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In this paper we address the mechanics of ply formation in DNA supercoils. We
extend the variable ply formulation of Coleman & Swigon to include end loads, and
the derived constitutive relations of this generalized ply are shown to be in excellent
agreement with experiments. We make a careful physical examination of the uniform
ply in which two strands coil around one another in the form of a helix. We next
address the problem of determining the link (Lk), twist (Tw) and writhe (Wr) of a
closed DNA plasmid from an inspection of its electron micrograph. Previous work
has made use of the topological relation, Lk = Tw + Wr, but we show how this
kinematic result can be augmented by the mechanics solutions. A very precise result
is achieved in a trial calculation.

Keywords: supercoiling of DNA; DNA molecule, writhing; ply mechanics;
writhing of DNA; electron micrograph; rod theory

1. Introduction

Spatial deformations of the DNA molecule are central to its biological functioning.
To transcribe the genetic code, DNA must screw `through’ an RNA polymerase. This
involves a rotation at about 10 turns per second, which can induce large twisting
stresses in the DNA. The double-helix of most DNA molecules is right-handed, and if
this intrinsic internal twist is increased by stress the molecule is said to be overwound ;
conversely, it is underwound. If DNA becomes excessively twisted or knotted, it is
unable to function, and to overcome this the body has a de-knotting enzyme, the
topoisomerase. This remarkable enzyme can cut the molecule, untwist it to alleviate
the stress, and re-join it. This unknotting is so vital that some anti-cancer drugs aim
to poison the enzyme: by disabling the topoisomerase, they stop cancer cells from
growing out of control.

Many signi cant deformation phenomena operate on a scale at which the internal
double-helix of the DNA is irrelevant, and a long strand behaves as if it were a slender
elastic rod or  bre. The length-scales involved are nicely described by Calladine &
Drew (1997), who point out that if a DNA molecule were magni ed a million times
it would have the thickness of a kite string, and would stretch from London to
Cambridge (ca. 100 km). There is, indeed, an explosion of research by biologists and
mathematicians on the mechanics of a long elastic  bre modelling a single DNA
molecule (see, for example, Stump et al . 1998; Swigon 1999; Tobias et al . 2000;
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Figure 1. This photograph shows a rubber rod forming a left-handed variable balanced ply
(VBP) with one free end loop. The helical angle varies along the ply, and at the right-hand end
we see the VBP{skip{° y phenomenon, discovered by Coleman & Swigon (2000).

Dr = 8

15º

Figure 2. A left-handed variable balanced ply with end loops analysed and drawn by Coleman
& Swigon (2000). The prescribed link was Lk = 10, the derived writhe was Wr = 7:548.

Coleman et al . 2000; Stump & Fraser 2000; Coleman & Swigon 2000). The results
can be of great help to molecular biologists in understanding and controlling the
spatial writhing of a molecule.

One topic that is attracting attention is the supercoiling of DNA, in which the long
 bre representing the double helix adopts a con guration such as that illustrated in
 gure 1. This shows a silicone rubber rod forming a left-handed variable balanced
ply (VBP) with one free end loop. The helical angle varies along the ply, and at the
un-looped end there is a visible separation followed by a discrete point contact. This
VBP{skip{®y phenomenon was discovered by Coleman & Swigon (2000).

The interwound con guration of this rubber rod is said to form a ply. The simplest
way to observe a ply physically is to twist a long rubber rod of circular cross-section.
If, after imposing the twist, the ends are brought together, the rod will buckle locally
and jump into this familiar ply-plus-loop form. Extensive experimental and theoret-
ical studies of the initial buckling and localized post-buckling, prior to self-contact,
have been made by the present authors and others (Thompson & Champneys 1996;
Champneys & Thompson 1996; Champneys et al . 1997; van der Heijden & Thompson
1998; van der Heijden et al . 1998; Goriely & Tabor 1998). This work uses the static{
dynamic analogy, and has covered rods of circular and non-circular cross-section.
Meanwhile the symmetry and bifurcation properties of closed but non-contacting
rods have been studied extensively by Maddocks and co-workers (see, for example,
Manning & Maddocks 1999).

A molecule of DNA often forms a closed loop, called a plasmid. An electron micro-
graph of a plasmid, reproduced by Calladine & Drew (1997), shows negatively super-
coiled, interwound DNA as prepared from E. coli bacteria. Four ply-plus-loop regimes
are clearly visible in this micrograph (the sketch is purely notional, and cannot be
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used for link or writhe estimates). A basic con guration of a twisted plasmid, derived
analytically from elastic rod theory by Coleman & Swigon (2000), is shown in  g-
ure 2: we discuss this picture in x 9. A straight central region forms a left-handed
variable ply, closed by two free end loops. Under such conditions the ply is described
as balanced ; conversely, if the loops carry forces or moments, we call it loaded.

The paper is organized as follows. Section 2 discusses the modelling of plies, x 3
introduces the kinematics of link, twist and writhe, and x 4 describes how an exper-
imental ply can be made. In x 5 we present our direct mechanical formulation of the
variable-angle loaded ply, and its specializations. In x 6 we examine solutions of the
variable balanced ply: x 6 a gives a phase-space view, x 6 b summarizes plasmid solu-
tions of Coleman & Swigon (2000), x 6 c covers related work on a wrench-loaded rod.
Section 7 is devoted to the solution of the uniform balanced ply, while x 8 looks at the
uniform loaded ply with an energy formulation, derived constitutive relationships,
and experimental veri cation. In x 9 we show that our mechanics results can deter-
mine writhing characteristics from a DNA micrograph. After concluding remarks
in x 10, Appendix A gives our principal notation and Appendix B sketches a new
variational formulation of the generalized ply.

2. Modelling of a ply

In analysing the mechanics of ply formation, a DNA molecule can be regarded as an
elastic rod with circular cross-section of radius r. This rod can usually be treated as
homogeneous, inextensional, and (linearly) elastic in response. All we then need to
know about its mechanical properties is the ratio, ® , of its torsional sti¬ness, C, to its
bending sti¬ness, B. Molecular biologists have made many experiments to estimate
® , and it is thought to lie in the interval 0:7 < ® < 1:5 (see Horowitz & Wang 1984;
Bouchiat & Mezard 1998; Strick et al . 1996; Heath et al . 1996). A comparison of
discrete and continuum modelling is made by Manning et al . (1996): a continuum
rod model with intrinsic curvature is  tted to experimentally motivated base-pair-
level discrete DNA models. Equilibrium energies of closed rings predicted by the
continuum model match those of the underlying discrete model to within 0.5%. A
discussion of possible nonlinear coupling between the bending and twisting of DNA
is given by Calladine (1980).

