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ABSTRACT

The DNA molecule is modeled as an elastic rod with bending and twisting rigidities,
subjected to external tension and twist applied at one end, the other end being clamped. We
study the plectonemic equilibrium of such a rod, taking into account the impenetrability
constraint. Numerical solutions of this boundary value problem have previously shown that
purely elastic models can reproduce the supercoiling response of the DNA molecule. Using a
variational approach, we derive analytical formulae for the elastic response of the filament,
and extend former numerical results.

1. Introduction

It is widely known that mechanical properties of the DNA molecule play an important role in
the biology of cell, but at present we only have an imprecise view of the way DNA responds
to various constraints. There is currently an upsurge of interest in this question as
nanotechnologies make it possible to apply forces onto an isolated DNA filament.
A typical loading that can be performed experimentally on a double strand of DNA is shown
in Fig 1: a DNA molecule is fixed at one end on a glass pane while the other end is attached
to a magnetic bead [1]. By using a magnet, it is possible to pull on the bead while twisting it
around a vertical axis [2]. For a fixed pulling force, the molecule wraps around itself in a
helical way, when the rotation angle of the bead exceeds a threshold value: the resulting
structure is called a plectonem. These experiments can be done for different pulling forces,
molecule contour lengths or salt concentrations.

Figure 1. Simplified view of the experimental setup



2. Elastic model for the plectonemic regime

We first investigate the equilibrium behavior of an elastic rod under the constraints described
above. The rod, with bending rigidity K0 , and twisting rigidity K3, is considered inextensible,
with a constant circular cross section of radius a, and a total contour length L. We note s the
arclength with s=0 for the end fixed to the glass and s=L for the other end. The external loads
are the pulling force F(L) and the torsional moment M(L).

2.1 Plectonems geometry

To analyze the mechanical response of plectonems we make an ansatz on the geometry of the
twisted filament, relevant to large applied twist: we assume that the plectonems can be
assimilated to two identical and perfect helices (each one of these helices is itself a double
strand of DNA), and we also suppose that curvature and twist are uniform in the plectonemic
part. In the tails we further consider the twist to be uniform and the curvature to vanish, and
we neglect both the end loop of the plectonems and the region connecting the tails and the
plectonemic part.
We parametrize the rod with Euler angles, and take into account material twist as well as
geometrical torsion, which add up to give the total twist [3]. At the equilibrium the
plectonems are described by five variables: the plectonemic radius R, the opening angle α, the
value of the material twist ζp  in the plectonems, the length Lp  of the plectonemic region, and
the material twist value ζt in the tails. We have for total curvature and twist the following
expressions (where ε=+/- 1 stands for the chirality):

(1)

We model the self-contact of the filament by a hard-wall potential. Geometric impenetrability
implies that the two helices contact along a straight line, as long as the opening angle is less
than π/4. In this case the plectonemic radius equals to the circular cross section of the rod.

2.2 Potential energy of the rod

We now derive the potential energy of the elastic rod, which is the sum of three terms: the
elastic energy, the work done by external loads, and the contact condition:

(2)

where the strain elastic energy is the sum of the square of the curvature and the square of the
twist, and the external force works again extension and the external moment works again
rotation. Finally the contact constraint is represented with a Lagrange multiplier, λ.



2.3 Results

We seek extrema of Eqn (2) with regard to the five variables. Euler-Lagrange minimization
with respect to the twist variables ζp and ζt yields  and

, which show that the internal moment M(s) is constant
along the filament, and takes the value M(L) imposed by the loading, both in the tails and in
the plectonemic part.
Minimization with respect to the opening angle gives the value of this internal moment:

(3)

For the variable R we obtain the expression of the contact pressure in the rod:

(4)

Finally for the Lp variable we find the relation between the pulling force and the plectonemic
variables:

(5)

Notice that the value of R is fixed by the condition of hard-wall contact R=a. With the help of
Eqn (5) we obtain the value of α since the value of F(L) is fixed, and we have checked that
this set of equations accurately describes the numerical results of [4].

3. Application to the DNA molecule

In order to apply our model to DNA molecules we must consider the electrostatic effects due
to the bare charge of DNA and to the counter-ions of the solution. Since the inter-strand
distance is of the order of the Debye screening length the Debye-Hückel approximation,
leading to the linear Poisson-Boltzmann equation, is not valid in the case we consider. The
study of the non-linear case is, according to our knowledge, only possible numerically, and
therefore does not yield any analytical expression. For example [5] investigates the potential
created by a charged cylinder, and [6] consider helical geometry but within the linear
approximation.
We choose to avoid these difficulties by calculating an effective radius of the DNA molecule
in the plectonemic regime. By effective radius we mean the radius that the  molecule must
have for acting as a non-charged rod-like polymer. In fact it boils down to determinate the
radius of the circular cross section introduced in the elastic model with hard-wall contact. We
give in Fig 2 the effective radius as a function of the pulling force. These results are extracted
from experimental data, as explained in [4], provided by G. Charvin and V. Croquette (LPS –
ENS, Paris), on a dsDNA molecule of 11kbp.



Figure 2. Effective radius versus pulling force

Fig 2 shows that at low forces the effective radius of the molecule is about 1nm, which is in
good agreement with ordinary values of the core radius of dsDNA (from 0.9nm to 1.2nm).
The increase of the effective radius can be interpreted in term of the Manning condensation
process [7], although it is probably not the only effect to take into account. Experimental
studies on plasmids at zero force [8] shows that the salt concentration influences the effective
radius of the DNA molecule in a manner still not understood.
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