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Abstract

When a thin elastic structure comes in contact with a liquid interface, capillary forces can be large

enough to induce elastic deformations. This effect becomes particularly relevant at small scales where

capillary forces are predominant, for example in microsystems (micro-electro-mechanical systems or

microfluidic devices) under humid environments. In order to explore the interaction between

capillarity and elasticity, we have developed a macroscopic model system in which an initially

immersed vertical elastic rod is raised through a horizontal liquid surface. We follow a combined

approach of experiments, theory and numerical simulations to study this system. In spite of its

apparent simplicity, our experiment reveals a complex phase diagram, involving large hysteretic

behaviour. We employ Kirchhoff equations for thin elastic rods and use path-following methods

from which we obtain a variety of equilibrium states and associated transitions that are in excellent

qualitative and quantitative agreement with those observed experimentally.
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1. Introduction

Capillary forces are responsible for a large range of everyday observations; for example
the shape of rain droplets, the imbibition of a sponge (de Gennes et al., 2003), the clumping
of wet hair into bundles (Bico et al., 2004). They also allow aquatic insects to stand on
water (Hu and Bush, 2005). Although they are often negligible on macroscopic structures,
surface capillary forces may be strong enough to deform compliant structures at small
scales. From a more technological point of view, capillary-induced sticking can prevent the
actuation of micro-cantilevers, mobile elements of micro-electro-mechanical systems
(MEMS) (Mastrangelo and Hsu, 1993; Raccurt et al., 2004) or bio-mimetic materials
(Geim et al., 2003). Typical micro-fabrication processes often involve mask controlled
reticulation in a liquid phase. The evaporation of the excess liquid generates menisci which
sometimes cause the structures to collapse (Tanaka et al., 1993; Hui et al., 2002) or to stick
to the substrate (Roca-Cusachs et al., 2005). Similar phenomena have recently been
observed with carbon nanotube ‘‘carpets’’: upon the evaporation of a solvent, vertically
aligned nanotubes self-assemble into conical ‘‘teepee’’ structures (Lau et al., 2003) and can
produce intriguing cellular patterns (Chakrapani et al., 2004). Besides engineering
processes, capillary forces also have important consequences in biology such as the
buckling of the airway lumen induced by surface tension which can eventually cause the
lethal closure of lung airways (known as neonatal respiratory distress syndrome) (Halpern
and Grotberg, 1992; Hazel and Heil, 2005).

In the present paper we study the equilibrium states of a single elastic rod raised
through the surface of a wetting liquid, a paradigm for a novel type of fluid–structure
interaction where surface tension becomes more important than inertial or viscous forces.
The related situation of a rod in a spherical bubble, where it may either pierce or
conform to the surface, has been previously investigated theoretically in connection
with various biological systems (Cohen and Mahadevan, 2003). Here, we develop an
idealised model experimental system built at the macroscopic scale for the case of a
flat interface and investigate in detail the possible equilibrium states as well as their
dynamics. We show that our system exhibits a surprisingly complex phase diagram.
The experimental study is complemented by a theoretical analysis using Kirchhoff’s
equations for thin elastic rods (Antman, 2004) coupled with capillary, pressure and
gravity forces (Keller, 1998). Numerical integration of the derived equations and
continuation of their solutions show an excellent quantitative and qualitative agreement
with our experimental observations, thereby validating our model of interaction between
capillary forces and flexible structures and shedding light on the associated mechanical
instabilities.

This paper is organised as follows. In Section 2 we first describe the experimental
setup and present typical observations. We give in Section 3 a brief introduction to
capillary forces and define the elasto-capillary length over which elasticity and capillarity
effects are comparable. Then, in Section 4 we show theoretically and experimentally
that a long enough rod can buckle when submitted to surface tension forces. We
follow with a comprehensive theoretical description of the bent states (Section 5). We also
display the phase diagram obtained by numerical integration of our model, where the
transitions between the different configurations are represented. In Section 6 we confront
this phase diagram to experiments, and finally study some peculiar properties of the bent
shapes.
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2. Experimental setup

A flexible strip (polyester, thickness e ¼ 25 and 50mm, width w ¼ 20mm, density 1.4,
bending rigidity EI ¼ 1:24� 10�7 and 1:5� 10�6 Jm) is clamped on a horizontal support
which can be displaced vertically. We also used glass fibres (EI ¼ 6:4� 10�9 Jm)
with circular cross-section (radius R ¼ 18mm). The bending rigidity EI was measured
from a classical sagging cantilever experiment. The apparatus is initially immersed
in a bath of silicon oil (viscosity �2� 10�2 Pa s and surface tension g ¼ 20:6� 10�3 N=m)
and is progressively raised up towards the liquid interface. Our control parameters are
thus the bath height H, which is defined as the distance (possibility negative) between
the base of the strip and the liquid surface, and the length of the strip L, which we
changed in different experiments. We chose silicon oil because it perfectly wets polyester,
preventing any hysteresis in its wetting properties (the wetting contact angle is always zero)
(Fig. 1).
The system nevertheless exhibits a strong hysteretical behaviour, as shown in Fig. 2

which illustrates a typical experiment with a relatively long strip. In A, the strip is
initially totally immersed, and the fluid level is quasistatically lowered. When the tip comes
in contact with the liquid surface, the strip does not pierce the interface, but instead
buckles, and bends gradually as the bath height is reduced (B–C). In D, the strip finally
pierces the interface, but both ends remain immersed while its middle part arches out
of the liquid bath. The free end finally detaches from the bath (E to F) and the strip
recovers its original straight shape. Starting from state F, the experiment is then conducted
backward, i.e. the strip is progressively immersed. The sequence of equilibrium
states is different: the strip remains straight with its clamped base immersed (G). But
when the bath height is large enough it suddenly bends and returns to the equilibrium
observed at the beginning of the withdrawal (state B). Other scenarios are possible: in
particular a short strip can pierce the surface without being deflected and the experiment is
then reversible.
H

flexible
strip

silicone oil

z

x

L

Fig. 1. Experimental setup: an elastic strip or a fibre is clamped at its base on a horizontal rigid support. We

lower/raise the support along a pole so that the strip gradually emerges from the bath of silicon oil.
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Fig. 2. Sequence of experimental equilibrium states of a long strip, when lowering then increasing the bath height.
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3. Capillary buckling