Now for laboratory experiments we might want to model a strand of DNA with a
solid circular rod of metal or rubber. For such a rod we have ® = C=B = 1=(1 + ¸ ),
where ¸ is Poisson’s ratio of the material. Typically, for a metal rod engineers take
¸ = 1=3, giving ® = 3=4, while for a rubber rod they take ¸ = 1=2, giving ® = 2=3.
At the bottom end of the biological range we have ® = 0:7 corresponding to ¸ º 0:43,
while at the top end we have ® = 1:5, ¸ = 1=3. This negative value of ¸ is not
observed for any normal material.

Two major contributions to our understanding of the mechanics of a ply have been
made recently. First, Fraser and co-workers (Fraser & Stump 1998; Stump et al . 1998)
derived the equation of a uniform balanced ply (UBP). This has two segments of rod
winding around themselves, and touching each other on a straight central line, the
ply axis. Conditions are assumed to be uniform along the unloaded ply, so the centre
line of a segment forms a helix of radius r and constant helical angle ³ . This solution
will only be observed if the correct boundary conditions are applied at the ends,
and will not be observed in a ply bounded by free end loops. It may, however, hold
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approximately in the central region of a very long ply between `boundary layers’ in
which ³ adjusts to allow separation (into, for example, a loop).

Second, Coleman & Swigon (2000) derived the equation of a variable balanced ply,
which allows ³ to vary, with the two segments lying as if wound on a cylinder of
radius r. Any  nite-length ply between free end loops will always have a variable ³ ,
and it is the extra ®exibility of the variable ply that allows the rods to separate at
the ends without the unphysical point moment that had to be introduced by Fraser
and his co-workers.

In the present paper, we relax the condition of balance, and present the equations of
a variable loaded ply (VLP), which we might refer to more simply as a generalized ply
(GP). This carries a wrench, comprising a tensile force, G, and a twisting moment N
acting about the tension axis. This GP can exist under a wide range of end conditions,
and is easily specialized to either of the previous two cases when G = N = 0. Note
that this GP solution arises as a special case of a general study of a rod constrained
to lie on a cylinder (van der Heijden 2001): all that is required is to set the radius
of the cylinder to r. For asymmetric rods on a cylinder, see van der Heijden et al .
(2002b). Here, however, we give a direct physical derivation that throws much extra
light on the mechanics and will be of particular value to biologists who do not have a
background in continuum mechanics. We examine the predicted constitutive relations
of the ply, and show them to be in good agreement with a new experimental result.

3. Topology of link, twist and writhe

(a) The striped rod

Before studying the mechanics of a ply, we need a clear understanding of the kine-
matics involved. Consider an initially straight elastic rod of circular cross-section,
with length L and radius r. We imagine the rod to be axially inextensional, so its
length L will never vary. While the rod is straight and unstressed, we imagine parallel
lines to be painted on its surface, parallel to its straight centreline. We refer to this
as our striped rod.

(b) The kinematic twist rate

While it remains straight, we imagine the striped rod to be twisted uniformly by
applying a rotation about the centreline, ¿ (in radians), to one end while the other
end is held  xed. The kinematic twist rate is then de ned as ½ ² ¿ =L, taken to be
positive if the stripes on the surface form a right-handed helix. The stripes then look
like a normal screw thread, and the vector arrows representing ½ on the end of a rod
point outwards (like tension). Imagining the cylindrical surface of the twisted rod to
be unrolled, the planar stripe angle, Á, between the helical stripes and the centreline
is in many ways a more convenient measure of the twist rate than ½ , and we note
that they are related precisely by

tan Á = ½ r: (3.1)

We take this as our de nition of Á, noting, however, that it will not be the unrolled
angle of the stripes on a bent rod. The outer tensile  bre of a rod whose centre line
is bent into a circle of radius R has, by similar triangles, a strain (elongation/length)
equal to r=R: and if the centreline of the rod lies on a cylinder of radius r with helical
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Dr = 2 Dr = 0

+1 +1 +1 - 1

Figure 3. Sign convention for directional writhe, Dr, and hence for writhe, Wr = hDri. We put
continuous arrows on the curve (the original direction chosen being irrelevant) and count the
signed crossings according to the right-hand rule as follows. Point the thumb of the right hand
along the top arrow, and if the curled ¯ngers (with the back of the hand facing the page) point
along the bottom arrow the sign is positive: conversely, it is negative. The sum of the signed
crossings gives us Dr.

angle ³ we have R = r= sin2 ³ . So the strain is sin2 ³ , and rather than (3.1) the angle
will be given by tan Á = ½ r=(1 § sin2 ³ ), the plus sign for the tensile face, the minus
sign for the compressive face. These di¬erences can be appreciable. The total twist
in the rod, Tw (measured not in radians but in complete turns), is the integral of
½ =2º over L, which for constant ½ gives

Tw = ½ L=2 º : (3.2)

The sign convention for Tw follows naturally from that of ½ .

(c) Link and writhe

To introduce the topological concepts of link and writhe, we imagine gluing the
two ends of our striped rod together to form a closed loop. If we just bend the rod
in a plane and glue the ends together without inserting any twist, it will adopt a
circular shape, and the stripes will all be circles. Suppose, however, that having bent
it in a plane and brought the ends together we insert, at the last minute, a number
of full turns of twist just before gluing. We de ne this number as the link, Lk, taken
to be positive if it induces positive ½ in the planar ring. For as long as the glued ring
remains planar, we have Lk = Tw.

Strictly, the link of a plasmid will vary by integer increments because each sugar-
phosphate chain of the double helix must join to itself: and in mathematical topology
the link is also normally taken to be integer. However, in the context of elastic rod
theory (where the ends of a rod can be glued together at any angle) it is convenient
to ignore this technicality and speak as if Lk varies continuously.

Now Lk is a topological invariant. If we get hold of the glued ring and distort it, in
or out of the plane, in any way we choose, the link will not change. The total twist
does, however, change, and the two are related by the following important result
(see, for example, Calugareanu 1961; White 1969; Fuller 1971):

Lk = Tw + Wr: (3.3)

The writhe, Wr, is just a property of the shape of the rod’s centreline, de ned as
follows.
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Figure 4. Making a ply from two straight twisted rods. In passing from the pre-ply ¬ -state to the
balanced  -state the link is conserved at Lk = ¡6. This negative link creates a right-handed ply.
¬ -state: Tw = ¡6, Wr = 0, ³ = 0¯, Á = ¡31¯;  -state: Tw = ¡2:35, Wr = ¡3:65, ³ = 23:4¯,
Á = ¡13:2¯.

(d ) Directional writhe and signed crossings

The writhe is perhaps best introduced as the number of (signed) crossings in a
view, averaged over all views (Fuller 1971). The number of crossings in a single view is
called the directional writhe, Dr: in the particular side view of  gure 2, for example,
a count of the number of crossings gives Dr = 8. In general, in calculating Dr, we
must take the number of signed crossings, according to the right-hand rule explained
in  gure 3. Averaging over all views we then obtain

Wr = hDri: (3.4)

4. Making an experimental ply

(a) A ply from two straight rods

To conclude our discussion of kinematics, it is necessary to consider how we propose
to make a ply, either conceptually or in an actual laboratory experiment. To make a
right-handed ply, we take two identical rubber rods of circular cross-section, each of
length L, as illustrated in  gure 4. Both are initially straight, and they are laid side
by side on a bench with their left-hand ends  xed. While remaining straight, each rod
is given a left-handed twist by turning the right-hand ends through a positive angle
A, anticlockwise when looking down the rod from left to right. Since our convention
for twist is right-handed, this makes our initial rate, ½ 0, numerically equal to A=L.

