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Integrals of motion and semipermeable surfaces to bound the amplitude of a plasma instability
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~Received 24 July 2000; published 15 February 2001!

We study a dissipative dynamical system that models a parametric instability in a plasma. This instability is
due to the interaction of a whistler with the ion acoustic wave and a plasma oscillation near the lower hybrid
resonance. The amplitude of these three oscillations obey a three-dimensional system of ordinary differential
equations which exhibits chaos for certain parameter values. By using certain ‘‘integrability informations’’ we
have on the system, we get geometrical bounds for its chaotic attractor, leading to an upper bound for its
Lyapunov dimension. On the other hand, we also obtain ranges of values of the system’s parameters for which
there is no chaotic motion.
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I. INTRODUCTION

A whistler is a wave in a plasma which propagates pa
lel to the magnetic field. It is produced by currents outs
the plasma at a frequency less than that of the electron
clotron frequency. Also it is circulary polarized, rotatin
about the magnetic field in the same sense as the electro
the plasma.

Interactions between these whistler waves and lower
brid waves in a plasma are among the important phenom
taking place in the ionosphere@1#. As it has been shown in
@2#, a whistler can destabilize a magnetoactive plasma
exciting the lower hybrid wave together with the ion acous
wave ~the longitudinal compression wave in the ion dens
of a plasma!. This parametric excitation, although restrain
by the loss of energy which is given to the other nonreson
waves, may become chaotic for certain ranges of value of
pump amplitude. More specifically, the whistler at frequen
vq excites a plasma wave at frequencyvk and the ion acous
tic wave at frequencyVx5vq2vk . We call ak the normal
amplitude of the wave at frequencyvk and bx the normal
amplitude of the ion acoustic wave. As a result of the de
of these excitations, at least a third synchronous wave
produced ~of normal amplitude ak1

) which is linearly
damped and will act as a limiter for the instability. Th
elementary limiting process may nevertheless induce com
cated oscillations of the three waves when the pump am
tude is increased.

The differential equations for the amplitudes of the thr
waves are obtained from the hydrodynamic equation for
radio-frequency oscillation of an electron gas and from
kinetic equation for the ion acoustic wave. The amplitud
are assumed to be constant in space. The evolution equa
take the dimensionless form:

ȧk52bxak1
2n1ak1hbx

! ,

ḃx5akak1

! 2n2bx1hak
! , ~1!
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!2ak1
,

where the amplitudes have been nondimensionalized;h is
proportional to the amplitude of the electric field of the wh
tler andn1 andn2 are the damping decrements of the excit
hybrid and acoustic waves normalized to the damping of
decay-induced~third! wave: n15gk /gk1

, n25gx /gk1
. De-

pending on the relative values ofh compared to (n1 ,n2), the
system can relax to trivial equilibrium~no oscillation! or
stabilize on a steady oscillation or even present chaotic
tion. By studying the dynamics of the phases ofak , bx , and
ak1

it can be shown@2# that they correlate ast→1`. Hence
we shall study system~1! with real amplitudes.

II. THE DYNAMICS AND ROUTE TO CHAOS OF THE
PIKOVSKII-RABINOVITCH-TRAKHTENGERTS

SYSTEM

We set x5ak , y5bx , and z5ak1
and x,y,zPR3 and

rewrite system~1! as

FIG. 1. Double homoclinic trajectory for system~2! with n1

51, n254, n351, andh.3.99. The trajectory and three projec
tions are drawn. For only slightly greater values ofh the system
exhibits transient chaotic dynamics. Note that the homoclinic
jectory heads back toward the origin by positivez ~tangent to thez
axis!.
©2001 The American Physical Society02-1
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FIG. 2. Schematic route to chaos for the system~2!. With n151, n254, and n351, we havehpk52, hhf.5, hhe.4.8, andhho

.3.99. As we shall see, for some other values ofn1 andn2 , hho does not exist.
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~ ẋ,ẏ,ż!T5F~x,y,z!5~hy2n1x2yz,hx2n2y

1xz,xy2n3z!T. ~2!

