Climbing plants: how thick should their supports be?

Sebastien Neukirch
Universite Paris 6
CNRS – France

joint work with:
Alain Goriely
University of Arizona
USA

Morning Glory (Ipomoea purpurea) twining up a corn stalk

Different kinds of climbing plants

Twiners: some botanical facts

Goal: reach the canopy (the light).

Use as few structural tissues as possible.

Should be able to twine around different supports

(thick or not, slippery or not)

Evolution from self supporting to supported growth:

smaller stem diameter, more flexible

Typical growth speed: 1 cm / hour

Two different zones:

- 1- apex (search for support, goes around it)
- 2- lower part of stem (helix)

Twining, step by step

from Knut Arild Erstad www.ii.uib.no/~knute/ (artist view)

Mechanical experiments (W. Silk)

Measurements:

- geometrical parameters (on & off pole)
- contact pressure

Results:

- stem is in tension
- contact pressure >> weight
- uniform helix
- lower pitch on pole

A model: Equilibrium of an elastic rod (Kirchhoff equations)

$$\begin{cases} \overrightarrow{r} & \overrightarrow{r} & \overrightarrow{r} \\ N' + p = 0 : force \ balance \\ \overrightarrow{r} & \overrightarrow{r} & \overrightarrow{r} \\ M' + r \times N = 0 : moment \ balance \\ \overrightarrow{r}' = t : tangent \\ M_i = B_i (\kappa_i - \kappa_{i0}) : linear \ elasticity \\ \overrightarrow{r} = \frac{d}{ds} ; (s: arclength) \end{cases}$$

Ordinary differential equations with boundary conditions:

$$s = 0$$
: anchoring: $t(0) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$s = L : x(L)^2 + y(L)^2 = R^2$$
 with $N(L) = f \parallel \begin{pmatrix} x(L) \\ y(L) \end{pmatrix}$

Configurations with continuous contact

The continuous part can be lengthen arbitrarily

These configurations correspond to climbing cases

Configurations with point contact

at
$$s = s_2$$
: $N^+ - N^- + f = 0$

for s>s₂, unstressed shape

The free part can be lengthen arbitrarily

These configurations correspond to non-climbing cases

Conclusion: in the 2D case, $K_{max} \simeq 3.31$

Friction

$$(f \cdot e_{\theta}) = \mu (f \cdot e_{r})$$

Friction

Friction

The 3D case

R : cylindrical support radius

R₀: natural (intrinsic) radius of curvature

 θ_0 : natural (intrinsic) helical angle

nearly helical solutions : climbing angle θ

-climbing angle $\theta = \theta(R_0, \theta_0, R)$

-contact pressure $P = P(R_0, \theta_0, R)$

-limit
$$K_{max} = \frac{R}{R_0} = K_{max}(\theta_0)$$

The 3D case: a bifurcation diagram

$$\theta_0 = 1.4 < \frac{\pi}{2}$$

$$\frac{R}{R_0} = 3$$

no "climbing" configurations => K_{max} decreases in 3D

 $\theta_0 = 0.8$

 $\frac{R}{R_0} = 2$

Shapes in 3D

liana in Cairns (Queensland), Australia [www.botgard.ucla.edu]