Elasticity and Electrostatics of plectonemic DNA

Sébastien Neukirch

CNRS & Univ Paris 6 (France) d'Alembert Institute for Mechanics

joint work with: Nicolas Clauvelin (PhD work) Basile Audoly

Why study DNA mechanical properties ?

mechanical properties influence biology of the cell

- 2 meters of DNA in a 10 micron wide nucleus
- ejection from viral capside
- transcription (RNApolymerase is torque dependent)
- protein binding is strain dependent, or induces strain on DNA
- chromatin compaction/decompaction (cell division)

Pulling and twisting DNA

(based on Swigon+Coleman model for contact in Kirchhoff rods)

S. Neukirch, "Extracting DNA ...", Phys. Rev. Lett. 93 (2004)

Orders of magnitude

Buckling threshold for a clamped beam

 $T = (2\pi)^2 \frac{K_0}{L^2}$

 $\Rightarrow t = \frac{TL^2}{(2\pi)^2 K_0} = 1$

DNA in tweezers experiments

- $L \simeq 1 \, \mu {
 m m}$ (few kbp)
- $K_0 \simeq 50 \ nm \ k_B T \qquad \Rightarrow t \sim 10^4$

 $T \simeq 1 p N$

Analytical model for plectonemic DNA Elastic rod with : total length L circular cross-section R_{\circ} bending rigidity K₀ ↑ twist rigidity K₃ straight tails DNA Lp no endloop uniform ply N. Clauvelin et al, Biophysical Journal (2009)

Energy formulation: elastic strain energy

Energy formulation: elastic strain energy

Energy formulation: work of external loads

Energy formulation: link constraint

Energy formulation: self-interaction

hard-wall (contact) => constraint:

$$V = \lambda \ (R - R_0)$$

long-range:
electrostatics
S. Leikin
D. Stigter
Debye-Hückel
G. Manning
...

 $V = L_p \ U(\theta, R)$

Energy formulation: equilibrium $V(\theta, R, \tau, L_p) = \frac{1}{2} K_0 \frac{\sin^4 \theta}{R^2} L_p + \frac{1}{2} K_3 \tau^2 L + T L_p + L_p U(\theta, R)$ with constraint $n = Lk = Tw + Wr = \frac{1}{2\pi} \left(\tau L + \frac{\sin 2\theta}{2R} L_p \right)$

constraint $\Rightarrow L_p = \dots$ $\Rightarrow V = V(\theta, R, \tau)$

Euler-Lagrange equations :

$$\left(\frac{\partial V}{\partial \theta}, \frac{\partial V}{\partial R}, \frac{\partial V}{\partial \tau}\right) = 0$$

Energy formulation: stability

For some T values, there are two solutions to: $\left(\frac{\partial V}{\partial \theta}, \frac{\partial V}{\partial R}, \frac{\partial V}{\partial \tau}\right) = 0$

=> we compute the Hessian matrix :

$$H = \begin{bmatrix} \partial_{\theta\theta}V & \partial_{\theta R}V & \partial_{\theta\tau}V \\ \partial_{R\theta}V & \partial_{RR}V & \partial_{R\tau}V \\ \partial_{\tau\theta}V & \partial_{\tau R}V & \partial_{\tau\tau}V \end{bmatrix}$$

and we focus on the stable solution.

Energy formulation: equilibrium

$$\frac{\partial V}{\partial \theta} = 2K_0 \frac{\cos \theta \sin^3 \theta}{R^2} + \frac{\partial U}{\partial \theta} - \frac{2}{\tan 2\theta} \left(\frac{K_0}{2} \frac{\sin^4 \theta}{R^2} + T + U(R, \theta) \right) = 0$$

$$\frac{\partial V}{\partial R} = T - \frac{K_0}{2R^2} \sin^4 \theta + R \frac{\partial U}{\partial R} + U(R, \theta) = 0$$

$$\frac{\partial V}{\partial \tau} = K_3 \tau - \frac{2R}{\sin 2\theta} \left(\frac{K_0}{2} \frac{\sin^4 \theta}{R^2} + T + U(R, \theta) \right) = 0$$

Once U(R, θ) is given, 3 equations for 3 unknowns (θ , R, M) $(M = K_3 \tau)$

DNA electrostatics

2 e⁻ per base-pair <=> 1 e⁻ / 0.17 nm

DNA electrostatics

Alexander MacKerell www.psc.edu

DNA electrostatics

Alexandre Bonvin

www.nmr.chem.uu.nl

DNA electrostatics : Poisson-Boltzmann

effective charge (10mM): $u = 1.38/L_B$ (m^{-1}) $L_B = rac{e^2}{4\pi\epsilon_0\epsilon_r kT}$

J. Ubbink, T. Odijk, Biophysical Journal (1999)

n = Lk = Tw + Wrwith Wr linear of z

data from Gilles Charvin (ENS-Paris)

data from Gilles Charvin (ENS-Paris)

n = Lk = Tw + Wrwith Wr linear of z

$$\Rightarrow \frac{dZ}{dn} = \frac{4\pi R}{\sin 2\theta} \rho_{WLC}$$

$$\rho_{WLC} = \frac{Z(n=0)}{L}$$

data from Gilles Charvin (ENS-Paris)

data from Gilles Charvin (ENS-Paris)

Results : comparison with Marko model

PB 10 mM

PB 100 mM

J. Marko, "Torque and dynamics of linking number ...", Phys. Rev. E. (2007)

Remarks

Supercoiling radius R is always > 1nm (no DNA-DNA contact)					
T (pN)	0.2	0.45	0.9	3	PB 100 mM
R (nm)	3.8	3.3	3.0	2.3	

Benchmark for DNA-DNA potentials:

- 1. propose a potential $U(\theta,R)$
- 2. compute theoretical slopes
- 3. compare with experiments

Conclusion

Analytical model for plectonemic DNA
Long-range DNA-DNA interaction potential
Reproduces experimental curves (10–100 mM)
Could serve as a benchmark for DNA-DNA potentials

Thermal fluctuations