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Abstract. We study the mechanics of uniform n-plies, correcting and extending previous work in
the literature. An n-ply is the structure formed when n pretwisted strands coil around one another
in helical fashion. Such structures are encountered widely in engineering (mooring ropes, power
lines) and biology (DNA, proteins). We first show that the well-known lock-up phenomenon for
n = 2, described by a pitchfork bifurcation, gets unfolded for higher n. Geometrically, n-plies with
n > 2 are all found to behave qualitatively the same. Next, using elastic rod theory, we consider
the mechanics of n-plies, allowing for axial end forces and end moments while ignoring friction.
An exact expression for the interstrand pressure force is derived, which is used to investigate the
onset of strand separation in plied structures. After defining suitable displacements we also give an
alternative variational formulation and derive (nonlinear) constitutive relationships for torsion and
extension (including their coupling) of the overall ply. For a realistic loading problem in which the
ends are not free to rotate one needs to consider the topological conservation law, and we show how
the concepts of link and writhe can be extended to n-plies.
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1. Introduction

Plies consisting of two strands of elastic tube (rod) winding around each other
while contacting along a straight line have recently been studied using rod the-
ory, especially in the context of DNA supercoiling. Both the uniform [39] and the
variable-angle ply [7] have been treated. In [40] the loaded ply was considered and
some simple constitutive relations for the ply were derived. It was also observed
that under increasing pretwist in its individual strands, the helical angle of the
(infinitely long and uniform) ply tends to a limiting value of π/4. This is exactly
the lock-up angle for a double helix with straight-line contact: a larger angle would
lead to self-penetration of the rod [30, 36].
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In [45] numerical computations on a clamped finite-length variable ply showed
that the variation of the ply angle in an end-loaded ply is small, but also that due
to bending boundary layers at the clamped ends, lock-up occurs at the clamps
long before the π/4 angle is reached. In fact, there are two possible effects of
the thickness of the rod. One local: the centreline cannot be bent too sharply (the
local radius of curvature cannot be smaller than the radius of the rod). One global:
any two points far apart along the rod cannot come too close to each other in space
(not closer than twice the radius of the rod). If either of these is violated the tube
suffers self-penetration. The two conditions are neatly combined into a single one
by introducing the concept of the global radius of curvature as defined by Gonzalez
and Maddocks [17]. Many of the issues relevant for plies also arise in tightly wound
single helices (1-plies) as studied in, e.g., [31].

In this paper we study a wider class of plies in order to understand this lock-up
phenomenon better. In particular, we shall drop the requirement that the strands in
the ply touch along a straight line. This leads us naturally to consider plies made
up of an arbitrary number of strands. It then turns out that the limiting angle at
large twist has really nothing to do with the lock-up angle. They just happen to be
the same. For n > 2 the limiting angle still occurs, while the lock-up angle gets
unfolded and disappears.

A common way to form a ply is to take a few strands of elastic material, hold
them under tension while putting a number of turns into each of them individually,
and then to move the ends in under diminishing torque, thereby letting the strands
writhe around themselves. By adopting a writhed configuration the strands release
torsional energy (by reducing their twist) at the expense of bending energy (by
increasing their curvature). However, if the ends are prevented from rotation, then
there is a topological conserved quantity analogous to the constant linking number
of a closed rod undergoing arbitrary deformations. Indeed, we show how this link-
ing number, which is numerically equal to the sum of the ‘twist’ and the ‘writhe’,
can be adapted for n-plies.

Plied structures, consisting of multiple fibres or wires winding around one an-
other are found in a wide class of engineering components, and also occur widely
in molecular biology. Although the length scales in these two application areas
are vastly different, the main function of plied structures in many cases is the
same, namely, to support large axial loads with comparatively small bending and
torsional stiffness. One area where ply formation has traditionally been important
is textile engineering, and there is a relatively old literature, including experimental
studies, on twisted yarn [41, 19, 12, 13]. In offshore engineering wire rope (mostly
consisting of 6 wires wound around a core) is used in mooring lines [6]. In biology,
the fibrous protein collagen, the most abundant protein in the animal kingdom,
occurs in the form of 3-plies. This form makes it suitable for its primary purpose,
which is to help tissues withstand stretching [28]. Artificial DNA in the form of
3-plies, and even 4-plies, is also used in genetic engineering [16, 46, 22]. Plies
with six strands, wound around a seventh one, occur in keratin, another class of
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mechanical support proteins. Proteins lining ion channels in cell membranes are
also arranged in hexagonal form; see [48, and references therein]. In this case the
structure is supported by electrostatic forces and there is no central core. In some
models the diameter of the channel is controlled by twisting the molecules, i.e.,
changing the angle of the ply they form [42].

Since the mechanics of plies is one of large deformation geometric rod models
have been used widely. In almost all cases helical shapes for the individual strands
are assumed. For an overview of work in this direction we refer to the book by
Costello [8] and the recent survey article by Cardou and Jolicœur [5]. However, in
all studies we are aware of the contact problem is studied in a plane normal to the
ply axis. This is too simplistic an approach and cannot ensure that the structure does
not suffer self-penetration further down the ply (cf. the lock-up angle mentioned
above). Here we correct and extend this work on n-ply geometry by showing that
the helical strands generally interact in an intrinsically three-dimensional way:
contacting sections of neighbouring strands are generally not in the same normal
cross-section of the overall ply. While still assuming helical shapes for the strands,
we take proper account of the ply geometry in order to avoid self-penetration. This
leads to a different relationship between ply diameter and ply angle.

Next we use elastic rod theory to study the mechanics of the problem. We model
a strand as a perfect, isotropic rod, i.e., an intrinsically straight rod with equal
bending stiffnesses about its principal axes. A semi-inverse approach is taken in
which we assume helical shapes for the centrelines of the strands and then use the
static equilibrium equations to obtain new expressions for the forces and moments
in the ply, including the pressure force acting between the strands (which in general
is not normal to the ply axis). By allowing for end forces and end twisting moments
we are then in a position to examine the onset of strand separation, defined as
the point where the interstrand pressure vanishes. This could be relevant for the
study of ‘birdcaging’, the phenomenon in which, under compression or counterro-
tation, the individual strands buckle locally and separate, thereby opening up the
ply. Birdcaging may lead to a dramatic reduction in strength and is an important
failure mode in engineering ropes [6]. An analogous phenomenon in molecular
biology is the (local) unzipping (denaturation or ‘melting’) of the DNA double
helix, either thermally [29] or force-induced [10, 3, 32]. DNA is also known to
undergo structural transitions under applied stresses [1, 33] or in complexes with
proteins and other ligands.

