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Abstract

In this Letter, we study the bifurcation of limit cycles in Liénard systems of the form dx/dt = y − F(x), dy/dt = −x,
where F(x) is an odd polynomial that contains, in general, several free parameters. By using a method introduced in a
previous Letter, we obtain a sequence of algebraic approximations to the bifurcation sets, in the parameter space. Each
algebraic approximation represents an exact lower bound to the bifurcation set. This sequence seems to converge to the
exact bifurcation set of the system. The method is non-perturbative. It is not necessary to have a small or a large parameter
in order to obtain these results. c© 1998 Elsevier Science B.V.
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The Liénard equation [1],

d2x

dt2
+ f(x)

dx
dt

+ x = 0, (1)

appears very often within several branches of science,
such as physics, chemistry, electronics, biology [21
5]. This equation can be written as a two-dimensional
dynamical system which reads as follows,

dx
dt

= y − F(x),
dy
dt

= −x, (2)

where F(x) =
∫ x

0 f(τ) dτ.
The most difficult problem connected with the study

of Eq. (2) is the question of the number and location
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of limit cycles. A limit cycle is an isolated closed tra-
jectory. Isolated means that the neighboring trajecto-
ries are not closed; they spiral either toward or away
from the limit cycle. If all neighboring trajectories ap-
proach the limit cycle, we say that the limit cycle is
stable or attracting. Otherwise the limit cycle is insta-
ble or, in exceptional cases, half-stable. Stable limit
cycles are very important in science. They model sys-
tems that exhibit self-sustained oscillations. In other
words, these systems oscillate even in the absence of
external periodic forcing. Of the countless examples
that could be given, we mention only a few: the beat-
ing of a heart, chemical reactions that oscillate spon-
taneously, self-excited vibrations in bridges and air-
plane wings, etc. In each case, there is a standard os-
cillation of some preferred period, waveform and am-
plitude. If the system is slightly perturbed, it always
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returns to the standard cycle. Limit cycles are an in-
herently nonlinear phenomenon; they cannot occur in
linear systems.

In order to make progress with this problem, it is
of fundamental importance to control the bifurcations
of limit cycles that can take place when one or several
parameters of the system are varied. The word “bi-
furcation” is used to describe any sudden change that
occurs while parameters are being smoothly varied in
any dynamical system. Connections with the theory
of bifurcations penetrate all natural phenomena. The
differential equations describing real physical systems
always contain parameters whose exact values are, as
a rule, unknown. If an equation modeling a physical
system is structurally instable, that is, if the behav-
ior of its solutions may change qualitatively through
arbitrary small changes in its right-hand side, then it
is necessary to understand which bifurcations of its
phase portrait may occur through changes of the pa-
rameters.

In this respect, the most difficult bifurcation is the
so-called saddle-node bifurcation of limit cycles; let
us suppose that the system (2) depends on a parame-
ter λ: F = F(x, λ). Let Γ0 be a non-hyperbolic limit
cycle of Eq. (2) (see Ref. [12] for a definition), cor-
responding to the value λ0 of the parameter λ. The sys-
tem (2) undergoes a saddle-node bifurcation at λ = λ0

if for λ = λ0 + ε and ε positive and sufficiently small,
the limit cycle Γ0 bifurcates into two hyperbolic limit
cycles, one stable and the other instable. Moreover, for
λ = λ0 − ε, the limit cycle Γ0 disappears and there is
no limit cycle in a small neighborhood of Γ0. This bi-
furcation is particularly difficult to detect because for
λ = λ0 − ε there is no trace of it. Moreover, the value
of λ0 is not known in principle and it is not possible
to employ a perturbative method with respect to ε to
study this type of bifurcation.

In a previous Letter [6], we have introduced a
method for studying the number and location of limit
cycles of Eq. (2), for the case where F(x) is an odd
polynomial of arbitrary degree. Following Refs. [6,7]
we consider functions hn(x, y) given by

hn(x, y) = yn + gn−1,n(x)yn−1 + gn−2,n(x)yn−2

+ . . .+ g1,n(x)y + g0,n(x), (3)

where gj,n(x), with j = 0, 1, . . . , n− 1, are functions
of only x, and n is an even integer. Then it is always

possible to choose the functions gj,n(x) such that

ḣn(x, y) = (y − F(x))
∂hn
∂x
− x∂hn

∂y
,

is a function only of the variable x. Then we have

ḣn(x, y) = Rn(x). (4)

The functions gj,n(x) and Rn(x) determined in this
way are polynomials. As explained in Ref. [6], if for
a given value of n the polynomial Rn(x) has no real
roots of odd multiplicity, then the system has no limit
cycle.