We de¯ne this straight twisted con guration as the ¬ -state of the ply. The stripe
angle, Á, is given by (3.1), and we write its initial value as Á ¬ with tan Á ¬ = ½ 0r.
To make a fairly uniform ply, angle A should correspond to at least  ve complete
turns. The rods are now joined together at both ends. For a demonstration they
can be clipped together with a paper clip, or wrapped together with tape. For an
experiment, we can cast the ends together in a moulding. Thinking of these two
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straight, planar rods and their mouldings as one closed entity, the writhe is zero, and
(3.2), (3.3), give Lk = ½ 02L=2º . This invariant link (which will be at least 10) will
be preserved when we release the rods from the bench, and load the resulting ply.

Before release, the straight rods already form an example of our loaded ply, because
the resultant applied constraint is simply a twisting moment, N = 2C½ 0, with zero
tension (G = 0). In fact, when we leave go of the rods (still clipped together at
their ends) they might jump into a variety of spatial forms, one of which will be a
right-handed balanced ply, with approximately constant ³ . A controlled way to get
this ply would be to hold the two clips, and just let them rotate slowly about the
ply axis until the ply reaches equilibrium under zero wrench. We can  nally load this
ply by applying any wrench, (G; N ), to the mouldings. Notice that once the rods are
released, the moulding will not provide the correct end conditions for a uniform ply,
but we can expect any signi cant non-uniformity to be localized near the ends (as
con rmed in  gure 12).

(b) A ply from a single rod

An alternative way to make the ply would be to start with a single straight rod
of length just over 2L. After putting in a twist rate ½ 0 while straight, we glue the
two ends to form a plane circle with Wr = 0, Lk = ½ 0L=º . With Lk > 10, the
released circle will normally form a balanced ply with two end loops: though other
equilibrium shapes may be possible. We can  nally imagine the end loops to be cast
in a mould, to give roughly the same as in x 4 a, with the excess length taken up by
the end loops.

(c) Kinematics of ply manufacture

In terms of the current angle ³ , assumed constant, we now need to write down the
writhe of the two helical rods of x 4 a. To do this we use the result of Fuller (1978)
that for a single rod 1 + Wr = area=2º (mod 2). Here the area is that enclosed,
cumulatively, by the orbit of the unit tangent vector on the unit sphere. Application
of this result, as in van der Heijden & Thompson (2000), gives immediately their eqn
(65), which for our two-strand ply becomes

Wr = K(1 cos ³ ) K(1 + cos ³ ) = L sin 2 ³ =2 º r; (4.1)

where K is the number of helical waves in one rod given by K = L sin ³ =2 º r. With
the conservation of link, (3.3) now gives us

Lk( º r=L) = ½ 0r = tan Á ¬ = ½ r 1
2

sin 2 ³ = tan Á 1
2

sin 2 ³ : (4.2)

For small angles, this simpli es to ³ º Á Á ¬ . The kinematic equation (4.2) relates
the given initial twist rate, ½ 0, to the  nal current twist rate, ½ , and will be needed
to allow completion of our uniform ply studies. It was noticeably absent from the
paper of Fraser & Stump (1998), who used instead an energy balance which would
not apply in the present circumstances.

5. Mechanics of the generalized ply

From now on we shall use the word ply to mean two segments of rod in continuous
contact along a straight ply axis, and winding around this axis in a symmetric way:
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Figure 5. Forces and moments acting in a right-handed generalized ply (GP) with variable
helical angle, ³ (s), subjected at its ends to a wrench (G; N ).

rotation of the ply about its axis through 180¯ leaves the picture unchanged. By
the end of the ply we mean the point at which the continuous line contact ceases.
Coleman & Swigon (2000) have shown that this endpoint requires very careful con-
sideration.
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(a) Geometry of the ply

We give here a direct and self-contained physical analysis of the generalized ply,
illustrated in  gure 5. This shows a horizontal right-hand ply from the side. Each
circular rod of radius r, bending sti¬ness B and torsional sti¬ness C, lies as if its
centreline were wound on a cylinder of radius r: in the special case of a uniform ply,
each rod would have the form of a helix. A moulding surrounding the end loop is
imagined to be loaded by tension G and twisting moment, N , the latter tending to
tighten the mutual winding of the rods. We ignore friction and gravity, and write the
variable ply angle as ³ (s), where s is the distance along the centreline of either rod.
We denote the straight central axis of the ply, on which the two rods touch, by Ax,
and focus on the section, Se, where, in our view, the rod centrelines cross. The front
rod, Fr, nearest the eye, slopes down to the right at angle ³ to Ax, while the rear
rod slopes up to the right at the same angle. We use Pa to denote any plane that is
parallel to the plane of the paper.

(b) Force balance for the ply

We imagine the rods cut, at right angles to their own centrelines, at Se. On the
rods to the left of Se transmitted from the rods to the right are a tension, T , along
each rod axis, lying in Pa; a shear force, V , normal to each rod axis, lying in Pa
with the sign convention of the diagram; a shear force, U , normal to T and V , acting
into the paper on Fr. The vector sum of T and V is decomposed into a force F ,
normal to Ax, and a force 1

2
G along Ax, the latter ensuring the horizontal force

balance of the ply to the left of Se and including the loaded end loop. The equations
of decomposition are

V = F cos ³ 1
2
G sin ³ ; (5.1)

T = F sin ³ + 1
2
G cos ³ : (5.2)

(c) Moment balance for the ply

The transmitted moments are twisting moment in a rod, C½ , with vector along
the T vector; bending moment, MP , with vector along the V vector; and a bending
moment MN , with vector into the paper on Fr. We write the bending moments in
terms of the equivalent rod curvatures as MP = B sin2 ³ =r (this exact curvature
multiplying B is also that of a helix of constant ³ ) and MN = B³ 0, where a prime
denotes di¬erentiation with respect to s (this exact curvature looks intuitive in Pa).
The moment balance for the ply and loaded end loop for twisting about Ax is

C½ cos ³ + MP sin ³ + Fr = 1
2
N: (5.3)

Using (5.1) and our expression for MP , equation (5.3) becomes

V r2 = C½ r cos2 ³ B sin3 ³ cos ³ 1
2
Gr2 sin ³ + 1

2
Nr cos ³ : (5.4)

(d) Force balance for a rod element

We now look at the equilibrium of an element of rod Fr of length ¯ s, starting (say)
at section Se, as drawn. Balancing forces in the plane normal to Ax introduces the
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contact pressure force p ¯ s, where we should note that p is the force per unit distance
along the centreline of one of the rods (not, per unit distance along Ax). Now there
are three force components acting across a section of the rod, T , V , U , and the  rst
two have been replaced by F , G. Since G is parallel to Ax, we are just left with F
and U , both of which lie in the plane normal to Ax. Resolving in this plane along
p ¯ s gives p ¯ s = ¯ U + F ¯ ¬ , from which we obtain p = U 0 + (F=r) sin ³ . Resolving
at right-angles to p ¯ s gives ¯ F = U ¯ ¬ , from which we have F 0 = (U=r) sin ³ . Note
that for a uniform ply, with all derivatives zero, we have U = 0 and pr = F sin ³ . We
do not need the formulae of this section for the present analysis, but we use them in
later studies of the uniform plies.