In this section we give a short introduction to capillary forces, and show that the two
transitions where the straight equilibrium loses its stability (Fig. 2: A to B during
withdrawal, and G to B during immersion) are in fact buckling transitions induced by
capillary forces.

3.1. Capillary forces

Creating an interface between two phases a and b requires that molecular a2a and b2b
bonds be broken and replaced by a� b bonds. The contrast in molecular affinities results
in an energy cost gab per unit area of the created interface (de Gennes et al., 2003).
Equivalently, g can be seen as a surface tension. When three phases (e.g. liquid, gas and
solid) are involved, they meet along a contact line and one should consider tension forces
for each of the three phases. As a result, when a solid touches an interface, capillary forces
are generated at the contact line. In the perfectly wetting conditions we consider here, the
liquid surface is tangent to the solid along the contact line (except at edges, where the
tangent is not defined). In addition, since a precursor liquid film entirely coats the solid
surface, one only has to consider the surface tension g between liquid and air (de Gennes,
1985). From a mechanical point of view, the capillary force acting on a solid corresponds
to a distributed force with strength g per unit length (in our case, g ¼ 20:6mN=m), oriented
along the tangent of the liquid surface.

As an illustration, we show in Fig. 3(a) a rigid vertical strip emerging through a
horizontal fluid surface, with height H. Since the liquid perfectly wets the solid, the tangent
of the liquid surface is vertical at the contact line. The surface is then deformed into a
meniscus whose extension is limited by gravity that tends to keep the surface horizontal.
Deforming an interface also generates a pressure discontinuity (Laplace pressure)
DP ¼ g=R, where R�1 is the surface curvature (de Gennes et al., 2003). The actual shape
of the meniscus results from a balance between the Laplace pressure and the hydrostatic
pressure DP ¼ rgðZ �HÞ, where Z �H is the local height of the meniscus:

rgðZ �HÞ ¼ g=R. (1)
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Fig. 3. Elastic strip piercing (a) or only deflecting (b) a liquid surface. The (vertical) force provided by the liquid

surface depends on the meniscus height.
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In this geometry, the surface curvature is just R�1 ¼ df=ds, where s is the arc-length along
the surface, and f the angle between its tangent and the horizontal (i.e. dZ=ds ¼ sinf), see
Fig. 3. Using (1) and integrating yields

ðZ �HÞ2 ¼ 2L2
cð1� cosfÞ, (2)

where Lc ¼
def ffiffiffiffiffiffiffiffiffiffiffiffiffi

g=ðrgÞ
p

is the capillary length (1.5mm for silicon oil) (Clanet and Quéré,
2002). The maximal height at the contact point is

ffiffiffi
2
p

Lc when f ¼ p=2. The total fluid
force acting on the solid is the sum of the integrated hydrostatic pressure and surface
tension forces. In our case, pressure forces compensate at each point, and the total force
scales with the perimeter:

F cross ¼ 2gw, (3)

where the thickness e of the strip is neglected in the computation of the perimeter.
If the height of the rigid strip does not exceed H þ

ffiffiffi
2
p

Lc, the strip does not pierce but
only deforms the interface, Fig. 3(b). Since the meniscus meets the strip at a sharp edge, it
is not (apparently) tangent to the solid at the contact line (the tangency is restored at a
small scales, where the corner appears round). Consequently the angle f takes any value
between 0 and p=2. In this case the restoring force remains vertical because of left/right
symmetry, and reads F ¼ 2wg sinfoF cross:
To summarise, we see that when a vertical rigid strip is brought up to a horizontal liquid

interface, it progressively deforms it, and only pierces it when the vertical deflection reachesffiffiffi
2
p

Lc. The applied force is then F cross. Since Lc is rather small compared to the other lengths
in the problem, we will always first consider a description at zero capillary length where the
height of the meniscus is neglected. Thus the interface can be regarded as rigid and planar,
capable of exerting a vertical force with a maximal value 2gw on a vertical strip.