We want to show in this Letter that the method
presented in Ref. [6] enables us to determine algebraic
approximations to the bifurcation sets of limit cycles
for the Liénard equation. These bifurcation sets can be
determined analytically only when the system has a
small parameter or a large one (perturbative regime).
In the intermediate case (non-perturbative regime),
no method is known for determining, in an analytic
way, the bifurcation set. We shall show here that our
method gives a sequence of algebraic lower bounds to
the bifurcation sets. Moreover, this sequence seems to
converge to the exact bifurcation set. The method can
be applied to any system (2) where F(x) is an odd
polynomial.

As an example, we will consider a Rychkov system,

F(x) = a2x
5 + a1x

3 + a0x, (5)

with a2 3 0. We can take one of the parameters
equal to one without loss of generality. Several au-
thors have studied this system with F(x) written
as F(x) = ε(x5 − µx3 + x). Rychkov has shown in
Ref. [8] that this system can have at most two limit
cycles and actually has exactly two limit cycles when
ε > 0 and µ > 2.5. Rychkov’s results have been im-
proved by Alsholm [9], who lowered the bound of µ
to 2.3178 and by Odani [10], who obtained an even
smaller value,

√
5. By a scaling of the variables x and

y, the system (2), with F(x) given by Eq. (5), can
be written in a simpler form, as follows,

F(x) = x5 − µx3 + δx. (6)

Since there are two parameters, the bifurcation set is
given by a curve in the parameter plane (µ, δ). Our
aim, here, is to obtain information about the bifurca-
tion diagram of the system in this plane.
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Fig. 1. The algebraic curves Bn(µ, δ) = 0 with n = 2, 6, 14
(continuous lines) and the bifurcation curve B(µ, δ) = 0 (dashed
line) which is calculated from numerical integrations of the system
(6).

(i) For δ < 0, due to the Liénard theorem (see
Ref. [2]), we know that the system has exactly one
limit cycle for arbitrary values of µ.

(ii) For δ > 0 and µ < 0, the Bendixon criterium
(see Ref. [2]) enables us to conclude that the system
has no limit cycle (the divergence of the vector field,
given by −F ′(x), has a constant sign for all x).

(iii) For δ > 0 and µ > 0, the system can have
two or zero limit cycles, according to Rychkov’s re-
sults. In this region of the parameter space there ex-
ists a bifurcation curve B(µ, δ) = 0. In the region
where B(µ, δ) > 0 (region II in Fig. 2), the system
has exactly two limit cycles and in the region where
B(µ, δ) < 0 (region I in Fig. 2), the system has no
limit cycle. On the curve B(µ, δ) = 0 the system un-
dergoes a saddle-node bifurcation: there is a unique
non-hyperbolic (double) limit cycle.

Obviously, the function B(µ, δ) is not known and
no analytical method for obtaining this function for
arbitrary µ and δ exists. We shall obtain a sequence
of algebraic approximations to the function B(µ, δ).

For a given even value of n, let us consider the corre-
sponding polynomial Rn(x). The polynomials Rn(x)
described above, can have, for system (6), one, two
or zero positive simple roots, depending on the values
of µ and δ. At least that is the behavior observed for
the values of n we considered.

(i) For δ < 0 and ∀µ , the polynomialsRn(x) have
one simple positive root.

Fig. 2. The complete bifurcation diagram of system (2) with F(x)
given by Eq. (6). On the line δ = 0 the system undergoes a Hopf
bifurcation. On the curve B(µ, δ) = 0 we have a saddle-node
bifurcation of limit cycles. The system has no limit cycle in region
I, two limit cycles in region II and one limit cycle in region III.

(ii) For µ > 0 and δ > 0 , the first quadrant is
divided in two regions by a curveBn(µ, δ) = 0. In the
region Bn(µ, δ) > 0, the polynomial Rn(x) has two
positive simple roots while in the regionBn(µ, δ) < 0
it has no positive root. On the curve Bn(µ, δ) = 0,
Rn(x) has a double positive root.

(iii) For µ〈0 and δ〉0, the polynomials Rn(x) have
no real root other than the even-multiplicity root in
x = 0.