(e) Moment balance for a rod element

Taking moments for a rod element about its own centreline shows immediately
that the twist rate, ½ , remains constant along the rod. We next write down the
clockwise moments on the element about an axis out of Pa. The forces T and V ,
give the moment +V ¯ s. The vector MP is decomposed into MF = MP cos ³ in the
direction of F , and MA, which plays no part. So from MP we have MF ¯ ¶ =

B ¯ s sin3 ³ cos ³ =r2. The twisting moment C½ enters by virtue of the curvature
sin2 ³ =r giving +C½ ¯ s sin2 ³ =r. Finally, including + ¯ MN = +B³ 00 ¯ s, and multiply-
ing through by r2, we have the balance condition

V r2 + B³ 00r2 = B sin3 ³ cos ³ C ½ r sin2 ³ : (5.5)

Eliminating V by subtracting (5.4) from (5.5), and setting C=B = ® , we have

³ 00r2 = 2 sin3 ³ cos ³ + ½ r ® cos 2 ³ + 1
2
(Gr2=B) sin ³ 1

2
(Nr=B) cos ³ ; (5.6)

as derived by van der Heijden (2001). Notice that this is a di¬erential equation for
the variation of ³ (s) along a rod of the ply.

(f ) Specialization to the variable balanced ply

With no end loads, we have G = N = 0, and equation (5.6) for ³ (s) becomes

³ 00r2 = 2 sin3 ³ cos ³ + ½ r ® cos 2 ³ ; (5.7)

agreeing with eqn (2.41) of Coleman & Swigon (2000) if we replace our ½ by their
¢ « .

(g) Specialization to the uniform balanced ply

Setting G = N = ³ 00 = 0 retrieves the uniform balanced ply of Fraser & Stump
(1998) and Stump et al . (1998), for which the twist rate is given by

½ r® = ® tan Á = sin2  tan 2 : (5.8)

We de¯ne this uniform balanced condition as the  -state of the ply, and write the
stripe angle as Á and the helical angle as  . For small angles this simpli es to

½ r® º ® Á º 2 3: (5.9)

In (5.8) the negative sign tells us that the current twist rate, ½ , is negative in the
present right-hand ply, as is the initial twist rate, ½ 0. In general when we make a ply
and pass from the ¬ -state to the  -state we observe that
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Figure 6. Phase portrait of the variable balanced ply (VBP). The saddle ¯xed point, S, corre-
sponds to the uniform balanced ply in which the helical angle, ³ (here in radians), is constant.
The lower-right picture shows the variation of ³ (s) along a trajectory that passes close to S,
illustrating the b̀oundary layer’ e® ect.

(i) the twist rate is reduced in magnitude, but does not change its sign;

(ii) the helical angle of the ply has the opposite sign to the twist rates;

(iii) the twists have the opposite sign to the space torsion of the helix.

The  -state corresponds to a  xed point of the di¬erential equation (5.7), as we shall
examine in x 6. Looking back through the generalized ply analysis, we retrieve the
following results for the forces in the uniform balanced ply:

® ½ r = 2V r2=B = sin2  tan 2 ;

T = pr = V tan  :

¾
(5.10)

The two following versions of V r2 from (5.5) and (5.4), respectively, look super cially
incompatible, and can cause confusion; they are easily proved equal using (5.6):

V r2 = 1
2
B sin2  (sin 2 2 ® ½ r) = B cos  (sin3  + ® ½ r cos  ): (5.11)

These results from the mechanics analysis agree with those in eqn (3.5) of Stump et
al . (1998), after a few sign changes due to di¬erent conventions. Notice that ½ , V ,
T , p all tend to in nity as  tends to 45¯ due to the tan 2 in (5.10). In fact 45¯ is
the lock-up angle, as we discuss in x 7 c.

(h) Specialization to the uniform loaded ply

Setting just ³ 00 = 0 in (5.6) gives us the equation of the uniform loaded ply (ULP)
whose constitutive relations we shall examine later,

2 sin3 ³ cos ³ + ½ r ® cos 2 ³ + 1
2
(Gr2=B) sin ³ 1

2
(Nr=B) cos ³ = 0: (5.12)
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6. Solutions of the variable balanced ply

(a) Phase portrait

It is useful to employ the static{dynamic analogy, and examine the solutions of the
di¬erential equation (5.7) in the phase space obtained by replacing arclength s by
time t. In thinking about this equation we should note that the current twist rate,
½ , is constant along a rod, having been shown to be not a function of s. We do not
need its magnitude for the present discussion: but we note that we could  nd it in
terms of the initial ½ 0 using a suitable generalization of (4.1) and (4.2) to conditions
of variable ³ . Equating s to a notional t gives us, then, an equivalent undamped
nonlinear oscillator which has the phase portrait shown in  gure 6. The saddle point
(S) of this oscillator with ³ =  , found by setting ³ 00 = 0, is of course just the UBP
of (5.8).

The uniform ply will only exist if the correct boundary conditions are applied at
the ends. In general this will not be the case, as when the ply is closed by end loops.
However, a long (symmetric) ply will often have ³ (s) º  over a long central section.
In phase space, this will correspond to a solution close to S, with small ³ 0. The
divergence before and after the slow transit near S gives a `boundary layer’ in which
³ (s) adjusts relatively quickly to accommodate the conditions at the end of the ply
(see  gure 12). To illustrate this, we give an overview of the ply-loop solutions of
Coleman & Swigon (2000).

(b) Writhing of twisted plasmids

Using their variable ply results, and sophisticated analytical techniques, Coleman
& Swigon (2000) have studied the writhing of a DNA plasmid, modelled as an ini-
tially straight elastic rod of circular cross-section ( gure 7). The ends of the rod are
imagined to be glued together after a number of complete turns of twist have been
inserted. We shall refer to this number as the link, Lk, noting, however, that Coleman
& Swigon call it the excess link because they use a datum that includes the twisting
of the double helix itself. For a given controlled input of Lk they calculate the spa-
tial equilibrium con guration of the plasmid, taking full account of all (frictionless)
self-contacts. As their measure of deformation they adopt the writhe, Wr, which is
the measure of the spatial shape of the rod’s centreline that we outlined earlier.