Finally, we give a self-contained variational formulation of n-ply mechanics
and derive (nonlinear) constitutive relationships between the applied loads and the
extension and rotation of the overall ply. In particular we compute the effective
torsional and axial stiffnesses, as well as the twist-stretch coupling stiffnesses.
Costello’s book [8] gives a simplified treatment of bending constitutive behav-
iour of plies. An exact analysis using rod theory is more complicated and left for
future work. The effective stiffnesses could be used as building blocks for more
complicated plied structures.
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There have been different approaches to studying plied structures. In [27] a
(dynamical) composite rod theory is developed that can describe 2-plies whose
strands may have arbitrary configurations. This is used to derive nonlinear as well
as linear constitutive relations. In [30] the geometry of n-plies is considered nu-
merically using a kind of simulated annealing. Similar techniques have led to the
related study of so-called ideal shapes of knotted curves [23, 35, 17]. In [20] plies
with more complicated cross-sections made up of layers of helical components
are considered, using rod theory for each of these components. Multi-layered plies
have also been investigated using finite-element computations [21].

2. The Geometry of n-Plies

Consider a ply made up of n strands of radius r winding as helices on a cylinder of
radiusR. The strands are modelled as impenetrable elastic tubes of uniform circular
cross-section obeying the special case of the Kirchhoff theory of elastic rods in
which a rod is taken to be not only transversely isotropic but also inextensible and
unshearable [9]. Thus all material cross-sections form circular discs of radius r.

Let {e1, e2, e3} be a fixed right-handed orthonormal coordinate frame. Relative
to this frame the centreline of one of the strands can be written as

r1(s) =

 +εR sinψ

−εR cosψ
s cos θ


 , ψ ′(s) = ε sin θ

R
, ψ(0) = 0, (1)

where s denotes arclength along the centreline and ′ = d/ds. The angle θ is the
helical angle, the complement of what is usually called the pitch angle. We use ε to
designate the handedness of the helix: ε = 1 for a right-handed helix, ε = −1 for
a left-handed helix. We shall therefore assume θ to lie in the range [0, π/2]. The
centrelines of all the other strands in the ply are given by

r i+1 = Rinr1, i = 1, . . . , n− 1, (2)

where Rn is the matrix

Rn =




cos
2π

n
− sin

2π

n
0

sin
2π

n
cos

2π

n
0

0 0 1


 , (3)

describing a rotation through 2π/n about e3.
Contact between two strands, r1 and r2 say, is governed by two geometrical

conditions. If strand 1, at arclength s1, touches strand 2, at arclength s2, then we
must have:
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C1. |r1(s1)− r2(s2)| = 2r (the interstrand distance must be equal to the diameter
of the rod).

C2. r ′
1(s1) · (r1(s1)−r2(s2)) = r ′

2(s2) · (r1(s1)−r2(s2)) = 0 (the tangent to either
strand must be orthogonal to the line connecting the two centreline points at
contact).

These conditions give the following two equations:

�(θ, x) := 2 + x2 cos2 θ − 2 cos

(
x sin θ − 2π

n

)
= 4

ρ2
, (4)

x cos2 θ + sin θ sin

(
x sin θ − 2π

n

)
= 0, (5)

where

x = ε(s1 − s2)
R

, ρ = R
r
. (6)

Note the translation invariance: both conditions depend on s1 and s2 only through x
(indeed, the two tangency conditions C2 yield identical equations). With the factor
ε as included in the definition of x, given a right-handed solution, a left-handed
one is obtained simply by reversing the roles of s1 and s2. For n = 2 the equations
are additionally invariant under a sole sign change of x. Also note that (5) is just
the statement ∂�(θ, x)/∂x = 0, reflecting the fact that we are minimising the
interstrand distance (at fixed θ).

The reason for using the (initially unknown) ply radius R in the definition of x
in (6) is that equations (4) and (5) have a simple form, with ρ appearing only in the
first. The natural interpretation of the problem is that n, r and θ are given, that x
then follows from (5), and then R from (4) and (6).

When the strands are straight, θ = 0, (5) yields x = 0, whereupon (4) gives

ρ = 1

sin(π/n)
, (7)

which is the result one gets when studying tangency of n circles whose centres lie
on a circle. In the other limit, θ → π/2, where the strands become rings, (5) gives
x = 2π/n and (4) shows that ρ → ∞.

Before we turn to the analysis of equations (4) and (5) for real plies, note that
the case n = 1 is of interest as well. For instance, the local curvature of the helical
strand is given by sin2 θ/R and this cannot exceed 1/r. If we use ρ = sin2 θ in (4)
we find the solution

θ = 1.190458 (68.2082◦), x = 5.685134, ρ = 0.862185, (8)

which is the densest packing solution of a single helical tube [26, 31]. This so-
lution simultaneously satisfies both the local and the global thickness constraint
mentioned in the Introduction.
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Figure 1. Arclength shift x versus helical angle θ for n = 2 as given by (5). The trivial branch
x = 0 represents plies whose strands are touching on a straight line; the nontrivial branches
represent plies whose strands are touching on a helix.

2.1. THE CASE n = 2

Figure 1 gives a graphical representation of (5) for n = 2. There is a trivial solution
x = 0 for all values of θ : contact occurs at the same arclength along both strands.
This solution has ρ = 1 and is the one studied in previous work [12, 7, 40, 45]. As
can easily be established from (5), at θ = π/4 a nontrivial path (x �= 0) bifurcates
from the trivial one [36]. The corresponding solutions have ρ > 1, implying that
they have a central hole of radius R − r (see Figure 2).

The trivial solution corresponds to the global minimum of the interstrand dis-
tance function � only for θ < π/4. For larger angles the bifurcating solution takes
over that role, and the x = 0 solution has self-penetrations. The non-bifurcating
‘satellite’ solutions further out in Figure 1 never correspond to global minima and
therefore always have self-penetrations (partly they also violate the local curvature
condition sin2 θ � ρ).

Related but different aspects of 2-ply geometry are described in [18].

2.2. THE CASE n = 3 AND HIGHER

For n = 3 the solution x = 0 no longer exists for nonzero θ and there is no bifur-
cation (see Figure 3). In fact, the θ–x diagram can be interpreted as an unfolding
of the pitchfork bifurcation in Figure 1 with λ := 2π/n as imperfection parameter
(imagined continuous). All 3-plies have central holes (see Figure 4). The main
branch contains the global minima of � and for these solutions the local curvature
does not exceed 1/r.

For n > 3 the results remain qualitatively the same as for n = 3.
The fact that n-plies for n > 2 have solutions with x �= 0, i.e., with an arclength

shift between touching sections, implies that the simple analyses in [13, 8], where
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Figure 2. Two views of a 2-ply with θ > π/4 along the nontrivial branch in Figure 1
(θ = 60◦).

Figure 3. Arclength shift x versus helical angle θ for n = 3 as given by (5). Only the main
branch through the origin contains non-self-penetrating solutions.

single cross-sections of the ply are considered, are only valid for small θ . In [8]
strand cuts normal to the ply axis are taken to be elliptical, while in [13] the
varying orientation of the cross-sections as a result of the curvature is not even
considered, so that (7) is simply obtained, a result which is only true for straight
strands! In [24] it is pointed out that for tightly layed ropes the normal strand cut
can deviate significantly from being elliptical, but the authors continue to make the
same mistake by focussing on a single ply cross-section rather than considering the
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Figure 4. Two views of a 3-ply along the main branch in Figure 3 (θ = 60◦).

helical structure as a whole. Consequently, all these analyses yield solutions that in
reality would have self-penetrations.