The functions Bn(µ, δ) are algebraic and can be
determined from the conditions

Rn(x) = 0,
dRn
dx

(x) = 0. (7)

These two algebraic equations determine the double
root of the polynomial Rn(x) and give a relation be-
tween µ and δ which we write Bn(µ, δ) = 0. For
n = 2, we find B2(µ, δ) = δ(µ2 − 4δ). For n = 4,
B4(µ, δ) is a 12th degree polynomial. The degree of
Bn(µ, δ) increases rapidly with n. We have calculated
the functions Bn(µ, δ) for even values of n between
2 and 14. The behavior of the curves Bn(µ, δ) = 0,
as well as the numerical bifurcation curve (calculated
from a numerical integration of the system), are shown
in Fig. 1. We see that each curve Bn(µ, δ) = 0 is con-
tained in the region Bn−2(µ, δ) > 0.

It is clear (see Ref. [6]) that for µ > 0 and δ > 0
lying in the region Bn(µ, δ) < 0, the system (2) with
F(x) given by Eq. (6) has no limit cycle (in this
case, hn(x, y) is a Lyapunov function). Hence, it is
evident that the curves Bn(µ, δ) = 0 represent exact
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lower bounds to the bifurcation curve B(µ, δ) = 0:
The curves Bn(µ, δ) = 0 are contained in the region
B(µ, δ) < 0 for all even values of n.

The complete bifurcation diagram is given in Fig. 2.
There are three regions.

(i) Region I: There is no limit cycle. All the curves
Bn(µ, δ) = 0 lie in the part µ > 0 of this region.

(ii) Region II: There are two limit cycles. It appears
that all the polynomials Rn(x, µ, δ) have two positive
simple roots.

(iii) Region III: Liénard theorem shows that there
is one limit cycle. It appears that all the polynomials
Rn(x, µ, δ) have one positive simple root.

We would like to emphasize that the shape of the
bifurcation curve B(µ, δ) = 0 is already given by the
curve B2(µ, δ) = δ(µ2 − 4δ) = 0, which is con-
structed only with the function F(x)! The Hopf bi-
furcation occurs when δ = 0 and the saddle-node bi-
furcation occurs near µ2 = 4δ.

One interesting feature is to study the curves
Bn(µ, δ) when (µ, δ) → (0, 0). By considering
only the lowest terms in Bn(µ, δ), one finds

Bn(µ, δ) = δ(µ2 − αnδ) + O(µ3, δ2),

where αn is the curvature of Bn(µ, δ) at the origin.
We can compare the curvature of the Bn(µ, δ) curves
with the curvature of the B(µ, δ) curve by means of
Melnikov’s method knowing that

B(µ, δ) = BM(µ, δ) + O(µ3, δ2),

where BM = δ(µ2 − 40
9 δ) is obtained due to Mel-

nikov’s function (see Ref. [12]).
We see in Table 1 that αn seems to tend toward 40

9
(' 4.44). So the curves Bn(µ, δ) (when n→∞),
BM(µ, δ) and B(µ, δ) have the same curvature near
the origin. But when µ and δ increase, we know that
BM(µ, δ) is not a good approximation to B(µ, δ) any
more. On the other hand, we claim that the curves
Bn(µ, δ) (with big n) remain good approximations
to B(µ, δ) for all (µ, δ).

We shall now make use of this bifurcation curve for
the following system,

ẋ = y −
(
x5 −

√
5

3
(1 + λ)x3 + λx

)
,

ẏ = −x. (8)

Table 1
For each value of n we give the value of the curvature of the
curve Bn(µ, δ) near the origin

n

2 4 6 8 10 12 14 16 18 20 30

αn 4 4.23 4.32 4.36 4.39 4.40 4.41 4.42 4.423 4.427 4.436

Fig. 3. The line µ = (
√

5/3)(1 + δ) and the bifurcation curve
B(µ, δ) = 0 of system (6). The intersections between the two
curves give the bifurcation values of λ for system (8).

This example has been studied by Lloyd [11] and
Perko [13]. System (8) is a particular case of system
(6) with

µ =

√
5

3
(1 + λ), δ = λ.

In order to know what the bifurcations are of this sys-
tem when the λ parameter is varied from−∞ to +∞,
we must plot the line

µ =

√
5

3
(1 + δ), (9)

in the bifurcation diagram of system (6), with the
exact (but unknown) bifurcation curve B(µ, δ) = 0
replaced by one of the algebraic approximations
Bn(µ, δ) = 0. As λ is varied from −∞ to +∞, the
system moves along the line (9) from left to right in
Fig. 3. It is easy to see that when λ is negative (the
portion of the line is in region III), there is one limit
cycle. Then, when the line crosses the µ-axis (that is
when λ changes sign) the system undergoes a Hopf
bifurcation: A small limit cycle is created around the
origin of the phase plane. There are now two limit
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Fig. 4. The algebraic approximations to the amplitude-bifurcation
diagram for system (8) for the cases n = 2 (bold), n = 6 (dash)
and n = 10 (continuous). We see the number and the amplitudes
of the limit cycles by considering the intersections between one
of these curves and a line λ = constant. The results are improved
with increasing values of n.