We will refer at this system as the Pikovskii-Rabinovitc
Trakhtengerts~PRT! system as it has been introduced in@2#.
The system is symmetrical about the transformation:x→
2x,y→2y. The four parameters are assumed to be posit
We will briefly recall its important features. The origi
O(0,0,0) is asymptotically stable forh,hpk5An1n2. At h
5hpk , two stable equilibrium points

M 6S 6An3

n1
z0~h2z0!,6An1n3

z0

h2z0
,z05Ah22n1n2D

appear in a pitchfork bifurcation, as the origin loses its s
bility.

If one increasesh further, different bifurcations occur a
the motion in phase space becomes more and more com
cated~see Fig. 1!:

At h5hho a homoclinic bifurcation takes place: the on
dimensional~1D! unstable manifold of the origin~tangent to
thez50 plane! becomes connected with its 2D stable ma
fold ~see Fig. 2!. Note that in this figure, the homoclini
trajectory heads back toward the origin through positivz
and tangent to thez axis. Considering the orientation of th
two stable eigenvectors and the respective values of the
real negative eigenvalues, the finishing part of the
moclinic orbit ~if there is one! will lie in the z50 plane for
h,A(n32n1)(n32n2) andn3.n1 andn3.n2 and will be
tangent to thez axis otherwise. In this latter case it cou
well be that the homoclinic orbit reaches back to the ori
by negativez, but in numerical experiments, following th
orbit while changing parameters, we only saw a configu
tion like in Fig. 2 ~tangency toz axis, positivez) and we
conjecture that it is always the case. We believe that
bifurcation plays an important role in the dynamics of t
system and that the so-called homoclinic explosions, in
duced in the study of the Lorenz system in@3#, occur here
also.1 Moreover, we assume that the chaotic motion has

1In fact, the chaotic attractor of the PRT system~2! and the Lo-
renz attractor look similar. So do the routes to chaos of these
systems. Nevertheless, the PRT system has one more nonline
and is more symmetric inx↔y.
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source in this homoclinic bifurcation since at this point,h
5hho, a strange invariant set~not stable! is born.

This set becomes stable ath5hhe when the heteroclinic
bifurcation takes place: the left~respectively right! part of
the 1D unstable manifold of the origin becomes connec
with the 1D stable manifold of the limit cycle~of saddle
type! surrounding the equilibrium pointM 1 ~respectively
M 2) ~see Fig. 3!. Note that up to now, the pointsM6 are
still stable, so we have three competiting attractors in
phase space.

The M 6 points lose their stability in a subcritical Hop
bifurcation ath5hhf .

The values ofhho, hhe, andhhf depend onn1 , n2, andn3,
and this defines hypersurfaces in the 4D parameter sp
The Hopf bifurcation equation defininghhf is

4n1
2n2

21h2@~n12n2!21~n11n2!n3#1h~n12n2!

3~n31n11n2!Ah22n1n250

~with n2.n11n3!. ~3!

As for the homoclinic@h5hho(n1 ,n2 ,n3)# and the hetero-
clinic @h5hhe(n1 ,n2 ,n3)# bifurcation curves, we cannot ca
culate them analytically and so we must approximate th
numerically ~see Fig. 10!. Nevertheless we will introduce
algebraic bounds to the homoclinic curve in the parame

o
rity

FIG. 3. Double heteroclinic trajectory for system~2! with n1

51, n254, n351, andh.4.8. We have drawn three projections
the trajectory as well. For greater values ofh, the system exhibits
stable chaotic dynamics.
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INTEGRALS OF MOTION AND SEMIPERMEABLE . . . PHYSICAL REVIEW E 63 036202
space. Forn151, n254, andn351, we havehpk52 and
hhf.5. Thanks to numerical integration, we findhhe.4.8
andhho.3.99.