3.2. Elasto-capillary length

What is the magnitude of the effect of capillary forces on an elastic structure? Consider
for example an elastic strip of length L put in contact with a wet rigid cylinder of radius R.
The strip can either remain straight without any change of energy (Fig. 4(a)) or adhere to
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Fig. 4. An elastic strip is brought in contact with a wet cylinder (a): if the radius of the cylinder is larger than the

elastocapillary length LEC, the strip spontaneously wraps the cylinder (b).
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the cylinder with a gain of surface energy but with a loss of bending energy (Fig. 4(b)). The
surface energy is reduced by 2gwL if the strip adheres to the cylinder, but at the cost of a
bending energy EIL=ð2R2Þ, if w is the width, E Young’s modulus and I the second moment
of area of the section of the elastic body. It follows that the strip spontaneously wraps and
sticks to the cylinder as long as the cylinder diameter is larger than the elasto-capillary

length:

LEC ¼
def

ffiffiffiffiffiffi
EI

gw

s
. (4)

This particular example illustrates the fact that LEC gives the order of magnitude of the
radius of curvature generated by surface tension forces. Equivalently, a structure with
length comparable to or greater than LEC=2 will be severely deflected by a liquid surface. In
our experiments the strips are chosen to be fairly flexible, so that LEC is of the order of few
centimetres. Now if the scale of a given structure is divided by a factor a, the second
moment of area I scales as a�4 which leads to LEC�a�3=2. At the same time the length L

decreases like L�a�1; so it eventually becomes larger than LEC: at small enough scales, the
effect of surface tension on thin elastic structures becomes dominant.
4. Buckling under capillary forces

Turning now to our problem, we consider an elastic beam clamped at its base and
subjected to a concentrated vertical compressive load F at its other end. Classic elasticity
theory tells us that such a straight beam becomes unstable and buckles when F is larger
than the critical value:

F% ¼
def p

2

� �2 EI

L2
, (5)

where E is Young’s modulus, I the second moment of area of the beam section and L the
length of the beam.

This compression threshold F%, known as the Euler buckling load (Antman, 2004;
Timoshenko and Gere, 1961), decreases with the length L of the beam. Equating F cross to
F% yields the maximum length Lb above which a beam (of width w) buckles when
compressed by surface tension:

Lb ¼
def p

2

ffiffiffiffiffiffiffiffi
EI

2gw

s
¼

p

2
ffiffiffi
2
p LEC. (6)
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Fig. 5. Parameter regimes for the buckling of a straight beam, of length L, by surface tension. Short beams

(LoLb) pierce the liquid interface, whereas longer beams are deflected.
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Note that this buckling length Lb is proportional to the characteristic elasto-capillary
length defined above.
We now consider an elastic beam entirely immersed in a bath, and start lowering the

bath height H. When the surface reaches the upper end of the beam (H ¼ L), the
interfacial force may (or may not) be strong enough to deflect it: if LoLb, the beam stays
straight and pierces the surface (from A to G in Fig. 5), whereas if L4Lb the beam buckles
(transition from A to B in Fig. 5).
We now start with a completely withdrawn straight beam (case F in Fig. 2) and

gradually increase the bath level. As long as the immersed part of the beam (which is equal
to H) is lower than Lb, the beam remains straight. If the beam is long enough (L4Lb), the
immersed length H eventually reaches Lb and the capillary force is large enough to bend
the beam which snaps to a deflected state (transition from G to B in Fig. 5). Naturally,
shorter beams (LoLb) never buckle during immersion (from G to A in Fig. 5).
Additional transitions observed experimentally between the deflected states motivate a

specific investigation of such states, which is developed in the next section.
5. The bent states

We present here the theoretical framework which we use to study the post-buckled
equilibrium configurations. We focus on the elastic response of the beam, while the two-
dimensional meniscus shape obeys Eq. (2).
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5.1. Kirchhoff model of elastic rods in the planar case

We consider here a slender elastic object that has a length L much larger than its
thickness e. As long as the curvature remains small (compared to 1=e), the mechanical state
of such a beam is accurately described by a 1D elastic theory: the stress fields in the
material are averaged in each cross-section (Antman, 2004). This yields two vectorial
quantities: the internal moment M and the internal force N that only depend on the arc-
length S along the beam. The equilibrium equations of this continuous elastic medium are
(local) differential equations. If one considers an infinitesimal part of the beam (say in
½S;S þ dS�) the balance of the forces and the moments acting on it yield, respectively,

N 0 þ P ¼ 0, ð7Þ

M 0 þ R0 �N ¼ 0, ð8Þ

where 0 � d=dS, RðSÞ ¼ ðX ;Y ;ZÞ is the position of the centre line of the beam and PðSÞ
accounts for external forces. These equilibrium equations for an elastic beam are referred
to as the Kirchhoff equations. We choose to non-dimensionalise the physical quantities
using the buckling length Lb defined in Eq. (6). This yields dimensionless quantities:

n ¼
def

NL2
b=EI , m ¼

def
MLb=EI , r ¼

def
R=Lb and s ¼

def
S=Lb. The beam is also assumed to be

unshearable and inextensible. We show in Appendix B that the boundary conditions we
consider constrain the deflected configurations to lie in the ðX ;ZÞ plane and the beam to
stay untwisted. Hence we are in the case of an Euler planar elastica, with the possibility of
distributed forces (modelled by P) acting at discrete points or along continuous parts of the
beam. The angle between the vertical and the tangent of beam is noted yðSÞ. We use a

linear constitutive relation between the curvature of the beam y0 and the bending moment

My: My ¼ EIy0. The Kirchhoff equations become

n0x ¼ �px, ð9Þ

n0z ¼ �pz, ð10Þ

m0y ¼ nz sin y� nx cos y, ð11Þ

x0 ¼ sin y, ð12Þ

z0 ¼ cos y, ð13Þ

y0 ¼ my, ð14Þ

and ny � 0, mx � 0, mz � 0, y � 0 8s. Due to the non-dimensionalisation, EI no longer

appears in Eqs. (9)–(14). We start the integration (s ¼ 0) at the foot of the beam, which is
anchored to the support, yielding the boundary conditions

xð0Þ ¼ 0 ¼ zð0Þ; yð0Þ ¼ 0, (15)

and we integrate up to the end of the beam s ¼ L=Lb where other boundary conditions
have to be fulfilled.

