Extracting DNA twist rigidity from single molecule experiments

Sébastien Neukirch CNRS & Université Paris 6 : Lab. de Modélisation en Mécanique

Twisted RodsMichael Thompson, Gert van der Heijden, Geoff Goss
Centre for Nonlinear Dynamics, Univ. College London, UK

Continuation algorithm

Michael Henderson

IBM, T.J. Watson Center, New York, USA

Mechanics of DNA

John H. Maddocks

Mathematics Institute, Ecole Polytechnique Fédérale, Lausanne

Single molecule experiments

Vincent Croquette, David Bensimon, Gilles Charvin Lab. Physique Statistique, Ecole Normale Supérieure, Paris

Linear Constitutive Relations

 $K_0 = E I$ I : moment of inertia E : Young's modulus

filament	E
Microtubule	1 GPa
DNA	1 GPa
Actine	2 GPa
Collagen	2 GPa
Rubber	2 GPa
Steel	200 GPa

Courbure et torsion sont liées

Expérience de translation sans rotation

boundary conditions

- how the rod is held
- few solutions are admissibles

Find admissible equilibrium solutions : shooting method

1D solution manifold : path following predictor-corrector scheme

ID solution manifold $\begin{cases} \phi_1(u_1, u_2, u_3) = 0\\ \phi_2(u_1, u_2, u_3) = 0 \end{cases}$

At each point :

1-(predictor) we take a guess : Z_i

2-(corrector)

we define a projection :

$$P_i(u_1, u_2, u_3) = 0$$

and we solve :

$$\begin{cases} \phi_1 (u_1, u_2, u_3) = 0 \\ \phi_2 (u_1, u_2, u_3) = 0 \\ P_i (u_1, u_2, u_3) = 0 \end{cases}$$

to obtain A_i

Find admissible equilibrium solutions : discretization methods

Pulling and twisting DNA

Pulling and twisting DNA

force from strand at s_2 acting on strand at s_1

 $\vec{F}_1 = \vec{p} + \vec{F}_2$

 $\vec{p} = p \frac{\vec{r}(s_1) - \vec{r}(s_2)}{|\vec{r}(s_1) - \vec{r}(s_2)|}$

 $\begin{vmatrix} |\vec{r}(s_1) - \vec{r}(s_2)| = \text{thickness} \\ (\vec{r}(s_1) - \vec{r}(s_2)) \perp \vec{d}_3(s_1) \\ (\vec{r}(s_1) - \vec{r}(s_2)) \perp \vec{d}_3(s_2) \end{vmatrix}$

touching conditions :

Filaments coiled in helical structures

Previous work : Fraser & Stump (1998) , Coleman & Swigon (2000)

2 $K_0 n \sin^3 \theta \cos \theta + \epsilon n K_3 R \tau \cos 2\theta + R^2 F \sin \theta - \epsilon R M \cos \theta = 0$

$$pR^{3} = \frac{\sin^{2}\theta}{\cos 2\theta} \left(K_{0} \sin^{2}\theta + \frac{R^{2}F}{n} \cos\theta - \epsilon \frac{RM}{n} \sin\theta \right)$$

ε=+-1 : handednessn : nb of strandsF, M : external stress

Slope of linear part : fonction of t and L/R

Z/L

Vrillage d'une courbe : writhe

$$W_{r}(C) = \frac{1}{4 \pi} \oiint \frac{\left(r(s_{1}) - r(s_{2})\right) \cdot \left(t(s_{1}) \times t(s_{2})\right)}{|r(s_{1}) - r(s_{2})|^{3}} ds_{1} ds_{2}$$

Topology : Writhe

Wr is given by a double integral, hence not additive (a priori).

But there is Fuller theorem (1978): $\int_{0}^{L} \int_{0}^{L} \cdots ds \, ds' \to \int_{0}^{L} \cdots ds$ $Wr = Wr_{Plecto} + Wr_{Loop} + Wr_{Tails}$ (we neglect $Wr_{Loop} et Wr_{Tails}$) $Wr \approx Wr_{Plecto} = -\epsilon \frac{L_{Plecto}}{4 \pi R} \sin(2\theta)$ Tail 2 θ 2RPlectonèmes Z(n) (or ply) Tail 1

Loop

Twist of a curve

rotation of the section arount the tangent

$$Tw = \frac{1}{2\pi} \int_{0}^{L} \tau \, ds = \frac{1}{2\pi} \tau L$$
$$Tw \in \mathbb{R}$$

Tw not topologically invariant Tw is additive (single integrale)

Nombre d'enlacements d'un ruban : Link

$$L_{k}(C_{1}, C_{2}) = \frac{1}{4 \pi} \oiint \frac{\left(r_{1}(s_{1}) - r_{2}(s_{2})\right) \cdot \left(t_{1}(s_{1}) \times t_{2}(s_{2})\right)}{|r_{1}(s_{1}) - r_{2}(s_{2})|^{3}} ds_{1} ds_{2} \qquad C_{1} \text{ et } C_{2} \text{ : bords du ruban}$$