III. INTEGRALS OF MOTION
AND SEMIPERMEABLE SURFACES

We now turn to the ‘‘integrability information’’ we have
on system~2!. We will show how to use this information to
study the chaotic features of the system. There are se
known integrals of motion for system@4#:

1. I 15(x21y224hz)e2nt whenn5n15n25n3/2.
2. I 25(x22y212z2)e2nt whenn15n25n35n.
3. I 35(x21y2)e2nt whenh50,n15n25n.
4. I 45y22(z1h)2 whenn25n350.
5. I 55x21(z2h)2 whenn15n350.
6. I 65(y21z2)e2nt whenn25n35n andh50.
7. I 75(x22z2)e2nt whenn15n35n andh50.
Integrals of motion of higher degree have been searc

for, but none were found@4#. Thanks to a rescaling,2 we can
setn351 @in fact there was non3 in system~1!, it has been
introduced to enable to existence ofI 4 and I 5]. In @5# it has
been shown that the existence of an integral of motion fo
certain value of the parameters generally comes toge
with the existence of transverse sections that exist for a m
wider range of the parameters. These transverse sect
also called semipermeable surfaces~in a 3D phase space the
are surfaces, crossed in one way by the trajectories!, yield
important exact information about the asymptotic behav
of the system.

Hence the existence of the integralI 1 when n15n25 1
2

leads us to seek semipermeable surfaces with the follow
algebraic form:

R1~x,y,z!5z2a~x21y2!2b50. ~4!

SurfacesR1 are paraboloids of revolution about thez axis.
As explained in@5–7#, we compute the scalar product b
tween the normal vector ofR1 and the vector field and we
evaluate this scalar product on the surfaceR150:

Ṙ1uR150~x,y!5a~2n221!y21~124ah!xy

1a~2n121!x22b. ~5!

Ṙ1uR150 is a quadratic polynomial iny, it has constant sign
@and hence surfaces~4! are semipermeable# in the three fol-
lowing cases:

~1A! When n1. 1
2 , n2. 1

2 , h.A(n12 1
2 )(n22 1

2 ), ;b
<0,

0,a15
1/4

h1A~n12 1
2 !~n22 1

2 !

2(x,y,z)→(x,y,z)/n3 , h→h/n3 , t→tn3 , n1,2→n1,2/n3.
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h2A~n12 1
2 !~n22 1

2 !

5a2.

In this case, the chaotic attractor, when it exists, is compe
to evolve above the uppermost surface~4! (b50,a5a2), see
Fig. 4. This case also establishes that, for these values ofn1 ,
n2, and h, all the asymptotic motion~chaotic or not! takes
place in thez.0 half space.

~1B! n1. 1
2 , n2. 1

2 , h,A(n12 1
2 )(n22 1

2 ),An1n2, ;b
,0 if aP] 2`;a2] or ;b.0 if aP@a1 ;1`#. The origin
O(0,0,0) is the only equilibrium point in this case, and t
semipermeable surfaces~4! establish its asymptotic stability
~i.e., all trajectories in phase space eventually stabilize on
origin!.

~1C! n1, 1
2 , n2, 1

2 , ;(h,b>0) andaP@a1 ,a2#. The sur-
faces prevent any homoclinic trajectory from returning to t
origin by strictly positivez ~see Fig. 5!. So for these values
of the parametersn1 andn2 there is no homoclinic bifurca-
tion and hence no chaotic motion;h.

The existence of integrals of motionI 4 and I 5 lead us to
propose

R2~x,y,z!5x2~a1h!1y2~a2h!12h~z2a!22b. ~6!

Calculating the scalar product, one finds

FIG. 4. Chaotic attractor of system~2! bounded by the upper
most semipermeable surface~4! with b50 anda5a2.

FIG. 5. Semipermeable surfaces~4! prevent the homoclinic bi-
furcation from taking place whenn1,

1
2 , n2,

1
2 , ;h. The coeffi-

cients is chosen in order that the three equilibrium points are on
projection.
2-3
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FIG. 6. Shape of surfaces~6!
and conditions under which the
are semipermeable. D i

5a2h/@2n i(12n i)# with i 51,2.
n

th

pe

and
in

ace

ted
es.
Ṙ2uR250~y,z!52hz2~n121!12zah~122n1!1y2~h2a!