cycles, the system is in region II. But when λ is fur-
ther increased, the line (9) crosses the bifurcation
curve B(µ, δ) = 0; the two limit cycles collapse in a
saddle-node bifurcation and there is no limit cycle, the
system is in region I. If we continue to increase λ, we
see the line (9) crossing the curve B(µ, δ) = 0 again.
Two limit cycles appear in a saddle-node bifurcation,
the system enters region II again. We can see that
this is the last bifurcation we can create because the
line, when λ is further increased, does not cross the
bifurcation set any more and stays in region II. From
the intersections between the line (9) and the curves
Bn(µ, δ) = 0, we obtain algebraic approximations to
the bifurcation values of the parameter λ.

There is another way to see the different bifurcations
of Eq. (8). We have claimed in Ref. [6] that if n is
large enough, the number of positive roots of odd mul-
tiplicity of Rn(x) gives the number of limit cycles of
the system. In the case of system (8), Rn = Rn(x, λ),
so whenλ is varied, the number of roots ofRn changes.
Hence, for a given value of λ, the number of limit cy-
cles of Eq. (8) can be obtained by counting the num-
ber of intersections between the curve Rn(x, λ) = 0
and the line λ = constant in Fig. 4.

In Ref. [6], we claim that the value of the root of
Rn(x) gives an approximation to the maximum value
of x on the limit cycle (which we call the ampli-
tude). In Fig. 4 we have plotted Rn(x, λ) = 0 for

Fig. 5. The curve F(x, a) = 0 for system (10). We see the
number and the amplitude of the limit cycles by considering the
intersections between this curve and a line a = constant. There
seems to be transcritical bifurcations for a = 2 and a = 5 at this
order.

n = 2, n = 6 and n = 10. So we can see the ampli-
tude of the limit cycles with respect to λ. We see the
Hopf bifurcation when λ crosses the x-axis upward
and we see the two saddle-node bifurcations when
Rn(x, λ) loses its two positive roots. Once again, as
R2(x, λ) = −2xF(x, λ), an approximation to the bi-
furcation amplitude diagram is given by the curve
F(x, λ) = 0, which can be written as

λ = x2 3x2 −
√

5√
5x2 − 3

.

Let us consider another example,

ẋ = y − (x(x2 − a2)(x2 − 22)(x2 − 52)),

ẏ = −x. (10)

We want to study the bifurcations of Eq. (10), when
a is varied from 0→∞. As we have already twice
noticed, the qualitative bifurcation amplitude diagram
seems to be given by F(x) = 0. Here, the plot of
F(x, a) = 0 seems to announce the presence of a tran-
scritical bifurcation (see Ref. [2] for a definition)
near the values a = 2 and a = 5 and a Hopf bifurcation
for a = 0 (see Fig. 5). If we plot R4(x, a) = 0, we
still see the Hopf bifurcation, but the supposed trans-
critical bifurcations are indeed saddle-node ones (see
Fig. 6): We see that the system can have one or three
limit cycles. When a is far from the values a = 2 or
a = 5, there are three limit cycles, but when a is near



58 H. Giacomini, S. Neukirch / Physics Letters A 244 (1998) 53158

Fig. 6. The curve R4(x, a) = 0 for system (10). This curve is an
approximation to the amplitude-bifurcation diagram. We see the
number of limit cycles by counting the number of intersections
between this curve and a line a = constant. The system only
presents saddle-node bifurcations. The qualitative behavior of the
curves Rn(x, a) = 0, with n > 4, is the same. No further qualitative
changes occur for greater values of n.

the values a = 2 or a = 5, there is only one limit cycle.
So, in this example, the equation F(x, a) = 0 does
not give the right qualitative amplitude-bifurcation di-
agram. We must plot the curve R4(x, a) = 0 in order
to obtain the good qualitative shape of it.

In summary, we have introduced a method that
gives a sequence of algebraic approximations to the
bifurcation sets of limit cycles for the Liénard equa-
tion (2). These algebraic approximations are exact
lower bounds to the entire bifurcation set of the system

and seem to converge to it in a monotonical way. The
fundamental aspect of this method is that it is not
perturbative in nature. It is not necessary to have a
small or a large parameter in order to apply it.
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