In fact, it is instructive to see what a ply cut does look like. A parametrisation of
the perimeter of a single strand can be obtained as follows. For the position vector
rs of a point on the surface of the rod we can write the parametrisation

r s(s, α) = r1(s)+ r sinαn + r cos αb, (9)

where α ∈ [0, 2π ] is the angle along the circumference of the material cross-
section at arclength s, and n = r ′′

1/|r ′′
1| and b = r ′

1×n are the normal and binormal
of the strand’s centreline, respectively. With (1) this becomes

r s(s, α) =
(
xs
ys
zs

)

= ε
(
R sinψ − r sinα sinψ − r cos α cos θ cosψ

−R cosψ + r sinα cosψ − r cos α cos θ sinψ
εs cos θ + r cos α sin θ

)
,

ψ = εs sin θ

R
.

(10)

For a cut normal to the ply axis we have zs = z0, for some constant z0, which can
be used to solve for s in (10) to get

s = z0 − εr cos α sin θ

cos θ
. (11)
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(a) (b) (c)

Figure 5. Cut at zs = 0 of a 3-ply with (a) θ = 20◦, (b) θ = 60◦ and (c) θ = 80◦.

Insertion of this back into (10) gives the sought parametrisation (xs(α), ys(α)).
(11) gives the arclength coordinate of the material cross-section that the point
on the cut at given α belongs to. Figure 5 shows cuts of 3-plies with different
helical angles. For sufficiently large θ (for n = 3, >51.2◦) the strand cut becomes
nonconvex.

2.3. THE CONTACT CURVE IS A HELIX

We have seen that for θ > π/4 if n = 2 and for θ > 0 if n > 2 the non-self-
penetrating solution has an arclength shift x. As a result the contact curve is no
longer a straight line and the ply has a hole in the centre. It is straightforward to
show that the contact curve is in fact itself a helix.

Fix a point r1(s1) on the centreline of strand 1. The cross-section at this point
will touch the cross-section at r2(s2) of the neighbouring strand 2, where s2 =
s1 − εRx. The contact point rc between the strands will be the midpoint of the line
segment from r1(s1) to r2(s2):

rc = 1

2
(r1(s1)+ r2(s1 − εRx)). (12)

(Here we imagine an infinitely long ply so that end effects can be ignored.) Note
that with the two tangency conditions C2 there is still the freedom for the two
contacting cross-sections to rotate relative to each other about the line through both
r1(s1) and r2(s2), so the tangents r ′

1(s1) and r ′
2(s2) need not be aligned.

Using (1) and (2) we obtain

rc =




εR cos

(
1

2
x sin θ − π

n

)
sin

[
ψ

(
1

2
(s1 + s2)

)
+ π
n

]

−εR cos

(
1

2
x sin θ − π

n

)
cos

[
ψ

(
1

2
(s1 + s2)

)
+ π
n

]
1

2
(s1 + s2) cos θ



. (13)

This represents a helix, parametrised by (1/2)(s1+s2), of radius R cos((1/2)x sin θ
− π/n) and of the same helical angle as the two strands.
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3. The Mechanics of n-Plies

In this section we study the mechanics of the ply. For this it will be necessary to
consider the amount of twist in the strands. We use the Cosserat director theory of
elastic rods [2], which besides the centreline of the rod r defines a right-handed
orthonormal frame {d1, d2, d3} (the directors) at each point along the rod. This
frame allows one to describe arbitrary orientations of the cross-section of the rod,
including twist.

In the following we shall use r for the centreline when no particular strand is
meant and refer to the strand as ‘the rod’.

For simplicity we shall assume the rod to be inextensible and unshearable (an
adequate assumption in most applications) so that we can choose d3(s) to be the
unit tangent to the centreline at s, while d1(s) and d2(s) span the normal cross-
section at s:

r ′ = d3. (14)

We can parametrise d3 by two angles as follows:

d3 =

 sin θ cosψ

sin θ sinψ
cos θ


 . (15)

At this point the angles are arbitrary functions of s. The evolution of the director
frame along the rod is governed by

d ′
i = u × d i , i = 1, 2, 3, (16)

where u is the generalised strain vector whose components ui = u · d i relative to
the moving frame are the curvatures (i = 1, 2) and the twist (i = 3).

We also introduce a right-handed cylindrical coordinate frame {er , eψ, ez}:
er = ε sinψe1 − cosψe2,

eψ = ε cosψe1 + sinψe2, (17)

ez = e3.

It follows from (15) and (17) that

e′
r = ψ ′eψ, e′

ψ = −ψ ′er , (18)

and

d3 = ε sin θeψ + cos θez. (19)

The balance laws for the internal force F and moment M in the rod are given
by (see, e.g., [2])

F ′ + p = 0, (20)

M ′ + r ′ × F = 0. (21)
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Here p is the resultant external force per unit length of rod (pressure) acting on the
rod.

For simplicity we shall assume linear and diagonal constitutive relations be-
tween the stresses and the strains:

M · d i = Kijuj , i, j = 1, 2, 3, K = diag(B,B,C), (22)

where B and C are the bending and torsional stiffnesses, both assumed to be con-
stant. K11 = K22 because of isotropy. Note that, despite the diagonal stiffness
matrix K for a single strand, the ply as a whole will have an effective nondiagonal
stiffness matrix due to coupling between the various elastic degrees of freedom
(see also Section 6). From (16) and (22) it follows that for the internal moment we
can write

M = Bd3 × d ′
3 + Cu3d3. (23)

Note that this equation extends (22) to a vectorial constitutive relation, this being
a special property of an isotropic rod.

If we denote the components of force in the cylindrical frame by F =
(Fr, Fψ, Fz) then by (15) we have

F × d3 = (Fψ cos θ − εFz sin θ)er − Fr cos θeψ + εFr sin θez. (24)

Inserting (23) and (24) into the moment balance equation (21) gives the three
equations

−Bθ ′′ + Bψ ′2 sin θ cos θ − Cu3ψ
′ sin θ = εFψ cos θ − Fz sin θ, (25)

εFr = Bψ ′′ sin θ + 2Bψ ′θ ′ cos θ − Cu3θ
′, (26)

Cu′
3 = 0. (27)

The last equation states that twist u3 is constant along the rod. Its value will be
determined by the boundary conditions.

