Élasticité des biofilaments

Sébastien Neukirch

Lab. de Modélisation en Mécanique CNRS / Paris 6 (Jussieu)

<u>collaborations</u> :

- Michael Thompson (Univ. College London)
- John Maddocks (Ecole Poly. Fed. Lausanne)
- Martine Ben Amar (Lab. Phys. Stat. ENS)
- Alain Goriely (Math. Univ. Arizona)

Loi de comportement élastique

Rigidité de torsion : K₃

Energie déformation élastique
$$V = \frac{1}{2} \int_{0}^{L} \left[K_{0} \kappa^{2}(s) + K_{3} \tau^{2}(s) \right] ds$$

 $K_0 = E I$

I : moment d'inertie section *E* : module de Young

filament	E
Microtubule	1 GPa
ADN	1 GPa
Actine	2 GPa
Collagène	2 GPa
Caoutchouc	2 GPa
Acier	200 GPa

Courbure et torsion sont liées

Expérience de translation sans rotation

 $M'(s) + r'(s) \wedge F(s) = 0$

Structure mince : modèle de Cosserat

directeurs orthonormés $\vec{d}_1, \vec{d}_2, \vec{d}_3$ en plus de $\vec{r}(s)$

d₃

d

e y

pas cisaillement
pas d'extension
$$\vec{r}'(s) = \vec{d}_3(s)$$

 $\left\{ \vec{d}_1'(s) = \vec{u}(s) \land \vec{d}_1 \\ \vec{d}_2'(s) = \vec{u}(s) \land \vec{d}_2 \\ \vec{d}_3'(s) = \vec{u}(s) \land \vec{d}_3 \end{cases}$ évolution SO(3)

$$\vec{u}(s) = \{u_{1,} u_{2,} u_{3}\}_{\vec{d}_{1}, \vec{d}_{2}, \vec{d}_{3}}$$
$$\vec{u}(s) = \{\kappa_{1,} \kappa_{2,} \tau\}_{\vec{d}_{1}, \vec{d}_{2}, \vec{d}_{3}}$$

 u_1, u_2 : courbures et u_3 : twist

Conditions de bords

- Façon dont on tient la tige
- Seulement certaines solutions sont acceptables

 $\vec{d}_{3}(A_{1}) = \vec{d}_{3}(A_{2})$ $\vec{r}(A_{2}) - \vec{r}(A_{1}) = k \vec{d}_{3}(A_{2})$ (D = L - k)

Étirement d'ADN sous contrainte de torsion

autres équipes : C. Bustamante, L. Finzi, J.-L. Viovy (Bancaud)

équipe : V. Croquette - D.Bensimon

Étirement d'ADN sous contrainte de torsion

Modélisation : tige élastique avec contact

- >Elasticité des structures minces
- >Equations de Kirchhoff
- Problème avec conditions de bords
- >Méthode du tir
- >Méthode de relaxation

(différences finies ou éléments finis)
>Méthode de cheminement numérique
>Contact : type sphères dures (condition de contact unilatéral de Signorini)
>Problème raide (points de selle)

Variation de la pente en fonction de *t* et de *L/R*

Z/L

Équilibre mécanique : formules approchées

Équation approchée pour la partie linéaire

buffer solution = monovalent salt (PB) 10mM

 n_0

molecule ~ 6kb

$$B = \frac{K_0}{k_B T} = 46 \ nm \quad \text{(worm-like chain)}$$

T (pn)	θ (rad)	R (nm)	C/B	P pN/µm
0,45	0,43	5,03	1,13	64
0,90	0,46	4,14	0,98	155
3,00	0,54	3,37	1,21	646

$$C = \frac{K_3}{k_B T} = 50 \pm 5 \ nm$$

data from Gilles Charvin (LPS-ENS)

buffer solution = monovalent salt (PB) 100mM

molecule ~ 6kb

Results

buffer solution = monovalent salt (NaCl) 500mM

$$\frac{K_0}{k_T T} = 40 \ nm \qquad \text{(worm-like chain)}$$

T (pn)	θ (rad)	R (nm)	C/B	P pN/µm
0,62	0,34	2,38	2,02	187
0,95	0,36	2,23	2,12	310
1,30	0,37	1,95	2,02	485
1,80	0,38	1,81	1,90	729
2,70	0,41	1,76	1,92	1 150

$$C = \frac{K_3}{k_B T} = 80 \pm 4 \ nm$$

$$\sigma = \frac{n}{n_0}$$

Perspectives : Mécanique de la molécule d'ADN

- → Inclure :
 - chiralité et couplage extension-rotation
 - répulsion électrostatique (thèse Nicolas Clauvelin)
- → Etude théorique des expériences :
 - étirement d'une tresse de 2 molécules d'ADN (Gilles Charvin)
 - étirement de la fibre de chromatine de 10 nm (A. Bancaud & J.-L. Viovy)
 - étirement du complexe ADN+RecA (R. Fulconis & J.-L. Viovy)

Lien entre *n* et σ

$$\sigma = \frac{n}{n_0} = n \frac{H}{L}$$

 $L = 0.34 \ nbp \ nm$

 σ : ratio de sur-enroulement n: nombre de tours de la bille $n_0 = L/H$: twist intrinsèque de la double hélice H = 3.57 nm : pas de la double hélice d'ADN L: longueur totale de la molécule

Les câbles : flexibilité et résistance à la traction

- Rôle d'un câble : résister à une traction
- Pourquoi un câble (avec n brins) et pas un gros fil (n fois plus gros)?

Les câbles : extensibles par construction

$$\acute{equilibre}: 2 n \sin^3 \theta \cos \theta + \frac{n}{4} \frac{K_3}{K_0} \sin(4 \theta) + 2 \pi n Lk \frac{R}{L} \frac{K_3}{K_0} \cos(2 \theta) + \frac{R^2 T}{K_0} \sin \theta - \frac{RM}{K_0} \cos \theta = 0$$

pression de contact :
$$\frac{PR^{3}}{K_{0}} = \frac{\sin^{2}\theta}{\cos(2\theta)} \left[\sin^{2}\theta + \frac{R^{2}T}{nK_{0}}\cos\theta - \frac{RM}{nK_{0}}\sin\theta \right]$$

Câbles / torsades : diagramme force-extension

Remarques

Ne sont pas pris en compte :

- contribution entropique : physique statistique en mécanique
- interaction longue portée : difficile numériquement
- interaction croissance élasticité

G. Maugin, M. Ben Amar, A. Goriely