The meniscus is present in any region where the beam comes near the liquid surface:
either at the end of the beam or at the positions where the beam crosses the surface. Its size,
of the order of the capillary length Lc, is much smaller than the length L of the beam or the
critical length Lb. In most configurations, it is then possible to discard the meniscus region
and invoke a localised force that represents the surface interaction with the beam.
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Nevertheless, in some specific cases, we have also performed computations including the
meniscus shape and the liquid weight (see Section 5.4).

5.2. Lightly deflected state

A beam with a length exceeding the critical length (L4Lb) buckles when it comes in
contact with the liquid interface (i.e. when the bath height H is lowered to HoL). The
beam then adopts a bent shape with a point contact at the interface, but does not cross it.
We here present a description neglecting the meniscus height (Fig. 6).
We model such a state as a clamped-free planar beam that is subjected to a vertical

end-load F. Equilibria are defined by Eqs. (9)–(15) together with the end boundary
conditions

myðL=LbÞ ¼ 0; nxðL=LbÞ ¼ 0; nzðL=LbÞ ¼ �f ¼
def
�FL2

b=ðEIÞ (16)

expressing the fact that no moment is provided by the surface and that the surface force is
vertical. As seen in Section 3.1, the interfacial force F on a vertical beam reaches a
maximum F cross ¼ 2gw when the beam pierces the interface. Now if the beam is tilted (by
an angle y) the formula for the maximal force differs. It is obtained by equating the work
needed to raise a rigid beam (of width w) by a height dz with the surface energy increase
due to the emersion of an area of 2wdl: Fdz ¼ 2gwdl with dz ¼ cos ydl. Hence if a beam
crosses the liquid surface (say at s ¼ s1, see Fig. 8), the interaction force is

F cross ¼
2gw

j cos yðs1Þj
(17)

and this is also the maximal force the surface can provide to a non-piercing beam. Since a
lateral displacement does not involve any change in the capillary energy, the interfacial
force has no horizontal component.
In the L4Lb region of the phase diagram (Fig. 5), the end force needed to deflect the

beam never reaches F cross. Conversely, when LoLb, this maximal force F cross defines a new
boundary as we now explain. When lowering the bath height on a short (LoLb) straight
beam, the capillary force 2gw is not strong enough to deflect it. The beam, partly emerged,
remains straight. Now if one artificially deflects the beam and bends it into the liquid, the
tangent at the end of the beam will have an angle yðs1Þ at the interface. Since the maximal
capillary force that the surface can provide diverges as j cos yj�1 (Eq. (17)), there must be a
bath height H1 where the end force F needed to elastically bend the beam is exactly F cross.
For HoH1 highly deflected shapes exist in addition to straight piercing shapes. This
boundary, H ¼ H1ðL=LbÞ, is plotted in Fig. 7.
H

Fz

x

Fig. 6. Lightly deflected state at null capillary length (Lc ¼ 0): the meniscus size is neglected, and the force F is an

unknown of the boundary value problem.
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Fig. 7. New version of Fig. 5 that includes the curve H1ðL=LbÞ for L=Lbo1 where highly deflected states
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Fig. 8. The two types of configuration of piercing states with Lc ¼ 0. (Left) Surfacing state. These states are

always unstable. (Right) Diving state. These states exist when L=Lb41:2 and H2oHo0.
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5.3. Piercing states

There are two types of configuration where the beam crosses the liquid surface once:
‘surfacing’ states where the beam crosses the surface upward and ‘diving’ states where the
beam crosses the surface downward (see Fig. 8). Surfacing states were not observed
experimentally because they are always unstable. Diving states (type E of Fig. 2) are
present as soon as L=Lb\1:19.

As in the previous section, we present our model with zero capillary length. At the
crossing point the interaction force between the surface and the elastic beam is
F ¼ �ð2gw=j cos yjÞez. The shape of the beam is obtained by integrating Eqs. (9)–(14) in
two domains: from s ¼ 0 (base) to s ¼ s1 (crossing point), then from s ¼ s1 to s ¼ L=Lb. At
the end of the first integration we account for the surface interaction force by changing
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instantaneously the inner beam force vector N :

NðSþ1 Þ �NðS�1 Þ þ F ¼ 0. (18)

The boundary conditions at the free end are now

myðLÞ ¼ 0; nxðLÞ ¼ 0 ¼ nzðLÞ. (19)

Note that these last conditions are necessary to complete the set of equations which yields
the values of the free parameters (including S1). A precise count of free parameters and
boundary conditions is given in the Appendix A.
A diving state continuously turns into a twice piercing state (see Section 5.5) when the

bath height becomes positive. Conversely, if one lowers the bath height on a diving state,
there is a critical height H ¼ H2ðL=LbÞp0 at which the end s ¼ L=Lb of the beam reaches
the surface. Further lowering of the bath leads to an instability where the beam jumps up
to a straight configuration (Fig. 9).

