the difference problem vanishes at w � wc, see
Fig. 2(b). This corresponds to an apparent crossing of the
two strands, as viewed from the side (along the direction
eu � ex). We use this crossing to define the length ‘ of the
braid, see Fig. 3. In rescaled units, this length is 2wc, that is,
in physical units:

 ‘ � 2wc

���������
2hR
p

; (7)

where wc � 3:506 for trefoil knots, while wc � 7:640 for
cinquefoil knots. This theoretical prediction is compared
with experiments for both kinds of knots, and a good
quantitative agreement is found, see Fig. 4. In experiments,
we used naturally straight, superelastic wires made of
Nitinol, an alloy of nickel and titanium, with various
diameters in the millimetric range and length L � 2m;
we checked that the rods returned to their natural straight
configuration after the experiments (no plastic deforma-
tion). Note that in Fig. 4, we also included a data point that
we measured from the image of a knotted silica wire with
radius 260 nm obtained by scanning electron microscopy
in Fig. 3(a) of Ref. [3].

It is possible to account for weak friction in the braid
using the present framework. The total contact force,
from one strand to the other, is P �

R‘=2
�‘=2 jp�s�jds �

�EIR�3=2h�1=2, where � is a numerical constant com-
puted from the inner solution, � � 0:492 for trefoil knots,
and p�s� is the radial contact force pointing outwards.
When the strands are sliding along each other in the braid,
a friction force ��P builds up, where � is the dynamic
Coulomb friction of the rod onto itself. As a result, the
relation (1) between the applied tension and the loop radius
has to be modified as follows:

 

Th2

EI
�
�4

2
����3: (8)

The first term is the elastic contribution, as in Eq. (1), while
the second term accounts for friction forces, with a sign
that depends on whether the knot is being tightened ��� or
loosened ���. The experimental response curve for a tre-
foil knot made with a coated Nitinol rod of diameter
0.89 mm is shown in Fig. 5 and compared to the predictions

of Eq. (8). It was obtained by attaching one end to a force
probe, while the other end was first pulled, and then
relaxed, at a velocity of order 1 mm=s. We were careful
to keep the tails long enough (typically 50 cm long) to
avoid any end effect coming from the clamped ends of the
rod. The parameter R, required to plot the curves as a
function of � �

���������
h=R

p
, is determined from the shortening

�L of the rod with respect to its unknotted configuration,
divided by 2�. Stick-slip takes place, as revealed by the
spikes in the experimental curves, but it was minimized by
laying the knot horizontally on a large block of material
with low friction (Teflon). Negative values of the traction T
are not accessible in this experiment as the tails buckle: we
stopped the experiments when the tension reached T � 0.
Then, the knot is locked by friction. From Eq. (8) the
corresponding values of R0 and �0 �

�����������
h=R0

p
satisfy �0 �

2�� and so

 � �
1

2�
�0 � 1:02

�����������
h=R0

q
; (9)

using the numerical value of � relevant for a trefoil knot.
With the help of this formula, one can measure the self-
friction coefficient � from a simple experiment by tighten-
ing the knotted rod, releasing its ends, letting the loop grow
spontaneously, and measuring the final radius R0. Using
this method with the data shown in Fig. 5, we find � �
0:07. This is consistent with a direct (but inaccurate)
measurement of the longitudinal force between two pieces
of the rod sliding along each other (taking care to minimize
stick-slip as much as possible), which gives � � 0:1.

We have obtained an analytical solution for the equilib-
rium configurations of open elastic knots, which is exact in
the limit of loose knots, that is, for small �. The theory
shows good quantitative agreement with experiments per-
formed on elastic rods, concerning both the geometry of

FIG. 3. Photograph and close-up of an experimental braid,
with � � :074. The two symmetric openings are predicted by
the theory.

10 6 10 5 10 4 10 3
10 5

10 4

10 3

10 2

10 1

0.0025 0.005

0.05

0.1

FIG. 4. Braid length ‘ vs intermediate length �hR�1=2 in log-
log plot. In the inset, the same data are shown in a linear plot.
Open symbols and the thin line are for trefoil knots. Filled
symbols and the thick line are for cinquefoil knots. All rods
are Nitinol wires, except for the single circular data point,
computed from data from Ref. [3]. The lines are the theoretical
prediction (7), with no adjustable parameter.
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the solution and the traction curves. A natural extension of
the work presented here is the study of the behavior of tight
knots, that is, when � is no longer small, � � O�1�. This
question has been addressed from a purely geometrical
perspective through the problem of ideal knots [18,19].
In such geometrical models, tight open knots typically
exhibit a maximum of curvature in the region where the
tails enter the entangled region [11]. Simulations based on
the elastic model are in contradiction with this result. In
Fig. 6, we show preliminary results concerning the solu-

tions of Eqs. (2) and (3) for a tight elastic knot with � ���������������
h

�L=�2��

q
� 0:52 and compare with the geometrical model

of Ref. [11] for which � � 0:56. The large, oscillatory
curvature obtained in [11] at the exit of the knot seems to
point to the fact that the geometrical problem is ill posed in
the matching region between the perfectly straight tails and
the knot; these oscillations are regularized by elasticity. In

the geometric case, the point of maximum curvature is at
the exit of the knot (s=h ’ �10); in the elastic case, this
maximum lies well inside the knot [points (a) and (c) in
Fig. 6, for s=h ’ �6]. This leaves open the question of
where a tight knot will actually break. By pushing further
the present mechanical analysis, one can derive the distri-
bution of strains in the material, which is nonuniform. This
distribution can be used to predict the point of breakage, as
well as the decrease in the tensile strength of a knotted rope
which ultimately reflects the concentration of stress.

It is a pleasure to thank B. Roman and J. Bico from the
Laboratoire PMMH (ESPCI) for their help in setting up the
experiments and J. Maddocks for providing some of the
Nitinol rods.
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FIG. 6. Curvature of a tight elastic trefoil knot (� � 0:52, bold
curve) and comparison with the geometrical calculation of a
tight trefoil knot in Ref. [11] (dotted line).
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FIG. 5. Traction-displacement curve for a Nitinol wire with a
trefoil knot. The knot is first tightened (upper curve) and then
loosened (lower curve) until it becomes locked by friction, for a
value � � �0. The curves are the theoretical prediction (8), with
the Coulomb friction coefficient adjusted to � � :07 from
Eq. (9). There is no other adjustable parameter in the plot. The
agreement between theory and experiments is good as soon as
� & 0:1.
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