So far we have not made any assumptions on the shape of the strand. In turning
to force balance we now specialise to the case of a helical strand. This means that
from now on we assume θ = const and ψ ′ = (ε/R) sin θ , so that (15) becomes
equivalent to (1). R is the radius of the helix. In this case of a helical ply we note
that, excepting the case n = 2 with θ < π/4, each cross-section of a given strand i
is acted upon by two neighbouring cross-sections belonging to strands i − 1 and
i + 1. Thus we can express force balance (20) as

F ′ + p21 + p31 = 0, (28)

where

p21(s) = p21(s)
r1(s)− r2(s2)

|r1(s)− r2(s2)| , p31(s) = p31(s)
r1(s)− r3(s3)

|r1(s)− r3(s3)| . (29)
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Here p21 is the pressure, of magnitude p21, strand 2 exerts on strand 1. The shift
in arclength implies that s2 = s − εxR. Similarly, p31 is the pressure strand 3
exerts on strand 1, with s3 = s + εxR. For n = 2 and θ > π/4 the two touch-
ing cross-sections are in fact at different arclengths on the same (opposite) strand
(cf. Figure 1). (When interpreted properly, (28) is also valid for n = 2 and θ < π/4.
In this case the two touching sections are on the same strand and at the same
arclength, so p21 = p31 and hence p = 2p21; that is to say, there is really only one
touching section, counted twice.)

In writing down (29) the pressures are assumed to act normal to the surface of
the strands, which amounts to an assumption of frictionless contact. Note that r2 =
Rnr1 and r3 = R−1

n r1. Because our ply is uniform, by symmetry p21 = p31 =: p1.
Straightforward geometry then shows that

p = p21 + p31 = ρp1

(
1 − cos

(
x sin θ − 2π

n

))
er =: per . (30)

So, even though the strands interact in an intrinsically three-dimensional way and
the interstrand pressures are not normal to the ply axis, the total pressure is normal
to this axis and to the imaginary cylinder on which the strands wind. Consequently,
we are within the framework of previous work dealing with the case n = 2,
θ < π/4 [43, 40, 45]. In order to determine the pressure p we make use of force
balance (20), which yields

F ′
r = εFψ

R
sin θ − p, (31)

F ′
ψ = −εFr

R
sin θ, (32)

F ′
z = 0. (33)

For a uniform ply (26) gives Fr = 0, so all three force components are seen to be
constant. Axial force balance for the overall ply gives

Fz = F0

n
, (34)

where F0 is the axial force applied to the ply as a whole (positive for tension).
Fψ is found by axial moment balance, which for the overall ply can be expressed as

nMz + nRFψ = M0. (35)

HereM0 is the axial moment applied to the ply as a whole, whileMz is the z com-
ponent of the internal moment in a single strand found by forming the dot product
of (23) with ez. We obtain

Fψ = M0

nR
− εB
R2

sin3 θ − Cu3

R
cos θ. (36)

Then (31) gives for the pressure

p = − B
R3

sin4 θ − εCu3

R2
sin θ cos θ + εM0

nR2
sin θ. (37)
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This result is in agreement with expressions in [43, 40, 45], but it should be re-
membered that R, instead of simply being equal to r, is now given by (4) and (5)
in terms of r and θ .

The interstrand pressure p1 can then be obtained from (30):

p1 = p

ρ[1 − cos(x sin θ − 2π/n)] , or, by (4),

p1

p
=
√

2[1 − cos(x sin θ − 2π/n)] + x2 cos2 θ

2[1 − cos(x sin θ − 2π/n)] .

(38)

It follows that p and p1 have the same sign. Finally, (25), with θ ′′ = 0 and ψ ′ =
(ε/R) sin θ , when combined with (36) and (34), gives an equilibrium relation,
which in terms of the dimensionless parameters

γ = C
B
, f = r

2F0

B
, m = rM0

B
(39)

reads

2n sin3 θ cos θ + εnργ ru3 cos 2θ + ρ2f sin θ − ερm cos θ = 0. (40)

Using this to eliminate u3 in (37) we find for the dimensionless pressure

pr3

B
= sin2 θ

nρ3 cos 2θ
(n sin2 θ + ρ2f cos θ − ερm sin θ). (41)

In a fully dead (i.e., force and moment controlled) situation, in which not only
f and m but also the twisting moment γ ru3 is prescribed, all quantities are deter-
mined: (40), (4) and (5) provide three coupled equations for θ , x and ρ, and (41)
and (38) then give the pressures p and p1. If instead of u3 some other quantity is
given (for instance, related to the formation of the ply), then an additional equation
must be derived relating it to the present quantities in our formulation. We deal
with this in the next section.

The uniform balanced ply. In case no end loads are applied, so that the strands
are held together purely by geometrical constraints (as, for instance, in the DNA
plasmids considered in [7]), then f = m = 0 and (40) and (41) reduce to

εγ ru3 = −2 sin3 θ cos θ

ρ cos 2θ
, (42)

pr3

B
= sin4 θ

ρ3 cos 2θ
. (43)

Figure 6 shows ρ, γ ru3, p and p1 as a function of θ for n = 2: ρ diverges at
π/2, while u3 and the pressures diverge at π/4, which is the lock-up angle. For
each value of u3 there are two possible angles θ : one smaller than π/4, one larger
than π/4, with different handedness of the corresponding helix. Note that p1 goes
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(a) (b)

(c) (d)

Figure 6. ρ, the dimensionless twisting moment γ ru3 and the dimensionless pressures as a
function of θ for the balanced 2-ply. The dashed curves represent the nontrivial branch. For
γ ru3 the left-handed ply solutions are represented by negative θ .

through a maximum along the (dashed) nontrivial branch before reaching −π2/8
at θ = π/2. At the trivial (solid) branch the final value is −0.5. The corresponding
limiting values for p are 0 and −1, respectively.

Figure 7 gives the same plots for n = 3. Results for n > 3 are not qualita-
tively different from these. The divergence of u3, p and p1 at θ = π/4 occurs
for all n and is thus found to be unrelated to the lock-up phenomenon at that
same angle, as the latter only occurs for n = 2. Solutions with θ < π/4 have
a positive (repulsive) pressure and are therefore physically realistic. However, the
negative-pressure solutions for θ > π/4 need not be dismissed as unrealistic. Such
solutions could provide useful models for plied macromolecules such as DNA or
proteins in which attractive interstrand forces are present. The constant pressure
would be a smooth approximation of, for instance, discretely distributed hydrogen
bonds.

4. Plies Formed from Pretwisted Strands

In a realistic loading process u3 is normally unknown and some sort of end angle
is imposed instead. Consider, for instance, the following situation. We start with a
number (say 3) of straight strands of length L arranged such that their centrelines
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(a) (b)

(c) (d)

Figure 7. ρ, the dimensionless twisting moment γ ru3 and the dimensionless pressures as a
function of θ for the balanced 3-ply. For γ ru3 the left-handed ply solutions are represented
by negative θ .

lie on a cylinder of radius given by (7). While keeping the left-hand ends fixed we
turn each of the right-hand ends through a positive angle φ̄, clockwise when look-
ing down the rod from left to right. Next we clip or glue the ends together so that the
strands cannot move relative to each other. Finally, we let go of the ends. A natural
question to ask is: what is the helical angle θ of the resulting (almost uniform)
3-ply? (Simple tests with silicone rubber rods show that a uniform ply, modulo
some small deviations from uniformity at the ends, is one of the configurations the
structure can adopt, branched structures forming other possibilities.)