The response under slowly varied Lk is shown in  gure 7a. The rod is stable in its
planar circular state up to the subcritical bifurcation at A0, from which a dynamic
jump would carry the ring to a state of self-contact as illustrated by the double
arrow. The bifurcation at A0 is at

Lk = (B=C)
p

3; (6.1)

a result due to Zajac (1962). Ignoring for the moment the physical jumping behaviour,
it is useful to focus on the post-buckling path that emerges from A0, noting as we go

Figure 7. A sequence of supercoiled DNA plasmids under controlled link as analysed and drawn by
Coleman & Swigon (2000). (a) [n ] is the number of self-contacts, changing at A1 , A2 , A3 ; : : : ; (b) shows
clearly the VBP{skip{° y phenomenon (the curves in (b) are independent of sti® ness ratio, but depend
on the rod’s ratio of diameter to length). The analysis is for a diameter to length ratio of 8:2 £ 10 ¡ 3 ,
corresponding to DNA of diameter 20 ºA with 718 base pairs. Sti® ness ratio is ® = 2=3, corresponding to
¸ = 1

2 .
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that the number of self-contact points is shown in square brackets: and a solid (or
broken) line denotes a stable (or unstable) path under controlled Lk.

Between A0 and A1 we have an unstable falling path with no self-contact. Between
A1 and A2 we have a path with one self-contact at a point; between A2 and A3 a
path with self-contact at two points; and between A3 and A4 a path with self-contact
at three points. After A4 a continuous line of self-contact, namely a ply, is observed,
together with self-contact at two points. The jumps that would be encountered under
slowly varying Lk are indicated, and sample computed shapes are superimposed. An
experiment that we have performed on a metal rod con rms the predicted sequence
of jumps and contacts.

Figure 7b shows details of the self-contacts as we progress along the post-buckling
path A0A1A2A3A4 : : : . We see that a single central point-contact splits into two at
A2, followed by a new central point-contact at A3. At A4 this central point-contact
starts to spread to give us  nally a central symmetric ply, which skips o¬ at each
end, only to re-contact at a point shortly after, before the two rods  nally ° y apart.
Figure 1 shows a variable ply with lift-o¬ and re-contact. The continuation of the Lk
versus Wr graph to higher values is shown in  gure 8. Also shown as a function of
Wr is the central winding angle, ³ (0), and the range of angle encountered in the ply.
Notice that the latter is very small, implying that the ply is very nearly uniform. We
return to some of the predicted rod shapes in x 9.

Coleman et al . (2000) have also found co-existing stable states of self-contacting
plasmids, and have evaluated the transition energies (at the mountain passes corre-
sponding to unstable states) needed to get from one stable state to another. This use-
ful information governs the thermodynamic probability of observing a stable equilib-
rium state. They have also analysed the physical shapes of knotted plasmids (Swigon
1999).

(c) Looping and ply formation of a stretched and twisted rod

Somewhat analogous to the writhing of a closed plasmid is the response of a single
stretched and twisted rod. If the rod is regarded as in nitely long, its behaviour before
self-contact can be studied by the use of the static{dynamic analogy, in which the
arclength of the static rod is identi ed as time in an equivalent dynamical system.
Speci cally, deformations of a rod of symmetric (or non-symmetric) cross-section
are equivalent to the motions of a symmetric (or non-symmetric) spinning top. The
integrable symmetric case admits closed form solutions, while the non-integrable
non-symmetric case can exhibit chaos (Thompson & Champneys 1996; Champneys
& Thompson 1996; Champneys et al . 1997; van der Heijden & Thompson 1998;
van der Heijden et al . 1998; Goriely & Tabor 1998).

Calculations for a  nite-length pin-ended rod with self-contact are given by Swigon
(1999). Regarding the axial tension, T , as  xed, with the applied end rotation as a
slowly varying control, dynamic jumps and contact regions are similar to those of
the plasmids. The bifurcation at A0 is now given by the Greenhill formula,

Lk = (B=C)
p

[1 + (TL2=Bº 2)]: (6.2)

The general pattern of the predicted response has been observed in simple trial exper-
iments in our laboratory. New theoretical and experimental work on the  nite-length,
stretched and twisted rod with clamped ends (van der Heijden et al . 2002c) includes
a numerical study of the successive discrete self-contacts and jump phenomena.
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Figure 8. Continuation of ¯gure 7 to higher Wr. Also shown is the variation of ³ at the centre of
the ply, and the range of ³ within the ply (angles in degrees). Note that ³ (s) takes its maximum
value at the centre of the ply.

7. Solution of the uniform balanced ply

(a) Prediction of the ply angle

The  nal solution for the right-handed UBP is obtained by eliminating ½ between
the kinematic equation (4.2) and the mechanics equation (5.8) to give

tan Á ¬ = ½ 0r = 1
2

tan 2 (1 + 2 ¸ sin2  ); (7.1)
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where Á ¬ is the initial helical angle of the stripes and  is the balanced solution for
³ . For convenience, we have replaced the sti¬ness ratio, ® , by Poisson’s ratio using
® = 1=(1 + ¸ ). If we plot the given ½ 0r against the produced ply angle  we see that
½ 0r goes to in nity as  approaches 45¯. For small angles, (7.1) simpli es to

Á ¬ º  : (7.2)

Setting ³ =  and Á = Á  (stripe angle in the  -state) in the approximation of (4.2)
gives us Á  º 0. So, to this  rst order, as we go from the ¬ -state to the  -state we
have that

the stripe angle vanishes and is converted into a ply angle of the opposite
sign.

(b) The link versus writhe diagram

It is useful to write down some results in terms of the double angle and ¸ . Using
(4.2) and (7.1) we obtain the link, using (3.2) and (5.8) the twist (for two rods of
length L), and using (4.1) the writhe as follows:

Lk(2 º r=L) = ¸ sin 2 (1 + ¸ ) tan 2 ; (7.3)

Tw(2 º r=L) = (1 + ¸ )(sin 2 tan 2 ); (7.4)

Wr(2 º r=L) = sin 2 : (7.5)

We notice that the writhe takes its maximum numerical value of Wr ¤ = L=2º r at
 = 45¯. First-order solutions for small angles are

Lk(2 º r=L) = 2 ; (7.6)

Tw(2 º r=L) = 4(1 + ¸ ) 3; (7.7)

Wr(2 º r=L) = 2 ; (7.8)

showing that within this approximation the twist is of smaller order than the link
and writhe: all the total twist of the straight rods has been converted into writhe.
The energy aspects of this conversion are summarized later in x 8 c. If we eliminate
 between (7.3) and (7.5) we obtain the relation between link and writhe,

Lk = Wrf ¸ + (1 + ¸ )=
p

[1 (Wr=Wr ¤ )2]g: (7.9)

This gives a graph for our manufactured ply which can be compared with the diagram
of Coleman & Swigon for a plasmid, as illustrated in  gure 9.