5.4. Lying states

We present here a model for the states of type C in Fig. 2. In such states, the beam is in
interaction with the liquid along its entire length and is rigid enough to deflect the liquid surface
on a large scale, comparable to its length. Indeed, part of the liquid lies above the asymptotic
bath height (see Fig. 10). It becomes here compulsory to take the meniscus size into account.
From s ¼ 0 to s ¼ s1, we integrate Eqs. (9)–(14) with (15) as initial condition. At s ¼ s1,

we introduce a jump in the force vector: NðSþ1 Þ �NðS�1 Þ þ F1 ¼ 0 with F 1 ¼ �gwtðs1Þ

where tðsÞ is the tangent vector of the beam: tðsÞ ¼
def

x0ðsÞex þ z0ðsÞez. The integration
between s1 and s2, where the beam is semi-submerged, includes the hydrostatic pressure
0.25 0.5 0.75 1 1.25 1.5 1.75 2

L/Lb

-0.5

-0.25

0.25

0.5

0.75

1

1.25

1.5

H
/
L
b H=H1

H=H2

Fig. 9. Extended version of Fig. 7 with the new curve H ¼ H2ðL=LbÞ where diving states lose stability as the end

of the beam detaches from the interface.
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force: the liquid is raised above its asymptotic bath height, which creates a depression
resulting in a distributed force P ¼ rgwðZ �HÞm in Eqs. (9) and (10), where m is the
normal mðsÞ ¼

def
t0=jt0j ¼ z0ðsÞex � x0ðsÞez. At s ¼ s2, we introduce another jump in the force

vector: NðSþ2 Þ �NðS�2 Þ þ F 2 ¼ 0 with F 2 ¼ þgwtðS2Þ. Finally, at s ¼ s1 and s ¼ s2 the
meniscus is tangent to the beam, and Eq. (2) requires that

ZðSiÞ �H ¼ Lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� sin yðSiÞÞ

p
where i ¼ 1; 2. (20)

Note that the capillary length Lc now appears explicitly and cannot be taken as zero. Here
again, we need to integrate up to the end of the beam to solve for the parameters and find
s1 and s2.

There are two ways for a beam to leave the lying state. First the end of the beam can
reach the surface, i.e. s2 ¼ L=Lb; leading to a lightly deflected state with finite capillary
length as in Fig. 12, right. This limit is drawn in dashed lines in Fig. 11 for Lb=Lc ¼ 20 and
50. Computations of lightly deflected states that take the menisci into account have also
been performed in order to match these lying solutions perfectly. Two types of
configurations are obtained, one entirely immersed with two vertically symmetric menisci
(Fig. 12 left), the second one having in addition a zone where the beam is semi-submerged
as in a lying state (Fig. 12 right).

The second way for a beam to leave a lying state occurs when the transverse menisci no
longer can reach the top of the arched beam. Indeed, when Zmax �Ho2Lc the
overhanging liquid under the beam between s1 and s2 is connected transversally to the
surface by two menisci in the y direction. When Zmax �H increases and crosses the
limiting value 2Lc, the liquid detaches from the beam and is replaced by air. We arrive at a
twice piercing configuration (see next section). This limit H3, which does not depend on
L=Lb, is drawn in Fig. 11 for Lb=Lc ¼ 20 and 50. Note that in the diagram of Fig. 11 the
other curves (H1 and H2) are drawn in the zero capillary length approximation and hence
are not exactly coherent with this new H3 instability line. Full coherent diagrams will be
presented when comparing theory with experiments (Section 6).

5.5. Twice piercing states

Along the sequence of states that are observed experimentally, the states D of Fig. 2 are
configurations where the beam crosses the liquid surface twice (Fig. 13). As in Section 5.3,
we present a model at zero capillary length. At each crossing point the interaction force
between the surface and the elastic beam is F ¼ �ð2gw=j cos yjÞez. The shape of the beam is
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Fig. 11. Extended version of Fig. 9 where curves corresponding to the lying state instabilities have been added.

The horizontal lines (H ¼ H3) correspond to configurations where the liquid arch detaches from the beam (lower

line for Lb ¼ 20Lc, upper one for Lb ¼ 50Lc). The oblique nearly straight curve corresponds to configurations

where the end of the beam enters/exits the liquid (lower curve for Lb ¼ 20Lc, upper one for Lb ¼ 50Lc). The other

curves (H1;H2, etc.) are computed in the zero Lc approximation.
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Fig. 12. The two different types of configurations of lightly deflected states at non-zero Lc. Left: the two menisci

joining the apex of the beam to the asymptotical bath height H are vertically symmetric. Right: the beam has a

semi-submerged part.
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obtained by integrating Eqs. (9)–(14) in three domains: from s ¼ 0 (base) to s ¼ s1
(emersion point), then from s ¼ s1 to s ¼ s2 (immersion point), and then from s ¼ s2 to
s ¼ L=Lb. As before, at the end of the first integration we account for the surface
interaction force by changing instantaneously the inner beam force vector N as in Eq. (18).
The same is done at s ¼ s2. The boundary conditions at the free end are given by Eq. (19).
Such a state has several ways in which it can disappear. First the end of the beam can

reach the liquid surface: s2 ¼ L=Lb. The beam then snaps to a straight configuration,
which corresponds to crossing (downward) the curve H ¼ H2ðL=LbÞ with H40 in Fig. 14.
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Fig. 13. Twice piercing state. In the present zero capillary length approximation, left and right menisci at both

crossing points (s1 and s2) are replaced by point forces.
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Fig. 14. Extension of Fig. 9 where the curves corresponding to the two instabilities occurring for twice piercing

states have been added (with Lb ¼ 50Lc). The curve H ¼ H2ðL=LbÞ, corresponding to configurations where the

end of the beam emerges, connects with the curve introduced for the single piercing states (see Fig. 9). The dotted

part of the H ¼ H2ðL=LbÞ curve is only plotted as a guide to the eye and does not correspond to any instability.
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Second a classic instability can occur at a fold point where no configuration exists above
a certain bath height. This corresponds to crossing (upward) the horizontal line H4 in
Fig. 14. Third, in a model at finite capillary length where left and right menisci are
introduced at both crossing point (s ¼ s1 and s ¼ s2), the arch between the liquid surface
and the emerged part of the beam could become so small (compared to the capillary
length) that the liquid would spontaneously invade the zone and the state would change to
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a lying state (see Section 5.4). Numerical evidence shows that this never happens for any
value of Lc.