By introducing a third Euler angle φ the twist can be written as

u3 = φ′ + ψ ′ cos θ = φ′ + ε sin 2θ

2R
(44)

(see [2, 25]). Since the second term on the right-hand side is precisely the torsion of
a helical curve, (44) gives the usual decomposition of twist into space-curve torsion
and internal twist, also sometimes called Love’s twist. (This interpretation of φ′ as
internal twist only holds for constant θ .) Since θ and u3 are constant, φ(s) will
be a linear function of arclength and φ′ will depend only on the boundary values
φ(0) and φ(L). The rotation through φ̄ mentioned above puts a right-handed twist
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u30 = φ′ = (φ(L)−φ(0))/L = φ̄/L into each of the (straight) strands. Because of
the way the ends of the strands are clipped together the end angles φ(0) and φ(L)
will not change in the subsequent loading process in which torsion and twist are
exchanged (turning the end of the ply changes ψ , not φ). We can therefore write
(44) as

u3 = φ̄
L

+ ε sin 2θ

2R
. (45)

In the appendix we present an alternative derivation of this result by defining the
topological concepts of link and writhe for n-plies. Figure 12 shows two stages in
the creation of a balanced 3-ply.

It should be noted that once the strands are released, the end clips will not
provide the correct end conditions for a uniform ply. However, we can expect any
significant non-uniformity to be localised near the ends. This was indeed very much
the experience in [45] for n = 2. The error made by assuming a uniform ply is
therefore expected to be small.

Combining (45) with (40), and introducing the aspect ratio

a = r

L
, (46)

we arrive at the following equation:

2n sin3 θ cos θ + nγ
4

sin 4θ + εnγ φ̄aρ cos 2θ + ρ2f sin θ − ερm cos θ = 0.
(47)

For a ply with given φ̄ and held by known end loads f and m, (4), (5) and (47)
define a set of three equations for θ , x and ρ. With (47) we can write (41) as

pr3

B
= sin θ tan θ

nρ3

(
n(1 − γ ) sin2 θ cos θ − εnγ φ̄aρ sin θ + ρ2f

)
, (48)

revealing that for fixed φ̄ the pressure has no singularity at θ = π/4.
Note that a and φ̄ appear in the equations only in the combination φ̄a. This

quantity has the following physical meaning. If we imagine the initial straight
and untwisted strands to have stripes painted on their surfaces, parallel to their
centrelines, then after putting in the angle φ̄ each stripe forms a right-handed helix.
If π/2 − χ is the pitch angle of this helix, then we have

tanχ = φ̄a. (49)

The angle χ is the angle between the stripes and the centreline if we imagine
the cylindrical surface of the strand to be unrolled. In the numerical results that
follow we shall parametrise the link by φ̄a which we shall call the pretwist, in line
with standard terminology in the textile literature [12, 13]. Figure 8 shows how
the ply angle of a balanced ply varies with the pretwist φ̄a. As in the analogous
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Figure 8. The balanced ply angle θ against the pretwist φ̄a for n = 2 (solid), n = 3 (dashed)
and n = 6 (dotted). Left-handed ply solutions are represented by negative θ . For each value of
the pretwist there are two possible angles, one smaller than π/4, the other larger than π/4 (in
magnitude). The small-angle helices are left-handed for φ̄a > 0 and right-handed for φ̄a < 0;
the converse is true for the large-angle helices. (γ = 3/4.)

Figures 6(b) and 7(b), for each value of the pretwist there are two possible ply
angles, one smaller than π/4, the other larger than π/4 (in magnitude). The small-
angle (respectively large-angle) solution has a handedness ε opposite (respectively
equal) to the sign of the pretwist.

Of particular interest is the case p1 = 0, which defines the onset of strand
separation and thereby signals the limit of the ply’s proper mechanical functioning.
Since p and p1 have the same sign, the condition p1 = 0 is equivalent to p = 0.
If we eliminate θ between (47) and (41) we find the locus of p = 0 shown in the
control spaces of Figures 9 and 10. The former contrasts the high and low pretwist
cases for the 2-ply. The straight lines, of slope ερ tan θ , are constant-θ curves as
given by (47) drawn for equal increments of θ . If in an experiment the applied
force and moment were varied such that the helical angle θ stayed the same, then
a solid straight line would be followed in Figure 9 up to the point of intersection
with the p = 0 curve where strand separation would be initiated. Figure 10 shows
the analogous results for the 3-ply for comparison. Note that at θ = 0 the moment
is given by M0 = nCu30 = nφ̄C/L, or m = nγ φ̄a, the moment with which we
hold the ply before we let go.

It should be realised that under compression the ply may undergo Euler buckling
before the point of vanishing pressure is reached, especially for long plies. A study
of Euler buckling would require the bending stiffness of the overall ply, which is
not available in the present work. Another type of instability is the collapse of the
ply in case n > 3 (see also Section 7).

We end this section with the following important observation. According to
Figure 8, the solution set of balanced pretwisted n-plies consists of two discon-
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(a) (b)

Figure 9. Control space of end force, f , and end moment, m, for a 2-ply of fixed link. (a) is
for low pretwist, φ̄a = −0.2, (b) for high pretwist, φ̄a = −2.0. Bold curves are the locus
of p = 0, shown for both right-handed (ε = 1) and left-handed (ε = −1) plies. The solid
square indicates where θ = 0, the diamonds where θ = π/4 and the triangle where θ = π/2.
The trivial solution is only shown for θ < π/4. The straight lines are constant-θ curves, rising
(from left to right) for ε = 1, falling for ε = −1, and solid for p > 0 (potentially stable),
dashed for p < 0 (unstable). (γ = 3/4.)

nected branches separated by θ = π/4. If one starts with n parallel strands, then
no matter how much pretwist φ̄a one puts into each strand, one will always end up
with a ply of angle less than π/4. In order to create a balanced ply with an angle
θ > π/4 one must start on the other solution branch. However, by judiciously
applying end loads (f,m) one can get from one solution branch to the other: fixing
φ̄a one can follow a path in the load plane of Figure 9 or 10 that leads one from
θ < π/4 to θ > π/4. Since we are not considering stability of solutions we
have to assume here that this manoeuvre can be performed along a stable solution
path.

5. A Variational Formulation

The variable length of the ply is given by L cos θ , while the total rotation of the ply,
measured from the datum in which the n strands lie straight side by side, is given
by ψ(L) − ψ(0) = (εL/R) sin θ . We can therefore introduce the dimensionless
corresponding displacements through which the end loads f and m do work:

df = 1

a
cos θ, (50)

dm = ε

aρ
sin θ. (51)

These displacements can be used to give an alternative and more concise deriva-
tion of the equilibrium equations for helical strands by means of an energy analysis.
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(a) (b)

Figure 10. Same as Figure 9 but for the 3-ply.

