Climbing plants: how thick should their supports be?

Sebastien Neukirch Universite Paris 6 CNRS - France

joint work with: Alain Goriely University of Arizona USA

Morning Glory (Ipomoea purpurea) twining up a corn stalk

Different kinds of climbing plants

hooker

Twiners: some botanical facts

Goal : reach the canopy (the light).
Use as few structural tissues as possible.
Should be able to twine around different supports
(thick or not, slippery or not)
Evolution from self supporting to supported growth: smaller stem diameter, more flexible

Typical growth speed: $1 \mathrm{~cm} /$ hour
Two different zones :
1- apex (search for support, goes around it)
2- lower part of stem (helix)

video

Twining, step by step

from Knut Arild Erstad www.ii.uib.no/~knute/ (artist view)

Mechanical experiments (W. Silk)

Measurements:

- geometrical parameters
(on \& off pole)
- contact pressure

Results:

- stem is in tension
- contact pressure >> weight
- uniform helix
- lower pitch on pole

A model: Equilibrium of an elastic rod (Kirchhoff equations)

$$
\begin{aligned}
& \left\{\begin{array}{l}
\overrightarrow{N^{\prime}}+\vec{p}=0 \quad \text { force balance } \\
\overrightarrow{M^{\prime}}+\vec{r} \times N=0: \text { moment balance } \\
\overrightarrow{M^{\prime}} \quad \vec{~} \\
r^{\prime}=t: \text { tangent } \\
M_{i}=B_{i}\left(\kappa_{i}-\kappa_{i 0}\right): \text { linear elasticity }
\end{array}\right. \\
& \prime \equiv \frac{d}{d s} ;(s: \text { arclength })
\end{aligned}
$$

Ordinary differential equations with boundary conditions:
$s=0:$ anchoring $: \vec{t}(0)=\binom{0}{1}$

$s=L: x(L)^{2}+y(L)^{2}=R^{2} \quad$ with $\quad \vec{N}(L)=\vec{f} \|\binom{ x(L)}{y(L)}$

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3$

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3$

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3$

Configurations with continuous contact

The continuous part can be lengthen arbitrarily

These configurations correspond to climbing cases

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3$

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3.5$

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3.5$

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3.5$

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3.5$

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3.5$

Configurations with point contact

The free part can be lengthen arbitrarily
These configurations correspond to non-climbing cases

Numerical continuation of solutions : bifurcation diagram $K=R / R 0=3.5$

Numerical continuation of solutions : bifurcation diagrams when K varies

Numerical continuation of solutions : bifurcation diagrams when K varies

Numerical continuation of solutions : bifurcation diagrams when K varies

Numerical continuation of solutions : bifurcation diagrams when K varies

Conclusion : in the 2D case, $K_{\text {max }} \simeq 3.31$

Friction

Friction

Friction

The 3D case

R : cylindrical support radius
R_{0} : natural (intrinsic) radius of curvature
θ_{0} : natural (intrinsic) helical angle
nearly helical solutions : climbing angle θ
-climbing angle $\theta=\theta\left(R_{0}, \theta_{0}, R\right)$
-contact pressure $P=P\left(R_{0}, \theta_{0}, R\right)$
-limit $\quad K_{\max }=\frac{R}{R_{0}}=K_{\max }\left(\theta_{0}\right)$

The 3D case : a bifurcation diagram

$$
\begin{aligned}
& \theta_{0}=1.4<\frac{\pi}{2} \\
& \frac{R}{R_{0}}=3
\end{aligned}
$$

no "climbing" configurations

$$
=>\mathrm{K}_{\text {max }} \text { decreases in 3D }
$$

liana in Cairns (Queensland), Australia [www.botgard.ucla.edu]