(c) The lock-up angle

Just as ½ 0r goes to in nity as  tends to 45¯, so do the internal forces and moments,
½ , V , T and p. Although apparently unrelated, we note that  = 45¯ is in fact the
geometrical lock-up angle at which a ply self-contacts, making  > 45¯ kinematically
impossible. Analyses of this geometrical lock-up, and more complex self-contacting
situations, are given by Przybyl & Pieranski (1998). For related problems of optimal
and ideal forms, and best packing, see Stasiak et al . (1998), Maritan et al . (2000)
and Stasiak & Maddocks (2000).
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Figure 9. The ¯rst diagram compares the link-writhe graph for closed plasmids (top solid curve)
due to Coleman & Swigon (2000) to that for a uniform balanced ply (lower solid curve). The
second shows the extension of the uniform ply graph to higher writhe. In each diagram the
straight dashed line corresponds to Lk = Wr, where Tw = 0. The vertical line is the asymptote
at Wr¤.

8. Solution of the uniform loaded ply

We have seen in the results of Coleman & Swigon (2000) that many long plies are
approximately uniform. So we now use our general formulation to derive the load
de®ection characteristics of a ULP subjected to an end wrench (G; N ). Each rod in
the ply has length L, and in the balanced state with G = N = 0 the helical angle is
 . We want to  nd the elongation and end rotation of the ply as functions of G and
N , these being the `corresponding displacements’ through which G and N do work.
The helical angle, ³ , will vary during the loading process, but we assume the end
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conditions are such that the ply always remains (at least approximately) uniform,
with ³ constant along its length.

(a) The two corresponding displacements

We de ne g as the variable length of the ply, L cos ³ , divided by the radius, r.
We next de ne n as the total rotation (in radians) of the whole ply, measured from
the datum in which the two rods lie straight side by side. Writing the aspect ratio
a ² L=r, we have

g = a cos ³ ; (8.1)

n = a sin ³ ; (8.2)

g2 + n2 = a2; (8.3)

giving g( ³ ) and n( ³ ), subject to the constraint of (8.3).

(b) A self-contained energy analysis

With our general mechanics result (5.12) and the kinematic condition (4.2) we are
already in a position to fully analyse the uniform loaded ply. However, we give here
a quick and self-contained energy analysis which is instructive and illuminating: it
shows the energy balances at work, when high twist is alleviated by the rod bending
into a writhed con guration. A similar energy analysis for the generalized ply using
the calculus of variations to minimize the potential energy with respect to ³ (s) is
given by van der Heijden et al . (2002a) and is summarized here in Appendix B.

Our right-handed ULP with end wrench (G; N ) has one degree of freedom, ³ .
The curvature of a helical rod is µ = sin2 ³ =r, and as in (4.1) the writhe of the
two rods is Wr = 1

2
(a=º ) sin 2 ³ . The twist rate, using Lk = Tw + Wr, is given by

½ r = ½ 0r + 1
2

sin 2 ³ . The bending energy of the two rods, UB , the torsional energy,
UC , and the energy of the end loads, UL, are given by

UB = 1
2
B2Lµ2 = (BL=r2) sin4 ³ ; (8.4)

UC = 1
2
C2L½ 2 = (CL=r2)( ½ 0r + 1

2
sin 2 ³ )2; (8.5)

UL = Ggr Nn = GL cos ³ Na sin ³ : (8.6)

The total potential energy is V ( ³ ) = UB + UC + UL, and for equilibrium @V=@³ = 0,
giving

4 sin3 ³ cos ³ + 2 ® ( ½ 0r + 1
2

sin 2 ³ ) cos 2³ + (Gr2=B) sin ³ (Nr=B) cos ³ = 0: (8.7)

The bracketed term after ® is simply ½ r, so this agrees with (5.12). With G = N = 0
and ³ =  we have the UBP of Fraser and his co-workers. For given ® and ½ 0r,
together with the load parameters (Gr2=B) and (Nr=B), equation (8.7) can be
solved for the ply angle ³ . Notice that the ply can be unwound (with G = 0) by
adjusting N , until at N = 2C½ 0 we  nd ³ = 0, having returned to the ¬ -state of
the manufacturing process. Beyond this value of N , the winding of the ply will be
reversed.
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(c) Energy changes in the ply

It is instructive to compare the elastic energies in the pre-ply ( ¬ ) and balanced
( ) states. The strain energy in the straight twisted con guration, U ¬ , is found from
(8.5) with ³ = 0 and tan Á ¬ = ½ 0r. Meanwhile, that in the balanced state, U , is
obtained by adding (8.4) and (8.5) with ³ =  . They are given by

r2U ¬ = CL tan2 Á ¬ º CLÁ2
¬ ; (8.8)

r2U = BL sin4  + CL(tan Á ¬ + 1
2

sin 2 )2 º BL 4 + CL(Á ¬ +  )2: (8.9)

In these two formulae the approximations hold for small angles, and remembering
that from (7.2) we have Á ¬ º  , we have

U ¬ = order Á2
¬ ; (8.10)

U = order Á4
¬ : (8.11)

To a  rst approximation there is no torsional energy in the balanced state, agreeing
with our observation in x 7 b that the twist is of smaller order than the link and
writhe. The strain energy of the balanced ply is an order of magnitude less than that
of the pre-ply. The di¬erence in energy is equal to the work done by N in passing
quasi-statically between the two states with G always zero.

(d ) Contact force in the ULP

A vital consideration for a loaded ply is the sign of the contact force. The expression
for the force/arclength can be written, using the results of x 5 d and (5.1) and (5.5)
as

pr3 = sin ³ tan ³ (B sin2 ³ cos ³ C ½ r sin ³ + 1
2
Gr2): (8.12)

As a limit to the range of physically permissible con gurations, we shall be particu-
larly interested in the vanishing of p, for which

Gr2=B = sin ³ (2 ® ½ r sin 2 ³ ) = sin ³ [2 ® ½ 0r + sin 2 ³ (® 1)]; (8.13)

where the second equation in terms of ½ 0 is obtained using (4.2). If we eliminate
³ between (8.7) and (8.13), we  nd the locus of p = 0 shown in the control space
of  gure 10. Crossing this line as we move away from the origin where G = N =
0 and p is positive, the results become unphysical because they imply a negative
contact pressure between the rods. A second limit, relevant when G < 0 with the
ply under compression, corresponds to Euler buckling of the ply. However, we are
mainly concerned with a very long ply (which can e¬ectively carry no compression),
so we do not examine this limit here.

