Snap-through induced by surface tension

CNRS Univ. P. & M. Curie ENS Paris France

Funding: CNRS ANR Ville de Paris

samedi 15 mars 14

Elastocapillarity: state of the art (incomplete)

review article:

Roman + Bico Journal of Physics: Condensed Matter 2010

Bico et al., Nature (2004)

The Elastocapillary lengthscale

A tubulin rod growing inside a lipid vesicle

Elastocapillarity in Biology

Lung's airway closure

e.g. Heil, J. Fluid Mech 380, 1999

Wet feathers

Duprat, Protière, Beebe and Stone, *Nature* (2012)

Insect adhesion Eisner et al., PNAS, 2000

Elastocapillarity with Carbon Nanotubes

Cellular patterns Chakrapani et al., PNAS, 2004

Teepee formation Lau et al., Nano Lett., 2003

Bio-mimetism

Geim et al., Nature Mat., 2003

Elastocapillarity in Industry: Microfabrication

folding by surface tension of Pb:Sn solder spheres

microfan with polysilicon 180 rpm micro-fluidic systems

Linderman et al, Sens. Actuators (2002)

Here : snap-through of an elastic beam induced by a drop

Buckling and snap-through

stability when force F is controlled

Snap-through

stability when displacement Y is controlled

Snap-through

comparison with experiments

Snap-through with liquid drop

samedi 15 mars 14

weight

effective torques from liquid drop

effective bending moments

PDMS strip dimensions: 34 microns by 1 mm by 3.5 mm time interval between frames: 5 ms

Snap-through with soap bubble

Elastocapillary snapping of a long metallic strip with a bubble

L = 24 cm (width 8 cm)

Snap-through with soap bubble

Elastocapillary snapping of a long metallic strip with a bubble

L = 24 cm (width 8 cm)

duration ~ 1 sec

Snap-through: dynamics

mettre ici les video

we fit and find $\mu \simeq 23.1$

Theory says:
$$\mu = 24.3$$

Snap-through dynamics: the wet case

Is the dynamics ruled by:

- inertia of drop (m) ?
- gravity (g)?
- other effects (e.g. viscous)?
- or just beam bending dynamics ?

samedi 15 mars 14

fin

Growth time at the bifurcation point
1D sys :
$$\ddot{x} = -V'(x)$$
 (conservative system)
Equilibrium x_e : $V'(x_e) = o$
Stability $x = x_e + \delta x(t)$
 $\delta \ddot{x} = -V''(x_e) \delta x + O(\delta x^2)$
stable : $V''(x_e) > o$
un stable : $V''(x_e) > o$
un stable : $V''(x_e) < o$
nstability threshold : $V_*'' = o$
hence dynamics is $\delta \ddot{x} = o \delta x + O(\delta x^2)$
JNLESS unilateral contact (inequality constraint)
instability happens when $v_*'' \neq o$, $V_*'' < o$
 $\delta \ddot{x} = -\frac{V_*''}{\mathfrak{S}} \delta x$
 $\delta \chi(t) \propto e^{t_e t}$ where $\frac{1}{4} = +\sqrt{-V_*''}$

ţ

Elastocapillarity in Industry: Microfabrication

rotate hinged joints for the self-assembly of 3D microstructures

R. Syms, Journal of MEMS (1995)

Capillary induced snap-through