3~n22n1!1n1~2ha22b! ~7!

when eliminating thex variable, or

Ṙ2uR250~x,z!52hz2~n221!12zah~122n2!1x2~h1a!

3~n22n1!1n2~2ha22b! ~8!

when eliminating they variable. Depending ona andb, the
surfaces~6! can be ellipsoids or hyperboloids of revolutio
~with y or z axis! with one or two sheets~see Fig. 6!.

Case A of Fig. 6 proves that;(h,n1 ,n2) the asymptotic
motion is bounded in phase space. The attractor~s! must lie
inside the smallest ellipsoid. We have thus to consider
ellipsoid with the smallest radius (b). If we do so, we get
something which still depends ona, for example, whenn1
. 1

2 andn2. 1
2 :

R̂2~x,y,z,a!5
def

R2~b52ha2!5x2~a1h!1y2~a2h!

12h~z2a!222ha250. ~9!
03620
e

The center of these semipermeable ellipsoids~9! and their
size both depend ona. So one has to consider the envelo
of all the ellipsoids~9! whenh,a, solving

R̂2~x,y,z,a!50, ~10!

dR̂2

da
~x,y,z,a!50.

One finds

E1 : H 4hz5x21y2,

x21~z2h!25h2.
~11!

This corresponds to the inner intersection of a paraboloid
a cylinder. The cylinder is the same as the one we find
case~AB!. It establishes that all asymptotic motion forn1
. 1

2 , ;(n2 ,h) takes place in thez.0 half space. As for the
parabola, it does not introduce any improvement to surf
~4! with a5a2 andb50.

In case B, the surfaces~6! with a50 show that there can
be no homoclinic bifurcation forn1.n2 andn2,1, ;h be-
cause the 1D unstable manifold of the origin is separa
from the 2D stable manifold by the semipermeable surfac
2-4
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Case~BC! shows that there can be no homoclinic bifu
cation forn2, 1

2 , ;(n1 ,h) for the same reason as in the ca
~1C!.

Case C shows that there can be no homoclinic bifurca
for n1, 1

2 and n2, 1
2 , ;h for the same reason as in th

previous case.
Case D yields bounds for the chaotic attractor. Here

eachn1 and n2, we have to consider the surface with th
smallestb. Then as we still have one free parametera, we
calculate the envelope of the family of surfaces fora,2h.
This yields

E25n i~n i21!~x21y2!@8hz2~x21y2!#

12h2@~122n i !
2~x22y2!12z2#50 ~12!

with i 51,2 and the restriction

4hz2~x21y2!,2h2
~2n i21!2

n i~n i21!
,0. ~13!

For points (x,y,z) for which the inequality~13! does not
hold, the closest surface from the attractor is the surface~6!
with a52h andb5D i . Yet better bounds are found in th
next case E where the envelope~12! is to be considered with
i 52 and for2h,a,h which yields the restrictions

2h2
~2n221!2

n2~n221!
,4hz2~x21y2!S ,h2

~2n221!2

n2~n221! D .

~14!

The parentheses mean that the upper inequality is
no use because the envelope~12! does not reach 4hz
.(x21y2)1h2(2n221)2/@n2(n221)#. Besides, thanks
to surfaces~4!, we know that the chaotic attractor lies in th

zone where z.1/4/@h2A(n12 1
2 )(n22 1

2 )#(x2 1 y2) .