(e) Nonlinear constitutive relationships

The nonlinear constitutive relationships for the ULP, represented by (8.7), are
nicely displayed by drawing the straight lines corresponding to a sequence of  xed
³ values in the non-dimensional control space of (Nr=B) against (Gr2=B) as in
 gure 10. Here, the angle between a line and the positive Gr2=B axis gives directly
the angle ³ , which varies in equal increments from 45¯ to +45¯. Imagining ³ to
be plotted vertically out of the paper, the lines are the contours of an equilibrium
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Figure 10. Straight lines of constant ³ in the control space of end-moment versus end-tension for
a ULP. Physically permissible regimes with positive contact pressure are shown by solid lines.
The pre-ply ¬ -state is shown as a solid circle. The balanced  -state at G = N = 0, with ³ =  ,
is shown as an open circle. Parameter values: ½ 0 r = ¡1:5, ® = 1:25.

response surface which exhibits a fold. The upper part of the surface above the fold
(including, for example, the regime of positive N , G and ³ ) is stable, while the lower
part is unstable. Physically permissible regimes, with positive contact pressure, are
denoted by solid lines. These are separated from the unphysical broken lines by the
trajectory of p = 0, which passes through the pre-ply ¬ -state (solid circle), through
which passes a horizontal line with ³ = 0. The balanced state at the origin with ³ = 
is shown as an open circle. Notice that the fold can be reached from the  -state by
suitable control changes, without p becoming negative. The parameters of this  gure
are ½ 0r = 1:5, with an initial stripe angle of Á ¬ = 56¯, and ® = 1:25. The latter
is within the experimental range for DNA, but note that it corresponds to a solid
circular rod of Poisson’s ratio ¸ = 0:2. The variation of n with (Gr2=B) in the
absence of any applied moment (N = 0) is compared with an experimental study in
x 8 g.

(f ) Linear constitutive relationships

With ® , ½ 0r and B given, the governing equation of the ULP is (8.7) together
with the displacements (8.1) and (8.2). To determine the linear response about the
balanced state, we write these equations and their derivatives as

F [G; N; ³ ] ² 4 sin3 ³ cos ³ + 2 ® ½ 0r cos 2 ³ + 1
2
® sin 4 ³ + (Gr2=B) sin ³ (Nr=B) cos ³

= 0; (8.14)
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@F

@³
= 4 sin4 ³ + 3 sin2 2 ³ 4 ® ½ 0r sin 2³ + 2 ® cos 4 ³ +

µ
Gr2

B

¶
cos ³ +

µ
Nr

B

¶
sin ³ ;

(8.15)

@F

@G
=

µ
r2

B

¶
sin ³ ; (8.16)

@F

@N
=

µ
r

B

¶
cos ³ ; (8.17)

g[ ³ ] = a cos ³ ;
dg

d ³
= a sin ³ ; (8.18)

n[ ³ ] = a sin ³ ;
dn

d ³
= a cos ³ : (8.19)

Independently specifying G and N , we can solve (8.14) for ³ = ³ (G; N ), and then
(8.18) and (8.19) give g and n. Note that we cannot independently specify g and n,
due to the constraint of (8.3). So we write

g = g[ ³ (G; N )]; n = n[ ³ (G; N )]: (8.20)

We want to  nd the linear ° exibility coe± cients (evaluated in the balanced  -state),

dg

dG
=

dg

d ³

@ ³

@G
;

dg

dN
=

dg

d ³

@ ³

@N
;

dn

dG
=

dn

d ³

@ ³

@G
;

dn

dN
=

dn

d ³

@ ³

@N
:

9
>>=

>>;
(8.21)

To  nd the required derivatives we write (8.14) as the formal identity,

F [G; N; ³ (G; N )] ² 0; (8.22)

and di¬erentiate this totally with respect to G and N as follows,

dF

dG
=

@F

@G
+

@F

@³

@ ³

@G
² 0; (8.23)

dF

dN
=

@F

@N
+

@F

@³

@ ³

@N
² 0; (8.24)

giving

@³

@G
=

µ
r2

B

¶
sin ³

Á
@F

@³
; (8.25)

@³

@N
=

µ
r

B

¶
cos ³

Á
@F

@³
: (8.26)

The ®exibility coe¯ cients (elements of a non-diagonal ° exibility matrix ) become

dg

dG
=

µ
ar2

B

¶
sin2 ³

Á
@F

@³
;

dg

dN
=

µ
ar

B

¶
sin ³ cos ³

Á
@F

@³
;

dn

dG
=

µ
ar2

B

¶
sin ³ cos ³

Á
@F

@³
;

dn

dN
=

µ
ar

B

¶
cos2 ³

Á
@F

@³
:

9
>>=

>>;
(8.27)
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Figure 11. Experimental and theoretical results for a uniform ply under tension. Experimental
results due to Ben Thompson are shown as solid black circles. The corresponding theoretical
result is shown as a continuous curve.

Evaluating (8.14) and (8.15) in the  -state with G = N = 0 and ³ =  , we have

4 sin3  cos  + 2® ½ 0r cos 2 + 1
2
® sin 4 = 0; (8.28)

@F=@ ³ = 4 sin4  + 3 sin2 2 4 ® ½ 0r sin 2 + 2 ® cos 4 : (8.29)

Regarding  as the measure of ½ 0r, we can now solve (8.28) for ½ 0r( ) and substitute
it into (8.29). Then putting (8.29) into (8.27) and evaluating at ³ =  gives the
®exibility coē cients. We shall not pursue the general problem further, but  nally
write down the form of the ®exibility coe¯ cients when the angle  is small as

µ
2C

Lr

¶
dg

dG
=  2 + O( 4);

µ
2C

L

¶
dg

dN
=  + 2(9 5® )

 3

3 ®
+ O( 5);

µ
2C

Lr

¶
dn

dG
=  + 2(9 5® )

 3

3 ®
+ O( 5);

µ
2C

L

¶
dn

dN
= 1 + 3( ® 2)

 2

®
+ O( 4):

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(8.30)

Note that for  = 0, the torsional ®exibility is dn=dN = 1
2
L=C, namely half that of

a single rod of length L. The other coē cients vanish with  , as they should for two
straight inextensional rods. The negative signs correspond to the fact that as we pull
a ply, we tend to unwind it.

(g) Experimental veri¯cation

Results of an experiment, performed with the assistance of Ben Thompson, grand-
son of the  rst author, are shown in  gure 11. A short length of ply was made from
two silicone rubber rods, each of length L = 21 cm, lubricated with oil to minimize
frictional forces. The diameter of the rods was 3.515 mm, and Young’s modulus of the
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rubber was estimated to be 1:97£106 N m¡2. The maximum load applied was 963 g,
corresponding to Gr2=B = 1:977. With zero applied twisting moment (N = 0) the
graph shows a plot of the measured end rotation, n, against the dimensionless load
parameter corresponding to the applied axial tension, G. The experimental points,
denoted by solid circles, agree well with the drawn theoretical curve. The slight dis-
agreement at high load is almost certainly due to factors not considered in the theory,
such as the axial extensibility of the rubber rod, and the Poisson contraction of its
radius.