5.6. Height-deflection diagrams

Typical bifurcation diagrams, corresponding to vertical sections of the phase diagrams
(e.g. Fig. 17) are drawn in Fig. 15 (for L4Lb) and Fig. 16 (for LoLb). They show the
different equilibrium configurations when the menisci are fully taken into account. As in
our experiments the ratio L=Lb is kept fixed while the bath height is varied. When L4Lb

four continuous families of equilibrium configurations exist. Each family corresponds to a
curve in the bifurcation diagram shown in Fig. 15. The vertical axis X ¼ 0 consists of
trivial straight states. These states are stable except in the interval HboHoHa, with
Hb ¼ Lb �

ffiffiffi
2
p

Lc and L�
ffiffiffi
2
p

LcoHaoL. From Ha (which corresponds to transition from
H/Lb

L/Lb

L

Lb

Lc

Lc

Lb

H�

Lb

Lb

2

=1− 2

lightly deflected states

surfacing state

diving state

twice piercing state

lying state

H2

X/Lb

H4

H3

L > Lb

Ha/Lb

−

0

Fig. 15. Typical bifurcation diagram for L4Lb showing the different equilibrium configurations. The parameters

X and H correspond to the lateral position of the end of the beam and to the liquid height, respectively. Plain

(resp. dotted) curves correspond to stable (resp. unstable) states.
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A to B in Fig. 5, where Lc ¼ 0) a curve bifurcates, which includes the stable lightly
deflected and lying states. This curve ends at H3; where the overhanging liquid arch
detaches. From Hb (which corresponds to transition from G to B in Fig. 5, where Lc ¼ 0)
another curve, corresponding to unstable surfacing states, bifurcates from the trivial
branch. The last curve comprises another family of stable diving states and twice piercing
states. Twice piercing shapes become unstable at H4. Note that in the interval
H3oHoH4, three different stable configurations coexist for the same bath height.

Shorter lengths, LoLb, lead to a different bifurcation diagram where the trivial curve
does not bifurcate; hence straight states are always stable (Fig. 16). Only two of the
families of buckled configurations remain: stable lightly deflected and lying states, and
unstable surfacing states. Studying the continuous evolution of the bifurcation diagram
from Figs. 15 to 16 shows that the two bifurcation points Ha and Hb merge (the unstable
interval of the trivial curve disappears) and lead to the intersection point H1 of the
remaining curves.
H/Lb

H�

Hb

=1− 2
Lc

Lb

lightly
deflected
state

surface state

lying state
H3

X/Lb

L < Lb

H1

O

Fig. 16. Typical bifurcation diagram for LoLb showing the different equilibrium configurations. The parameters

X and H correspond to the lateral position of the end of the beam and to the liquid height, respectively. Plain

(resp. dotted) curves correspond to stable (resp. unstable) states.
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6. Experimental results and discussion

We performed experiments using elastic strips and fibres with different bending rigidities
and observed all the different equilibrium configurations described above.
6.1. Phase diagrams

We present in Figs. 17 and 18 the phase diagrams for two different strips where the
transitions between possible configurations are displayed. Lengths were non-dimensiona-
lised by the capillary buckling length Lb which was obtained by formula (6) using the
measured bending rigidity. Experimental data are compared with theoretical results: the
zero capillary length approximation (dotted lines), and a more comprehensive description
(continuous lines), including the effects of both the weight of the strip and the menisci.
Let us review the transitions observed: (1) a long immersed strip buckles as it touches the

surface; (2) a partially emerged straight strip buckles as the bath height H increases (plain
diamonds experimental=Hb theoretical); (3) an immersed bent configuration suddenly
recovers its straight shape as H is increased (triangle=H1); (4) an immersed lying state
suddenly adopts a twice piercing arch shape (full circles=H3) or recovers its straight shape
(square=H3) as H is lowered; (5) a twice piercing arch suddenly fills up and turns into an
immersed lying state (open circles=H4) as H is increased; (6) a piercing diving arch
suddenly recovers its straight shape (stars=H2) as H is lowered. Most of these transitions
are not reversible, which leads to hysteretical behaviour. Hence two (or even three) stable
states coexist in many regions of the diagram.
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Numerical treatment of the zero capillary length approximation reproduces qualitatively
the experimental transitions. However, a good quantitative agreement is achieved only
once the effects of gravity and of meniscus size are included in the numerics.1 For instance,
the boundary for buckling is simply the straight line H ¼ Lb, when these effects are
neglected. However, the height of the meniscus shifts this boundary downward. Moreover,
this horizontal line, once gravity is taken into account, becomes the curve Hb (see e.g.
Fig. 18). Indeed, gravity reinforces the buckling effect, and may alone induce buckling if
the beam exceeds a length Lbg�ðEe2=rgÞ1=3�e2=3. Since the capillary buckling length Lb

scales as e3=2, thinner beams are less sensitive to gravity as confirmed by comparing
Figs. 17 and 18. In the same way the effects of finite meniscus become important when the
system length-scale tends to the capillary length: the corner defined by the intersection of
dashed lines on the phase diagram is then shifted to the right, towards the intersection of
the curves H1 and H3.

