# Fibers Buckling in Liquid Drops

A. Antkowiak
H. Elettro <= PhD work</p>
S. Neukirch

d'Alembert Institute for Mechanics UPMC & CNRS, Paris, France

funding from: CNRS, ANR, UK Royal Society, Ville de Paris









Remark: L is the total arc-length of the beam



#### inner part of beam is in compression P = F - T

does everything only depend on P?



pinned 
$$P_b = F - T = \pi^2 \frac{EI}{D^2}$$
  
 $F \simeq \pi^2 \frac{EI}{D^2}$ 



clamped 
$$P_b = F - T = 4\pi^2 \frac{EI}{D^2}$$





with:  $f = \frac{FD^2}{EI}$   $t = \frac{TD^2}{EI}$ 

#### Buckling due to internal compression

large L limit  $L \gg D$ 

![](_page_8_Figure_2.jpeg)

![](_page_9_Figure_0.jpeg)

![](_page_10_Figure_0.jpeg)

![](_page_11_Figure_0.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_12_Figure_1.jpeg)

Initial post-buckling regime

large T limit $T \gg \frac{EI}{D^2}$ 

We plot T = F - P for a fixed, given value of F

![](_page_13_Figure_3.jpeg)

![](_page_14_Figure_0.jpeg)

![](_page_15_Figure_0.jpeg)

$$V(L_{\rm in}) = \frac{1}{2} EI \left(\frac{2}{D}\right)^2 L_{\rm in}$$

![](_page_16_Figure_0.jpeg)

$$V(L_{\rm in}) = \frac{1}{2} EI \left(\frac{2}{D}\right)^2 L_{\rm in} + T L_{\rm in}$$

![](_page_17_Figure_0.jpeg)

$$V(L_{\rm in}) = \frac{1}{2} EI \left(\frac{2}{D}\right)^2 L_{\rm in} + TL_{\rm in} - FL_{\rm in}$$

![](_page_18_Figure_0.jpeg)

$$V(L_{\rm in}) = \frac{1}{2} EI \left(\frac{2}{D}\right)^2 L_{\rm in} + T L_{\rm in} - F L_{\rm in}$$

$$\frac{\partial V}{\partial L_{\rm in}} = \frac{1}{2} EI \left(\frac{2}{D}\right)^2 + T - F = 0$$

![](_page_19_Figure_0.jpeg)

$$V(L_{\rm in}) = \frac{1}{2} EI \left(\frac{2}{D}\right)^2 L_{\rm in} + T L_{\rm in} - F L_{\rm in}$$

$$\frac{\partial V}{\partial L_{\rm in}} = \frac{1}{2} EI \left(\frac{2}{D}\right)^2 + T - F = 0$$

$$\Rightarrow T_p = F - 2 \frac{EI}{D^2}$$
 (plateau force)

![](_page_20_Figure_0.jpeg)

![](_page_21_Picture_0.jpeg)

#### surface tension <=> interface energy

P.-G. de Gennes et al, *Capillarity and wetting phenomena*, 2004 E. Lorenceau et al, *Wetting of fibers*, 2006

![](_page_22_Figure_0.jpeg)

unduloid (constant mean curvature)

J. Plateau, *Statique expérimentale des liquides*, 1873
H. Poincaré, *Capillarité*, 1895
B. Carroll, *Liquid drops on thin cylinders*, Langmuir, 1986

![](_page_23_Figure_1.jpeg)

![](_page_24_Figure_1.jpeg)

 $\gamma_{SA}$  energy per unit area of the interface *solid-air* 

$$V(\kappa(s), L_{\rm in}) = \frac{1}{2} EI \int_0^{L_{\rm in}} \kappa^2(s, L_{\rm in}) ds + T L_{\rm in}$$

![](_page_25_Figure_1.jpeg)

 $\gamma_{SA}$  energy per unit area of the interface *solid-air* 

$$V(\kappa(s), L_{\rm in}) = \frac{1}{2} EI \int_0^{L_{\rm in}} \kappa^2(s, L_{\rm in}) ds + T L_{\rm in} + 2\pi r \gamma_{\rm SL} L_{\rm in} + 2\pi r \gamma_{\rm SA} (L - L_{\rm in}) + \pi D^2 \gamma_{\rm LA}$$

![](_page_26_Figure_1.jpeg)

 $\gamma_{SA}$  energy per unit area of the interface *solid-air* 

$$V(\kappa(s), L_{\rm in}) = \frac{1}{2} EI \int_0^{L_{\rm in}} \kappa^2(s, L_{\rm in}) ds + T L_{\rm in}$$
$$- 2\pi r \left(\gamma_{\rm SA} - \gamma_{\rm SL}\right) L_{\rm in} + \text{constants}$$

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

#### Conclusions

- + beam coiling in a liquid drop
- + capillary forces are large enough to buckle a beam
- + buckling is sub-critical
- + force plateau in the far post-buckling regime

![](_page_47_Picture_5.jpeg)

#### Fin

![](_page_49_Figure_0.jpeg)

soft wall repulsion potential

$$V(X,Y) = \frac{V_0}{1 + \rho - (1/R)\sqrt{(X - X_C)^2 + (Y - Y_C)^2}}$$

R. S. Manning and G. B. Bulman, Stability of an elastic rod buckling into a soft wall, Proc Roy Soc A 2005

#### Detailed equilibrium equations

![](_page_50_Figure_1.jpeg)

$$E_{\kappa} = \frac{1}{2} EI \int_{0}^{S_{A}} \kappa_{1}^{2} dS + \frac{1}{2} EI \int_{S_{A}}^{S_{B}} \kappa_{2}^{2} dS + \frac{1}{2} EI \int_{S_{B}}^{L} \kappa_{3}^{2} dS$$
$$E_{w} = \int_{S_{A}}^{S_{B}} V(X(S), Y(S), X_{C}, Y_{C}) dS$$
$$E_{\gamma} = P \gamma_{sa} S_{A} + P \gamma_{sl} (S_{B} - S_{A}) + P \gamma_{sa} (L - S_{B})$$

=> boundary-value problem, solved with AUTO