(1/4h)(x21y2).(1/4h)(x21y2)2(h/4)(2n2 21)2/@n2(n2

21)#. Hence surface~12! with i 52 in case E is a bound fo
the chaotic attractor with no restriction~see Fig. 7!.
th

th
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One naturally wonders whether surface~12! is entirely
semipermeable or not~and if yes under what conditions!. For
n15n2.1, we can be sure the answer is yes because in
case surfaces~6! are semipermeable both in cases D and
and so is their envelope. Now if surface~12! is a semiper-
meable surface, we could wonder if there is an integral
motion ~with the same algebraic form! attached to it. Taking
n i50 or n i51 in Eq. ~12!, we findE252z22y21x2 which
corresponds toI 2. And taking n i5

1
2 , we find E25@4hz

2(x21y2)#2 which corresponds toI 1.
The existence of integrals of motionI 2 , I 3 , I 6, and I 7

lead us to propose

R3~x,y,z!5x2A1y21~A21!z22B. ~15!

The scalar product on the surface is

Ṙ3uR3505x2A~12n1!1~12n2!y21h~A11!xy2B.
~16!

Depending onA andB the surfaces~15! can be ellipsoids or
hyperboloids of revolution~with y or z axis! with one or two
sheets~see Fig. 8!.

FIG. 7. Chaotic attractor of system~2! with n151, n254, n3

51, andh56 bounded by the envelope of surfaces~6! in case E
defined by Eq.~12! with i 52 andz.0.
A165
2@2h21~n12n2!2#6A~n12n2!2@4h21~n12n2!2#

2h2
, ~17!

A265
2@2h224~n121!~n221!#64A~n121!~n221!@~n121!~n221!2h2#

2h2
, ~18!

A365
2~2h224n1n2!6An1n22h2

2h2
. ~19!
In case F of Fig. 8, the semipermeable ellipsoids state
for these parameter values (h2,n1n2) the origin is asymp-
totically stable.

Case G is of no interest since here the origin, which is
at

e

only equilibrium point, is stable.
Case H provides a bound for the chaotic attractor~see Fig.

9! whenn2.1 andn2.n1.
Case J proves that there is no homoclinic bifurcation~and
2-5
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FIG. 8. Shape of the surface
~15! and conditions for them to be
semipermeable. The values o
A16 , A26 , andA36 are given by
Eqs. ~17!, ~18!, and ~19!, respec-
tively.
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hence no chaotic motion! for n1.n2 andn2,1 for the same
reason as in case B.

In case K, the surfaces~15! are semipermeable whenh
,A(n121)(n221) and this prevents the existence of a h
moclinic curve tangent to thez axis in its finishing part. But
for h,A(n121)(n221), as we saw earlier, the finishin

FIG. 9. Semipermeable surfaces~15! in case H (d
5A2A11x22(A1121)z2 with A11,0) and chaotic attractor o
system~2! with n151, n254, n351, andh56.
03620
-

part of a possible homoclinic curve would not be tangent
the z axis. So this case does not yield any new informatio

We have drawn in Fig. 10 the curvehhf(n1 ,n2)51`
which is the linen25n111 @cf. Eq. ~3!#.

For each (n1 ,n2) above this line, there is a value ofh for
which the equilibrium pointsM 6 lose their stability in a
subcritical Hopf bifurcation. There are also two different va
ues of h for which the system undergoes homoclinic a
heteroclinic bifurcations.

For (n1 ,n2) under this line, the equilibrium pointsM 6

never lose their stability ash is increased but there may sti
be values ofh for which the homoclinic and heteroclini
bifurcation take place.

Nevertheless we know from surfaces~4!, ~6!, and ~15!
that for (n1 ,n2), the zone where (n2,1 and n2,n1) or
(n2,1/2), there can be no homoclinic~nor heteroclinic! bi-
furcation ;h. Hence in between this zone and the linen2
5n111, there must be curves for whichhhe51` and hho
51`. We have drawn, thanks to numerical integration, t
curveshhe5100 andhho5100 which are supposed to be ve
near the ‘‘̀ ’’ curves. These results on the parameter spa
drawn in Fig. 10 can be used to understand the differ
behaviors of the three waves in the plasma. Our method
ables us to state that for certain values of the damping d
rementsn1 andn2

~n2,1ùn2,n1!øn2, 1
2 , ~20!
2-6
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INTEGRALS OF MOTION AND SEMIPERMEABLE . . . PHYSICAL REVIEW E 63 036202
the amplitudes of the three waves will not become cha
for any value of the pumph. Above this region in the plane
(n1 ,n2), we have to rely on numerical integration to draw
frontier hhe51` ~which seems to be a line! between two
regions: in the lower region@which contains our exact regio
~20!# the instability in the plasma will never lead to chao
behavior as in the upper region where there will be a value
the pumph5hhe for which the amplitudes of the waves wi
have a chaotic behavior.