We regard θ , R, x and the third Euler angle φ as independent variables, subject to
the constraint that there be no self-penetration, i.e., when two sections r1(s1) and
r2(s2) touch then |r1(s1)− r2(s2)| = 2r (condition C1). The total potential energy
of the ply is the sum of the bending energy Ub, the torsional energy Ut , the work
done through the resultant distributed force p (by virtue of the varying radius R),
Up, and the energy of the end loads Ul, given by

Ub = 1

2
nLBκ2, (52)

Ut = 1

2
nLCu2

3, (53)

Up = −nLpR, (54)

Ul = −F0df r −M0dm = −F0L cos θ − εM0L

R
sin θ. (55)

Here κ = sin2 θ/R is the curvature of the helical rod and u3 the twist, which for
uniform θ can be written as u3 = φ′ + (ε/R) sin θ cos θ (cf. (44)). Thus we look
for stationary points of the Lagrangian (total potential energy)

L(θ, R, x, φ) = B sin4 θ

2R2
+ C

2

(
φ′ + ε sin θ cos θ

R

)2

− F0

n
cos θ − εM0

nR
sin θ − pR − λR2�(θ, x), (56)

where λ is a Lagrange multiplier and � is defined in (4).
The Euler–Lagrange equation for φ, d/ds(dL/dφ′) = dL/dφ, immediately

yields (27), expressing that Cu3 is constant. (45) can then be used to identify φ
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with the pretwist. The equation for x gives (5), while the equations for R and θ
yield

p = − B
R3

sin4 θ − εCu3

R2
sin θ cos θ + εM0

nR2
sin θ − 2λR�(θ, x), (57)

2B

R2
sin3 θ cos θ + εCu3

R
cos 2θ + F0

n
sin θ − εM0

nR
cos θ

− λR2 ∂�(θ, x)

∂θ
= 0. (58)

The interpretation here is that the loads F0,M0 and p are given, and that λ is such
that the constraint

R2�(θ, x) = 4r2 (59)

is satisfied. For λ = 0, (57) and (58) are exactly the equilibrium equations (37)
and (40). If the pressure p does not have the ‘right’ value (e.g., if the ply is
pressurised), then a residual pressure proportional to λ will act to maintain the
constraint (59). Note that the total pressure force would then no longer be normal
to the ply axis, as evidenced by the λ term in (58), which represents normal moment
balance.

For the 2-ply with line contact (θ < π/4), the above energy analysis can be
readily extended to the case of variable θ [45]. For the more general ply this is
not so straightforward. For instance, in writing down the constraint (59) helical
centrelines are explicitly assumed.

6. Constitutive Behaviour of the n-Ply

The nonlinear constitutive behaviour associated with torsion and extension of
n-plies is governed by (47) (or (40) in the case of dead loading), (50) and (51).
The linear response about the balanced state can be determined as follows. First,
write (47) as G(f,m, θ) = 0, where ρ is to be considered as a function of θ . For
given loads f and m we can solve this for θ = /(f,m). The flexibility matrix can
then be written as

F =



∂df

∂f

∣∣∣∣
0

∂df

∂m

∣∣∣∣
0

∂dm

∂f

∣∣∣∣
0

∂dm

∂m

∣∣∣∣
0


 =




ddf
dθ

∣∣∣∣
0

∂/

∂f

∣∣∣∣
0

ddf
dθ

∣∣∣∣
0

∂/

∂m

∣∣∣∣
0

ddm
dθ

∣∣∣∣
0

∂/

∂f

∣∣∣∣
0

ddm
dθ

∣∣∣∣
0

∂/

∂m

∣∣∣∣
0


 , (60)

where the subscript 0 indicates that the derivatives are to be evaluated at f =
m = 0 and θ = θ0, with θ0 the angle of the balanced ply. To find the required
derivatives, write (47) formally as G(f,m,/(f,m)) ≡ 0 and differentiate this
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totally with respect to f and m,

dG

df
= ∂G
∂f

+ ∂G
∂θ

∂/

∂f
≡ 0,

dG

dm
= ∂G
∂m

+ ∂G
∂θ

∂/

∂m
≡ 0, (61)

to obtain

∂/

∂f

∣∣∣∣
0

= − ρ2 sin θ0
(∂G/∂θ)|0 ,

∂/

∂m

∣∣∣∣
0

= ερ cos θ0
(∂G/∂θ)|0 . (62)

The flexibility matrix then becomes

F = 1

(∂G/∂θ)|0




ρ2

a
sin2 θ0 −ερ

a
sin θ0 cos θ0

−ερ
a

sin θ0 cos θ0
1

a
cos2 θ0


 . (63)

We notice that F is symmetric. The derivative ∂G/∂θ |0 is finally found by differ-
entiating (47) and substituting for φ̄a from the same (47), giving

∂G

∂θ

∣∣∣∣
0

= n(γ − 1) cos2 2θ0 + n

cos 2θ0

− (8 sin3 θ0 cos θ0 + γ sin 4θ0)
n

4ρ

dρ

dθ

∣∣∣∣
0

, (64)

where dρ/dθ |0 is found from (4) and (5) as

dρ

dθ

∣∣∣∣
0

= ρ
3(−x2 cos2 θ0 + 2x sin θ0 sin β + x2 cos β + sin2 β) sin θ0 cos θ0

4(cos2 θ0 + sin2 θ0 cos β)
, (65)

β =
(
x sin θ0 − 2π

n

)
. (66)

In the expressions above θ0 (and hence ρ and x) is still to be viewed as a function
of φ̄a. For n = 2 and θ0 < π/4 we have dρ/dθ |0 = 0 (as ρ = 1), and series
expansion about θ0 = 0 yields explicitly


∂df

∂f

∣∣∣∣
0

∂df

∂m

∣∣∣∣
0

∂dm

∂f

∣∣∣∣
0

∂dm

∂m

∣∣∣∣
0




=




1

2a

∞∑
i=1

ai−1(γ )

γ i
θ2i

0 − 1

2a

∞∑
i=1

bi−1(γ )

γ i
θ2i−1

0

− 1

2a

∞∑
i=1

bi−1(γ )

γ i
θ2i−1

0

1

2aγ

(
1 +

∞∑
i=1

ci(γ )

γ i
θ2i

0

)

 , (67)
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where ak(γ ), bk(γ ), ck(γ ) are polynomials in γ of degree k (a0 = b0 = 1).
We notice that for θ0 = 0 the torsional flexibility is ∂dm/∂m = 1/(2aγ ), half
that of a single strand. The other coefficients vanish with θ0, as they should for two
straight inextensible rods. The negative signs of the nondiagonal terms correspond
to the fact that as we pull a ply, we tend to unwind it. The case γ = 1 is special in
that (47) then has the explicit solution θ0 = −(ε/2) arctan(2φ̄a), which can be used
directly in (63). For n > 2 expansions similar to those in (67) can be obtained by
computing series expansions for x and ρ (by successively computing higher-order
derivatives of x and ρ with respect to θ).