9. Assessing the link from a plasmid micrograph

We shall  nally see how the theoretical results and concepts can be used to assess the
link, Lk, of a DNA plasmid based on its micrograph image. The studies of Coleman
& Swigon (2000), which include careful stability tests (Tobias et al . 2000), show
that to alleviate a high twist, a plasmid will writhe in space to form a supercoil, a
common form of which is the interwound con guration with a ply and two end loops.
Figure 2 shows one of their analysed con gurations for which the prescribed link was
Lk = 10 and the calculated writhe was Wr = 7:548. From such a photograph of an
interwound plasmid, how can we best estimate its link?

(a) Geometry of writhe in a ply

Since most of the rod is in the ply, it is tempting to use just the ply for our estimate,
ignoring the length of rod in the end loops. Moreover, the ply angle, ³ , varies only
minutely along the length, so we here assume it to be constant, with the rods in the
form of a helix. The result for the writhe in two interwound helices, equation (4.1),
then gives

Wr = Dr ¤ cos ³ = §2K cos ³ : (9.1)

Here Dr ¤ = 2K is the particular directional writhe corresponding to the number of
signed crossings in a side view of a (long) ply, equal to 8 in  gure 2. Now from this
picture we can estimate the balanced ply angle as  º 15¯, giving cos  = 0:965
and our estimate for the writhe becomes Wr º 7:73. This compares well with the
value of Wr = 7:548 computed by Coleman & Swigon.

(b) Mechanics of twist in a ply

The geometrical arguments employed so far have been used to analyse the writhing
of DNA for many years. However, now that the equations of the ply mechanics are
known, these can be used to extract more information from a micrograph. As we
demonstrate below, we can estimate the link as well as the writhe, just on the basis
of a crossings count. Equation (5.8) gives us the total twist in our plasmid of length
S

Tw(2 º r ® =S) = ½ r® = sin2  tan 2 : (9.2)

We now set the sti¬ness ratio as ® = 2=3, and the ratio of plasmid radius to rod
length, r=S, equal to 4:1£10¡3, these being as used by Coleman & Swigon ( gure 2).
We have  nally Tw = +2:25, giving via (3.3) our estimate for the link of the plasmid,

Lk = Tw + Wr = 7:73 + 2:25 = 9:98: (9.3)

This is in excellent agreement with the link of 10 used by Coleman & Swigon.
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Figure 12. A balanced variable ply satisfying the clamped boundary conditions implied by
the moulding of x 4 a. This solution is taken from van der Heijden et al . (2002a).

10. Concluding remarks

We have reviewed and extended recent work on the twisting and writhing of DNA
molecules, looking especially at the mechanics of supercoiling. We have made a care-
ful physical examination of the equations governing the so-called ply in which two
strands coil around one another in the form of a helix. We hope that our precise but
physical approach, backed up by experimental work, will be helpful in opening up
the rather esoteric subject of twisted elastic rods to a wide audience of molecular
biologists.

Speci cally, we have extended the variable ply formulation of Coleman & Swigon
to include end loads, and the derived constitutive relations of this generalized ply are
shown to be in excellent agreement with experiments. We have addressed the problem
of determining the link, twist and writhe of a DNA plasmid from an inspection of
its electron micrograph. Previous work has made use of topological results, but we
have shown how the kinematics can be augmented by the mechanics, obtaining a
very precise result in a trial calculation.

In continuation of the present work (van der Heijden et al . 2002a) we have made a
variational formulation of the generalized ply, summarized here in Appendix B, and
computed variable ply solutions with clamped ends, as illustrated here in  gure 12.

Appendix A. Notation

a aspect ratio of rod, a ² L=r (see x 8 a)

A angle given to the ends of the two rods when making a ply
(see x 4 a)

B, C bending and torsional sti¬nesses of a rod (see x 2)

Dr directional writhe, with Wr = hDri (see x 3 d)

Dr ¤ value of Dr in a special side view (see x 9 a)

F a force arising from the decomposition of T and V (see x 5 b)

g non-dimensional length of ply made from two rods of
length L (see x 8 a)

G, N applied tension and moment (tightening) on a loaded ply
(see x 5 a)

K number of helical waves in one rod, given by
K = L sin ³ =2 º r (see x 4 c)
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Lk, Tw, Wr link (turns), total twist (turns), writhe; related by
Lk = Tw + Wr (see x 3 c)

MP , MN transmitted moments in a rod (see x 5 c)

MF , MA moments arising from decomposition of MP (see x 5 e)

n total rotation in radians of the ply, zero when rods are
straight (see x 8 a)

r, L radius and length of circular rod modelling a strand of
DNA (see x 3 a)

s, t arclength and time, t, which replaces s in the dynamic
analogy (see x 5 a)

T , U , V transmitted tension and shears in a rod (see x 5 b)

UB , UC , UL bending energy, torsional energy and energy of the end
loads (see x 8 b)

 value of ³ in the uniform  -state, saddle of the variable ply
(see x 5 g)

® ratio of sti¬nesses, ® ² C=B. For DNA we have
0:7 < ® < 1:5 (see x 2)

³ (s) helical angle of the ply, zero for two straight rods (see x 5 a)

µ curvature of a helical rod, µ = sin2 ³ =r (see x 8 b)

¯ ¶ a small deformation angle (see  gure 5)

¸ Poisson’s ratio of a solid circular rod, with
® = C=B = 1=(1 + ¸ ) (see x 2)

½ right-handed twist rate in a rod, in radians per unit length
(see x 3 b)

½ 0 initial ½ put into each rod in the making of a ply (see x 4 a)

¿ end rotation of a rod (see x 3 b)

Á stripe angle of a marked rod, tan Á = ½ r (see x 3 b)

Á ¬ , Á  values of Á in the straight ¬ -state and the balanced
 -state (see x 7 a)

Appendix B. Variational formulation of the generalized ply

In more-recent work, van der Heijden et al . (2002a) show how a variational approach
o¬ers an elegant derivation of the di¬erential equation of the loaded non-uniform ply,
and we give here a brief synopsis. In place of (8.4){(8.6), the total potential energy
of the generalized ply is

V = 2

Z L

0

( 1
2
Bµ2 + 1

2
C½ 2) ds Ggr Nn:

With ³ measuring the deviation of the tangent vector from the ply axis, and ¿
representing the internal twist, the total curvature, twist and potential energy can
be written as

µ2 = ³ 02 +
1

r2
sin4 ³ ; ½ = ¿ 0 +

1

r
sin ³ cos ³ ; V =

Z L

0

ª ( ³ ; ³ 0; ¿ ; ¿ 0) ds;
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where ª is the known integrand of V . The Euler{Lagrange equations are

d

ds

@ª

@ ³ 0 =
@ª

@ ³
;

d

ds

@ª

@ ¿ 0 =
@ª

@ ¿
:

Since ª is independent of ¿ , the latter is an ignorable variable and the second equation
proves ½ = const: The  rst equation gives our di¬erential equation (5.6) for the loaded
variable ply.
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