• nombre de rotations d'une boucle autour de l'autre

Topology : Twist, Writhe and Link

 $(\epsilon = -1)$

Writhe (and link): wrong formula

Helical angle θ : fonction of *t* and *L/R*

Helix angle θ is almost constant for all configurations in the linear part of the response curve (same for Twist)

 θ does not depend on K₃ (centre line **r**(s) does not depend on K₃) $\theta = \theta(t, L/R)$

 $t = \frac{T L^2}{\left(2 \pi\right)^2 K_0}$

polynomial interpolation :

$$\frac{R^2 T}{K_0} = \varphi(\theta) = 1.66 \ \theta^4$$

How does this compare with Debye Huckel electrostatic repulsion of two charged (straight) helices ?

$$p \simeq 4 k_B T \frac{L_B}{\lambda_D} v^2 \frac{e^{(-2 R/\lambda_D)}}{\sqrt{2 R/\lambda_D}}$$

Ubbink + Odijk [1999] also in Marko+Siggia [1995]

$$\begin{split} L_{B}: Bjerrum \, length \, (0.7 \, nm) \\ \lambda_{D}: Debye \, length \, (0.8 \, nm) \\ \nu: Poisson-Boltzmann \, effective \, charge \\ per \, unit \, length \, 10-40 \, nm^{-1} \end{split}$$

buffer solution = monovalent salt (phosphate) 10mM

Z/L

$$B = \frac{K_0}{k_B T} = 51 \ nm \qquad \text{(worm-like ch})$$

like chain)

T (pn)	θ (rad)	R (nm)	C/B	P pN/µm
0,25	0,42	6,73	1,75	28
0,33	0,44	6,46	1,71	39
0,44	0,45	6,02	1,72	56
0,57	0,45	5,33	1,64	82
0,74	0,48	5,37	1,71	108
1,10	0,47	4,10	1,62	208
1,31	0,45	3,54	1,41	284
2,20	0,48	3,11	1,40	556

 $\sigma = \frac{n}{n_0} \qquad C = \frac{K_3}{k_B T} = 80 \pm 10 \ nm$

buffer solution = monovalent salt (PB) 10mM

 n_0

molecule ~ 6kb

$$B = \frac{K_0}{k_B T} = 46 \ nm \quad \text{(worm-like chain)}$$

T (pn)	θ (rad)	R (nm)	C/B	P pN/µm
0,45	0,43	5,03	1,13	64
0,90	0,46	4,14	0,98	145
3,00	0,54	3,37	1,21	646

$$C = \frac{K_3}{k_B T} = 50 \pm 5 \ nm$$

data from Gilles Charvin (LPS-ENS)

buffer solution = monovalent salt (PB) 100mM

molecule ~ 6kb

Z/L

buffer solution = monovalent salt (phosphate) 150mM + divalent salt (magnésium) 5mM

molecule ~ 11kb

 $B = \frac{K_0}{k_B T} = 57 \ nm \qquad \text{(worm-like chain)}$

T (pn)	θ (rad)	R (nm)	C/B	P pN/µm
0,45	0,31	2,81	1,08	114
1,45	0,32	1,68	1,01	615
4,30	0,35	1,16	0,99	2 690

$$C = \frac{K_3}{k_B T} = 59 \pm 2.5 \, nm$$

$$\sigma = \frac{n}{n_0}$$

buffer solution = monovalent salt (NaCl) 500mM

 $\sigma = \frac{n}{2}$

 n_0

$$B = \frac{K_0}{k_B T} = 40 \ nm \qquad \text{(worm-like chain)}$$

1

T (pn)	θ (rad)	R (nm)	C/B	P pN/µm
0,62	0,34	2,38	2,02	187
0,95	0,36	2,23	2,12	310
1,30	0,37	1,95	2,02	485
1,80	0,38	1,81	1,90	729
2,70	0,41	1,76	1,92	1 150

$$C = \frac{K_3}{k_B T} = 80 \pm 4 nm$$

data from par R. Fulconis (Institut Curie)

Futur work

- → Include :
 - chirality and twist-extension coupling
 - electrostatic repulsion
- → Model other experiments :
 - • DNA braids (Gilles Charvin)
 - Chromatin (10 nm) fiber (A. Bancaud & J.-L. Viovy)
 - DNA+RecA complex (R. Fulconis & J.-L. Viovy)

Relation between n and σ

$$\sigma = \frac{n}{n_0} = n \frac{H}{L}$$

 $L = 0.34 \ nbp \ nm$

 σ : super-coiling ratio

n : number of turns applied on the magnetic bead $n_0 = L/H$: intrinsic twist of the DNA double helix H = 3.57 nm : pitch of the DNA double helix L : total contour length of the DNA molecule