IV. BOUNDING THE LYAPUNOV DIMENSION

Let us consider now the three Lyapunov exponents al
the attractor:m1.0>m2.m3. Thanks to numerical integra
tion, we know thatm11m2.0, hence the Kaplan-Yorke for
mula for the Lyapunov dimension reads

DL521
m11m2

2m3
. ~21!

Using the relationm11m21m352(n11n21n3), we can
write DL as

DL521
m11m2

m11m21n11n21n3
. ~22!

An upper bound of the~positive! sum of the first two
Lyapunov exponents may be calculated by considering
maximum real part of the eigenvalues of the matrixM (t)
5(“•F)I2L(t), whereL(t) is the Jacobian matrix of the
vector field andI is the 3D identity matrix@8#. For system
~2!, m11m2 is bounded by the maximum real part of th
eigenvalues of

FIG. 10. Elements of the bifurcation diagram for system~2!.
Note that there is chaotic motion possible under the linen25n1

11, which means that the system can be chaotic for someh even if
the equilibrium points remain stable for allh. The curveshho

5100 andhhe5100 were obtained numerically by a continuatio
method usingMATHEMATICA .
03620
ic
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e

M ~ t !5S 2n22n3 2h1z~ t ! y~ t !

2h2z~ t ! 2n12n3 2x~ t !

2y~ t ! 2x~ t ! 2n12n2

D . ~23!

At first sight, this trick seems to be of no help since one s
needs numerical integration to evaluate the eigenvalue
the matrixM (t). But if we consider that the values ofx(t),
y(t), andz(t) on the chaotic attractor are bounded~thanks to
the semipermeable surfaces!, we may bound the eigenvalue
of M (t). The set of pointsZ, which lie above surface~4!
with b50 anda5a2, inside surface~6! in case~AB!, above
surface~12! with i 52, and outside of the cone defined b
surface~15! in case H, is a rather tight bound for the chao
attractor:

~x,y,z!PZ iff:

z> 1
4

x21y2

h2A~n12 1
2 !~n22 1

2 !

, ~24!

h2>x21~z2h!2, ~25!

0<n2~n221!~x21y2!@8hz2~x21y2!#

12h2@~122n2!2~x22y2!12z2#, ~26!

0>A11x21y21~A1121!z2. ~27!

Settingn151, n254, n351, andh56 and looking for the
maximum real part of the eigenvalues ofM (t) for (x,y,z)
PZ ~for these values of parameters,A11.20.6), we found
~unlike in @9#! that the largest real part is realized forx5y
.5.82, z.4.8. Hence one finds thatm11m2&4.31 which
yields DL&2.418. Numerical integration yieldsm1.0.39,
m2.20.001, andm3.26.39: DL.2.061.

V. CONCLUSION

In this work we have studied the dynamics of a 3D dis
pative system which arises in the study of a parametric
stability in a plasma.

We have established that the analytic information we h
on the integrability of the system can be used to get inf
mation on the chaotic dynamics of this system. More spec
cally, we have shown that one can use the algebraic form
the integrals of motion~existing for specific parameters va
ues! to bound the chaotic attractor in phase space and
bound the chaotic dynamics in the parameter space~by in-
troducing analytic bounds to the homoclinic bifurcatio
curves!. These results enable us to give information on
range of parameters for which the instability can lead
chaos.

We have also shown that one can use the geome
bounds introduced for the chaotic attractor to derive an up
bound for its Lyapunov dimension. We believe that th
method can be used on any system with a constant di
gence, regardless of its dimension.
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