Since in practical situations, fibres are more common than strips, we conducted the same
study with an elastic fibre with a circular cross-section of radius R ¼ 18mm. In this case,
the buckling length Lb is obtained by replacing 2w by 2pR in Eq. (6). We observe the same
transitions as in the case of strips, see Fig. 19. A precise theoretical approach should
include the complex computation of the three-dimensional shape of the meniscus around
the bent rod, but we chose to present here a simplified approach. If the radius of a fibre is
small compared to the capillary length, the rise of the meniscus around this vertical fibre is
1Gravity is represented by a term rbeamgwe, reduced by buoyancy into ðrbeam � rliqÞgwe when necessary, in the

distributed external force Pz in Eq. (7), e being the thickness of the strip, see Appendix A for details.
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proportional to its radius and thus much smaller than the capillary length (James, 1974).
We therefore neglected menisci size and replaced the distributed capillary forces by
concentrated ones as described in Section 5 (replacing 2w by 2pR in Eq. (17)). Conversely,
it is still necessary to consider the meniscus size to describe the transition from lying to
twice piercing states. In fact, in the limiting case of a horizontal rod, the shape of the
meniscus is almost two-dimensional and has a maximum height that tends to

ffiffiffi
2
p

Lc when R

becomes small compared to Lc (Freud and Freud, 1930). The theoretical curves including
gravity effects are drawn in Fig. 19 as continuous lines and they compare reasonably well
with experimental data.

6.2. Shapes

In addition to the phase diagram, the model also yields the different equilibrium shapes.
Interestingly, some shapes can be deduced from one another using two geometrical
constructions.
For lightly deflected states considered at zero capillary length, the liquid surface acts as a

frictionless rigid wall. These states only depend on the length of the strip and the bath
height. As a result they are self-similar and are characterised by the dimensionless ratio
L=H. The bent shapes corresponding to points on a line of the phase diagram passing
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Fig. 21. Free end configurations may always be lengthened without change. These two configurations with the

same bath height have different lengths but an identical emerged part.

S. Neukirch et al. / J. Mech. Phys. Solids 55 (2007) 1212–1235 1231
through the origin with a slope L=H are homothetic to the same master shape, as
confirmed by experiments (Fig. 20).

Conversely, in the double piercing states and lying states the terminal portion of the strip
is completely immersed in the liquid and thus free from any force or torque (if gravity is
ignored). This last portion stays straight and can be lengthened arbitrarily without any
change in the other part of the strip, as can be verified in the experiments (Fig. 21). This
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construction provides a new shape with the same H; but a larger L; i.e. along a horizontal
line on the phase diagram.
7. Conclusion

The simple question of whether or not an elastic rod can pierce a liquid interface has led
us to a rich set of equilibrium configurations. The observed behaviour depends on two key
length-scales, the elasto-capillary length LEC which gives the typical radius of curvature
produced by capillary forces on an elastic slender body and the capillary length Lc which
compares gravity and surface tension and gives the typical size of a liquid meniscus. In
particular, we found a critical length Lb proportional to LEC above which a rod cannot
pierce a liquid interface but buckles. The postbuckling evolution of the system is complex,
involves strong hysteresis and the coexistence of up to three stable concurrent
configurations. We explored in detail these different configurations and their stability.
Experimental results are found in close agreement with numerical computations of
equilibria of Kirchhoff elastic rods submitted to capillarity, hydrostatics and gravity.
We believe these results can be useful to the design of MEMS and nano-structures in wet

environment (Raccurt et al., 2004; Mastrangelo and Hsu, 1993; Hui et al., 2002), or to
understand the locomotion of insects on water (Hu and Bush, 2005), since capillary
deflections of elastic structures are enhanced at small scales.
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Appendix A

We give here a detailed presentation of our numerical scheme involving a meniscus for
one example of configuration: a diving beam (see Fig. 22).

The values of L;Lb;Lc are fixed. In this approach H is not a parameter but is calculated
a posteriori. The initial conditions at the clamped end (s ¼ 0) are

xð0Þ ¼ 0 ¼ zð0Þ; yð0Þ ¼ 0. (21)

The values of normalised forces and torques nxð0Þ; nzð0Þ;myð0Þ are unknowns of the
boundary value problem. The differential equations are Eqs. (9)–(14) where px and pz take
different forms depending on the part of the beam under consideration. From s ¼ 0 to
s ¼ s1, the weight is the only distributed external force that acts on the beam:

px � 0 and pz ¼
1

2

p
2

� �2 rbeam
rliq

eLb

L2
c

. (22)

At s ¼ s1 a discrete jump in the force vector due to capillarity is introduced. This point
force is tangent to the beam:

nxðs
þ
1 Þ � nxðs

�
1 Þ ¼ �

1

2

p
2

� �2
sin yðs1Þo0, ð23Þ

nzðs
þ
1 Þ � nzðs

�
1 Þ ¼ �

1

2

p
2

� �2
cos yðs1Þ40. ð24Þ

From s1 to s2, the beam undergoes a pressure difference between air on one side and a
depressed liquid on the other side. This pressure force is added to the weight of the beam:

px ¼ �
1

2

p
2

� �2 Lb

Lc

� �2

½zðsÞ � h� cos yðsÞ, ð25Þ

pz ¼ þ
1

2

p
2

� �2 Lb

Lc

� �2

½zðsÞ � h� sin yðsÞ þ
1

2

p
2

� �2 rbeam
rliq

eLb

L2
c

. ð26Þ

For s ¼ s2 a second discrete jump in the force vector is added in the same way as in s1.
Finally, from s ¼ s2 to the end of the beam s ¼ L=Lb, the weight of the beam is reduced by
the buoyancy effect:

px � 0 and pz ¼
1

2

p
2

� �2 rbeam � rliq
rliq

eLb

L2
c

. (27)

The final boundary conditions at the end of the beam s ¼ L=Lb are that no force and no
moment are provided to the beam (free end conditions): nxðL=LbÞ ¼ 0, nzðL=LbÞ ¼ 0,
myðL=LbÞ ¼ 0.

