Elastic knots

(elastic beam under finite rotation and self-contact)

Sébastien Neukirch

CNRS & Univ Paris 6 (France) d'Alembert Institute for Mechanics

joint work with: Nicolas Clauvelin (PhD work) Basile Audoly

Stasiak et al, Science (1999)

Stasiak et al, Science (1999)

Knots are everywhere

Long enough polymers are (almost) certainly knotted Sumners+Whittington, J. Phys. A : Math. Gen. 1988

273 knotted proteins in the ProteinDataBank (1%)

Single molecule experiment with knotted F-Actin filaments Arai et al, Nature (1999)

Ab-initio molecular simulations for alcane molecule (CI0H22) Saitta et al, *Natur*e (1999)

apply to : - slender bodies - not too bent

F(s+ds) - F(s) +p(s) ds =0 F'(s) + p(s) =0

Equilibrium

Equilibrium $M' + r' \times F = 0$

Cosserat frame

 $d'_1 = u \times d_1$ $d'_2 = u \times d_2$ $d'_3 = u \times d_3$

constitutive relations

- E Young's modulus
- I second moment of area

twist

G shear modulus J polar moment of area

Numerical Path Following : Results

Distance of self-approach

$$\begin{cases} \vec{F}' &= -\vec{p} \\ \vec{M}' &= \vec{F} \times \vec{t} \\ \vec{t}' &= \frac{1}{EI} \vec{M} \times \vec{t} \\ \vec{R}' &= \vec{t} \end{cases}$$

forces equil. moments equil. kinematics tangent def.

$$\left(\begin{array}{c} \prime \equiv \frac{d}{ds} \end{array} \right)$$

 $\vec{p}(s)$ ext. pressure $\vec{F}(s)$ internal force

 $\vec{M}(s)$ internal moment $\vec{R}(s)$ position $\vec{t}(s)$ tangent

Planar Elastica

$$\left(EI\theta'' = T\sin\theta\right)$$

$$\frac{EI}{T} \theta'' = \sin \theta$$

$$\frac{1}{1}$$
singular
perturbation

Braid : linear superposition $f \in \mathbb{R}^{n}$

small deflections => linear problem

$$\begin{cases} \vec{F}' = -\vec{p} \\ \vec{M}' = \vec{F} \times \vec{t} \\ \vec{t}' = \frac{1}{EI} \vec{M} \times \vec{t} \\ \vec{R}' = \vec{t} \end{cases}$$

forces equil. moments equil. kinematics tangent def.

 $\vec{t}(s)$

tangent

constitutive relations:				
M_{κ}	=	$EI \kappa$	curvature	κ
M_{τ}	—	$GJ \tau$	twist	τ

 $\vec{M}(s)$ internal moment

 $\vec{p}(s)$ ext. pressure $\vec{F}(s)$ internal force

 $\vec{R}(s)$ position

 $\sigma_3 = -\sigma_1 = 2.66$; $\sigma_2 = 0$; $P_1 = P_3 = 0.32$; $P_2 = 0.35$

Braid : contact topology

side view

inter-strand distance

Braid : contact topology

 $\ell = 9.91 h^{1/2} (EI)^{1/4} T^{-1/4}$

Contact pressure p(s)

Total contact force
$$P = \int_0^\ell p(s) ds = 0.82 \ h^{-1/2} \ (EI)^{1/4} \ T^{3/4}$$

Fin

Braid : variational formulation

Kirchhoff equations => minimizing an energy

$$V = \frac{1}{2} \int_{-\infty}^{+\infty} \left({u''}^2 + {v''}^2 \right) d\sigma + v'(+\infty) + v'(-\infty)$$

with constraint: $u^2(\sigma) + v^2(\sigma) \ge 1$, $\forall \sigma$

work of external applied moments

Twist Instability

ACM Transactions on Graphics (SIGGRAPH), 2008

Twisted rods : the ideal case

if rod is uniform, isotropic, naturally straight

system reduction 21 D => 6D

 $r' = d_3$ $d'_3 = (F \times r + M_0) \times d_3$