We finally derive the effective torsional and axial stiffnesses of the overall ply
viewed as a straight rod. The ply twist u3,ply and extension eply are defined by

u3,ply = ε(L/R) sin θ

L cos θ
= 1

r

dm

df
, (68)

eply = L cos θ

L cos θ0
= a df

cos θ0
. (69)

The use of the chain rule and (63) give

∂u3,ply

∂m

∣∣∣∣
0

= 1

(∂G/∂θ)|0
1

r cos θ0
,

∂u3,ply

∂f

∣∣∣∣
0

= −ε
(∂G/∂θ)|0

ρ sin θ0
r cos2 θ0

,

(70)

∂eply

∂f

∣∣∣∣
0

= 1

(∂G/∂θ)|0
ρ2 sin2 θ0

cos θ0
,

∂eply

∂m

∣∣∣∣
0

= −ε
(∂G/∂θ)|0ρ sin θ0. (71)

Defining the effective torsional stiffness Cply byM0 = Cplyu3,ply and the effective
axial stiffness Kply by F0 = Kplyeply, we obtain

Cply = B cos θ0
∂G

∂θ

∣∣∣∣
0

, (72)

Kply = B cos θ0
R2 sin2 θ0

∂G

∂θ

∣∣∣∣
0

, (73)

while for the twist-stretch cross-stiffnesses Aply andHply defined by F0 = Aplyu3,ply

andM0 = Hplyeply we find

Aply = −εB cos2 θ0

R sin θ0

∂G

∂θ

∣∣∣∣
0

, (74)

Hply = − εB

R sin θ0

∂G

∂θ

∣∣∣∣
0

. (75)
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(a) (b)

Figure 11. Force-moment characteristics for a loaded cored 6-ply with ρ = 2.1, implying
θ = 20.0◦. Solid lines are for right-handed, dashed lines for left-handed plies. (γ = 3/4,
φ̄a = −0.2.)

For nonzero θ0 these stiffnesses are not simply proportional to n or B (except if
n = 2 and θ0 < π/4).

7. Discussion

Plies with empty central holes will probably not be stable if more than three strands
are wound together. However, they can be stabilised by inserting an additional
central strand of the right radius (R− r) into the hole. Indeed, keratin and mooring
rope, both with n = 6, occur in this form. Conversely, one can take a core of certain
radius and wrap the strands around it. The radius of the core then determines the
ply angle, and one has to solve (4) and (5) with R as given and θ and x as unknown.
As an example, Figure 11 shows the pressure resultant p and the moment m as a
function of the force f for a loaded ‘cored’ 6-ply with a core radius R = 2.1r,
corresponding to a helical angle of 20◦, a realistic value for engineering rope. For
given f , m is the moment the loading device has to provide in order to maintain
equilibrium. Note that the interstrand pressure p1 no longer follows from (38) as
the core will also contribute to the required p.

We have computed nonlinear as well as linearised constitutive relations for an
n-ply in terms of the elastic stiffnesses of its strands. The effective ply stiffnesses,
including those for twist-stretch coupling, could be compared against experiments
on n-plies such as collagen, in the same way as in [38] where such comparisons
have been made for supercoiled DNA.
n-plies as studied here could be used as building blocks for plies with more

complicated cross-sections, as the layered structures considered in [20, 21]. Each
component (or layer) could be modelled as a rod (or tube) with effective linear
stiffnesses as computed in Section 6, and the components could be coupled by
compatibility conditions specifying that the components deform together.
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Appendix: Link and Writhe of an n-Ply

The linking number, or link, of a rod configuration roughly measures the number
of twists that have gone into it in order to create it. Link is usually associated
with closed rods. However, by introducing a closure as in [44] we can apply it to
open rods as well. (See also [11] for the application of the linking number to open
rods, and [37] for a comprehensive study.) This is only necessary for odd n; for
an even number of strands the ply forms a closed structure, provided we imagine
small connecting sections at the ends. For example, for a (clamped) ply created as
described in Section 4 we can choose semi-circles of length πr for these sections
so that the closed centreline is differentiable and the integrals that follow are well-
defined. For sufficiently long plies the precise shape of these end sections will not
be important. Note that this ‘continuation’ is entirely natural: in an experiment the
employed moulding will essentially do this. Since we are interested in long plies
the deviation from uniformity of the clamped ply will be unimportant and we will
treat θ as being constant.

For odd n we imagine the total centreline (running through all the strands of
the ply) closed by an additional straight strand of length Lc attached to the ply
with the help of further semi-circular sections (see Figure 12). We shall assume
the total closure (straight line plus end sections) to be planar. If the ends of the ply
are not exactly aligned then we need to insert, at one end, another small section,
say of length Li , between ply and closure in order to obtain a closed structure.
This insert can be chosen to be a fraction of a further helical turn. We can imagine
the closure to have no torsional stiffness. It will then remain planar in the loading
process, and its sole role is to take up the end rotation of the ply. It is a bookkeeping
device included so that we can apply the conservation of link for a closed rod. For
arbitrary n the total length of the closed centreline can then be written as

L = nL+ σ (Lc + Li + πr)+ nπr, (A.1)

where σ = 1 for n odd and σ = 0 for n even.
Having thus obtained a closed centreline we can define its linking number, Lk.

We shall use the celebrated Călugăreanu–White–Fuller formula [4, 47, 14],

Lk = Tw +Wr, (A.2)

as its definition. Here Tw is the total (integrated) twist in the rod defined by

Tw = 1

2π

∫ L

0
u3 ds, (A.3)

where the origin of arclength has been chosen at one of the ends of the ply, say the
left end. Wr is the writhe of the rod and is given by

Wr = 1

4π

∫ L

0

∫ L

0

[r(s)− r(t)] · [r ′(s)× r ′(t)]
|r(s)− r(t)|3 ds dt. (A.4)
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(a)

(b)

Figure 12. A 3-ply with closure illustrating the conservation of link: (a) shows the pretwisted
strands, (b) the writhed configuration after releasing the ends. The twist taken up by the planar
closure is Tc = −2.05849 = − sin θ/R = −(ψ(L)− ψ(0)), the negative of the end rotation
of the ply. End sections are not shown.

Note that the writhe is just a property of the shape of the rod’s centreline r, not
of the internal twist, i.e., the rotation of d1 (say) about d3. Fuller [14] showed that
the double integral has the interpretation of a signed crossing number averaged
over all planar projections. For planar non-self-intersecting curves Wr = 0. Lk is
a topological invariant: no matter how the strands deform after release of the ends,
Lk stays the same. Tw and Wr are not topological invariants; they vary in the load-
ing process. Indeed, by adopting a spatial configuration the initially straight and
twisted strands in the ply release torsional energy (Tw) at the expense of bending
energy (Wr ).

For general shapes the double integral is often difficult to compute. A result by
Fuller [15] may then be useful. It makes use of a reference curve and expresses the
difference of the writhe of the actual curve and the writhe of the reference curve
as a single integral. However, choosing a good reference curve (which also has
to satisfy a geometric condition) presents its own problems, and since for helical
strands the double integrals can be performed explicitly we shall use the definition
(A.4) directly.

The double integral (A.4) breaks up naturally into a sum of double integrals in
which each integral is taken over one of the three different elements making up the
ply: a helix (H), an end section (E) or the closure (C). The helical strands can be
either forward (running from left to right) or backward (running from right to left).
We therefore have to compute the following integrals:
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Figure 13. Integration domain for the double integralW s
r .