The arclengths s1 and s2 are not fixed a priori. The shape of the two menisci is such that
the height of menisci i at si is given by zðsiÞ � h ¼

ffiffiffi
2
p
ðLc=LbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin yðsiÞ

p
. This implies a

further condition:

zðs1Þ � zðs2Þ ¼
ffiffiffi
2
p
ðLc=LbÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin yðs1Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin yðs2Þ

p
Þ. (28)

The complete boundary value problem has then five unknowns nxð0Þ, nzð0Þ, myð0Þ, s1, s2
and four conditions given by Eqs. (21) and (28). Hence for each type of configuration,
the solution manifold of the problem is a discrete set of one-dimensional curves in the
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five-dimensional space. We compute these curves using a continuation algorithm based on
multiple shooting techniques.
A final remark: in the model at zero capillary length, a concentrated force is invoked

each time the beam crosses the liquid surface, Eq. (17). In the finite capillary length model,
the crossing region extends from s1 to s2. If the elastic beam were straight in this region the
total force applied on the beam (i.e. the two jumps at s1 and s2, and the pressure difference)
would be exactly given by Eq. (17).

Appendix B

We show here that all equilibrium solutions of piercing or capillary deflected beams are
planar. This property is due to the end boundary condition where no moment is applied,
and to the fact that capillary and pressure forces are in the local osculating plane of the
tangent and normal vectors. In the general three-dimensional twisted case, an equilibrium
state of a Kirchhoff rod must satisfy Eqs. (7) and (8) together with linear constitutive
equations (Antman, 2004). We here restrict ourselves to the case where the rod is
unshearable, inextensible and has an isotropic cross-section and material, but we
conjecture that the present proof can be generalised to more general rods. It has been
shown that in the isotropic case the full set of equilibrium equations can be reduced
(Neukirch and Henderson, 2002) to:

N 0 þ P ¼ 0; M 0 ¼ N � t; t0 ¼M 0 � t, (29)

where t ¼ R0 is the tangent to the centre line R, and N and M are the internal force and
moment and P is an external force. We first establish an important property about the
solutions of (29).

Property B.1. If at a point S ¼ S1, tyðS1Þ ¼ 0, NyðS1Þ ¼ 0, MxðS1Þ ¼ 0, MzðS1Þ ¼ 0, and

PðS1Þ ¼ 0 and 8S 2 ½S1;S2�;PyðSÞ ¼ 0, then in the interval S 2 ½S1;S2�, the solutions of (29)
are such that tyðSÞ � 0, NyðSÞ � 0, MxðSÞ � 0, MzðSÞ � 0.

Proof. Since Py � 0 for S 2 ½S1;S2� then NyðSÞ ¼ NyðS1Þ þ
R S2

S1
PyðSÞdS � 0. Eqs. (29)

imply in particular that

t0y ¼Mztx �Mxtz, ð30Þ

M 0
x ¼ �Nzty, ð31Þ

M 0
z ¼ Nxty, ð32Þ

and we directly see that the manifold ðty;Mx;MzÞ ¼ ð0; 0; 0Þ is an invariant manifold under
the S evolution. Since we start on it at S1, we stay on it up to S2. We hence have
8S 2 ½S1;S2�, tyðSÞ � 0, MxðSÞ � 0, MzðSÞ � 0. &

We consider a (possibly 3D) equilibrium solution satisfying the following boundary
conditions: the rod is clamped at its base (S ¼ 0) and its end (S ¼ L) is either standing in
the air (surfacing state), deflecting the liquid surface (lightly deflected state) or immersed
(e.g. lying state). In any case, and this is the important point here, no moment is applied at
the end. The rod is subjected to gravity and we call z the vertical axis. Without loss of
generality we choose the x and y axes such that the tangent at S ¼ L is in the ðx; zÞ plane,
that is, tyðLÞ ¼ 0. At this point the internal force N and external force P (e.g. gravity,
buoyancy or capillarity) have the property that NyðLÞ ¼ 0 ¼ PyðLÞ. The internal moment
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is zero, so in particular we have MxðLÞ ¼ 0 ¼MzðLÞ. In between the point S ¼ L and the
first surface crossing point S ¼ S2, the external forces (gravity and/or buoyancy only) have
the property that for S 2 ½S2;L�;PyðSÞ � 0. We see that the hypotheses of Property B.1
(with L ¼ S1) are fulfilled and we can infer that until S ¼ S2 we have tyðSÞ � 0, NyðSÞ � 0,
MxðSÞ � 0, MzðSÞ � 0: the internal moment only has a bending component My, the rod
lies in the plane ðx; zÞ, and so does the internal force.

At the crossing point S2, where the rod tangent is in the ðx; zÞ plane, the external
capillary forces have the property that PyðS2Þ ¼ 0. Consequently the same argument can
be held to show that up to the next surface crossing point S ¼ S3, the rod lies in the plane
ðx; zÞ, with its internal force in the plane and its internal moment orthogonal to it. This
argument can be carried up to the clamped base.

In conclusion, we have shown that a rod subjected to capillary, gravity and buoyancy
forces without any applied moment at its end has only planar equilibria.
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