Helical strand with itself (W s
r ). Using (1) and (15) we obtain for the double

integral contribution:

4πW s
r = εµ

∫ ψL

0

∫ ψL

0

2 (1 − cos�ψ)−�ψ sin�ψ

[2(1 − cos�ψ)+ µ2(�ψ)2]3/2
dψ(s) dψ(t), (A.5)

where

�ψ = ψ(s)− ψ(t), ψL = ψ(L), µ = cos θ

sin θ
. (A.6)

With the change of variables

x = �ψ
2
, y = ψ(s)+ ψ(t), (A.7)

the integral can be rewritten as (see Figure 13)

4πW s
r = εµ

∫ 2ψL

0

∫ ψL/2

−ψL/2
f (x) dy dx − εµ

∫ ψL/2

0

∫ 2x

0
f (x) dy dx

− εµ
∫ ψL/2

0

∫ 2ψL

2ψL−2x
f (x) dy dx − εµ

∫ 0

−ψL/2

∫ 2ψL

2ψL+2x
f (x) dy dx

− εµ
∫ 0

−ψL/2

∫ −2x

0
f (x) dy dx, (A.8)

where

f (x) = 1

2
sin x

sin x − x cos x

(sin2 x + µ2x2)3/2
. (A.9)
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We have∫
f (x) dx = 1

2

x√
sin2 x + µ2x2

. (A.10)

The singularity at x = 0 can be integrated over by using

lim
x→±0

x√
sin2 x + µ2x2

= ±1

1 + µ2
= ± sin θ. (A.11)

In the limit of a very long ply, L → ∞ (implying ψL → ∞ for a right-handed
and ψL → −∞ for a left-handed ply), the first integral in (A.8) then gives the
leading-order contribution

εµ 2ψL

(
ε

µ
− ε sin θ

)
= 2ψL(1 − cos θ), (A.12)

valid for both a right-handed and left-handed ply. The other four terms in (A.8)
give

−4
∫ ψL/2

0
xf (x) dx + 4

∫ 0

−ψL/2
xf (x) dx. (A.13)

These terms remain bounded in the limit L→ ∞ since∫ ∞

0
xf (x) dx <∞. (A.14)

We conclude that for the writhe contribution we have the exact result

2πW s
r

ψL
= 1 − cos θ, L→ ∞. (A.15)

Helical strand with another helical strand (Wα±r ). Now consider two different
helical strands, one a 2πi/n-rotated version of the other, running in the same
direction. Writing ψ1 = ψ(s) = (εs/R) sin θ , ψ2 = ψ(t) = (εt/R) sin θ and
using (1), (3) and (15) we can write for the writhe contribution:

4πWα+r

= εµ
∫ ψL

0

∫ ψL

0

2(1 − cos(α−�ψ))+�ψ sin(α−�ψ)
[2(1 − cos(α−�ψ))+µ2(�ψ)2]3/2

dψ1 dψ2, (A.16)

where

�ψ = ψ1 − ψ2, ψL = ψ(L), α = 2πi/n, µ = cos θ

sin θ
, (A.17)

and i is an integer between 1 and n− 1. With the change of variables

x = �ψ
2
, y = ψ1 + ψ2, (A.18)
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the integral can be rewritten as

4πWα+r = εµ
∫ 2ψL

0

∫ ψL/2

−ψL/2
f (x) dx dy − · · · , (A.19)

where now

f (x) = 1

2
sin

(
α

2
− x

)
sin(α/2 − x)+ x cos(α/2 − x)

[sin2(α/2 − x)+ µ2x2]3/2
. (A.20)

The ellipsis represents the same ‘corner’ terms as we had for W s
r above.

We have∫
f (x) dx = 1

2

x√
sin2(α/2 − x)+ µ2x2

. (A.21)

Note that there is no singularity at x = 0. In the limit of a very long ply, L→ ∞,
the integral in (A.19) yields

εµ 2ψL
ε

µ
= 2ψL, (A.22)

valid for both right-handed and left-handed plies. The corner terms are again finite
and do not contribute in the limit, so we have the exact result

2πWα+r
ψL

= 1, L→ ∞. (A.23)

Note that this is independent of α, i.e., independent of exactly which pair of helical
strands one takes.

For a pair of strands running in opposite directions we find similarly

2πWα−r
ψL

= −1, L→ ∞. (A.24)

Combinations involving end sections or the closure. It is shown in [37] that dou-
ble integral contributions involving either an end section (E) or the closure (C)
remain bounded and therefore can be ignored in the limit L → ∞. The small
helical insert required for alignment between ply and closure will contribute at
most 2π (one turn) to ψL and can therefore also be ignored in this limit.

We now use the above to evaluate (A.4) for an even and odd case and then state
the general result.

2-ply. The 2-ply is built up of two helical strands and two end sections (see the
schematic in Figure 14):

Ply = H+
1 ∪ E12 ∪ H−

2 ∪ E21.
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Figure 14. The components of a 2-ply.

Table I. Writhe contributions for the 2-ply

2πWr H+
1 H−

2

H+
1 ψL(1 − cos θ) −ψL

H−
2 −ψL ψL(1 − cos θ)

Figure 15. The components of a 3-ply with closure.

The nonzero contributions to the writhe double integral are tabulated in Table I.
The total writhe is the sum of all the table entries. Thus

Wr = −2ψL
2π

cos θ. (A.25)

3-ply. For the 3-ply we have (see Figure 15)

Ply = H+
1 ∪ E12 ∪ H−

2 ∪ E23 ∪ H+
3 ∪ E3C ∪ C ∪ EC1.

From Table II we find

Wr = ψL
2π
(1 − 3 cos θ). (A.26)

General n-ply. In fact, one easily verifies that for general n we get

Wr = ψL
2π
(σ − n cos θ) = εL

2πR
sin θ(σ − n cos θ). (A.27)

For n = 1 this result agrees with the writhe of a helix (with closure) as derived
in [14].
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Table II. Writhe contributions for the 3-ply

2πWr H+
1 H−

2 H+
3

H+
1 ψL(1 − cos θ) −ψL ψL

H−
2 −ψL ψL(1 − cos θ) −ψL

H+
3 ψL −ψL ψL(1 − cos θ)

We now collect all the contributions on the right-hand side of (A.2). For arbi-
trary n we can write

Lk = Tw + σTc +Wr, (A.28)

where Tw is the usual total twist in the n strands, and Tc the total twist in the closure
(for odd n). This latter twist is simply the reverse of the end rotation, ψ(L)−ψ(0),
of the ply as a whole. According to (1) this gives

Tc = −εL sin θ

2πR
. (A.29)

If we insert (A.27) and (A.29) into (A.28) the σ terms nicely cancel and we obtain

Lk = Tw − εnL

2πR
sin θ cos θ, (A.30)

valid for all n.
For the pretwisted plies considered in Section 4 the link is given by

Lk = nu30L

2π
= nφ̄

2π
. (A.31)

By combining (A.31) with (A.30) and (A.3) we obtain for the local twist (provided
r/L� 1)

u3 = φ̄
L

+ ε sin 2θ

2R
, (A.32)

in agreement with (45).
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