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Abstract

We consider equilibrium configurations of inextensible, unshearable, isotropic, uniform
and naturally straight and prismatic rods when subject to end loads and clamped boundary
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1 Introduction

The equilibrium of a twisted rod is governed by the Kirchhoff (ordinary differential) equations.
Here we study equilibria of twisted rods that are subject to boundary conditions: the rod is held

at both ends where moments and forces are applied. The way the rod is held imposes boundary

conditions on the solutions of the equilibrium equations. We have to treat a boundary value
problem (BVP). A BVP is driven by three numbers: ndim the dimension of the differential system,

nbc the number of boundary conditions (that can either be initial conditions or final conditions),
and npar the number of free parameters (parameters of the differential system or parameters that

appear in the boundary conditions themselves). The free parameters are sometimes called global
coordinates of the BVP. They span the npar-dimensional global representation space, see [GDS97].

Of the numbers nbc and ndim, only the difference k
def
= nbc − ndim matters : this represents the

number of extra boundary conditions in the sense that an ndim BVP requires ndim boundary
conditions to be well stated (just as an ndim initial value problem requires ndim initial conditions).

If the number npar of global coordinates is equal to the number k of extra boundary conditions,
then the solution set (the set of all global coordinates values that yield solutions of the BVP)

consist in one or more disconnected points. Now if npar > k, the solution set will be one (or

many) npar − k dimensional manifold(s) in the npar-D global representation space. Usually only
boundary values problems with npar − k = 1 are studied because (1) continuation algorithms are

restricted to path following and (2) even when a solution manifold of higher dimension is obtained
its complexity hampers its study. Here we present a case where the global representation space

is 4 dimensional (npar = 4) and where they are 2 extra boundary equations (k = 2). Hence the
solution set is a (or many) surface(s) lying in a 4D space. For a slightly different problem, in

[HMP02] some 2D sheets of the solution set have been computed but via a coordinated family of
one-dimension parameter continuation.

We deal with the simplest twisted rod possible : inextensible, unshearable, isotropic, uniform
and naturally straight and prismatic. We call it an ideal elastica. We choose conservative boundary

conditions that correspond to a very natural way of holding and loading an elastic rod : clamped
boundary conditions (see fig. 1). We make use of a recent algorithm to compute our 2D solution

manifold which has two main components : the trivial surface corresponding to straight shapes
and the post-buckling surface corresponding to buckled shapes. We show how the post-buckling

surface comprises a countable infinity of connected layers and that the scaffolding bearing the
layers is the well know solution set of twisted rings (which are in fact clamped configurations

where the 2 ends join).

The paper is organized as follows: in section 2 we recall the reduction of the equilibrium

Kirchhoff equations we introduced in a first paper [NH03] and we state the BVP. In section 3 we
show how we discretize the BVP and recall the continuation method. In section 4 we describe the

properties of the solution manifold.
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2 The model

We study the equilibrium of a rod when subjected to external forces and moments. The rod is taken

to be ideal i.e. inextensible, unshearable, isotropic, uniform and naturally straight and prismatic.
We use the fixed frame {ex, ey, ez}. As for the director frame {d1,d2,d3}, we only consider d3

which is the tangent to the centre line. We have seen [NH03] that the equations governing the
equilibrium of the centre line of such rods can be expressed as two vectorial differential equations.

2.1 The Kirchhoff statics equations in reduced form

The way the rod is held (i.e. the boundary conditions) impose force f and moment m(s) on the

rod. We have that f = constant and the moment can be expressed as a function of the centre
line r(s):

m(s) = f × r(s) +mK, (1)

where mK is an integration constant which includes r(0). It shows that I0
def
= m(s)·f is a constant

of s. Because we consider boundary conditions involving the centre line only, we simply consider

the differential equations for it and its tangent:

ṙ = d3 (2)

ḋ3 = (f × r +mK)× d3 (3)

which have the following integrals of motion :

d3 · d3 = 1, (4)

I1
def
= (f × r +mK) · d3 (= m3) = constant, (5)

I2
def
=

1

2
| (f × r +mK) |2 + d3 · f = constant. (6)

Note that non-dimensionalization has been performed in order that neither the length of the rod
(now set to 2π) nor any elastic rigidity appear. Considering eqs. (2) and (3) as a set of 6 ordinary

differential equations, a rod configuration will depend on both the parameters (f , mK) and the
initial conditions (d3(0), r(0)). In order to simplify the study, we perform certain choices that do

not reduce the generality :

• we choose the origin of the arc-length such that the point r(0) is at the middle of the rod,
i.e. s ∈ [−π; π].

• We choose the origin of the fixed frame such that r(0) = 0 (then mK = m(0)).

• The case f = 0 being treated in [NH03], we only consider the case of non null force and
choose the ez axis along and in the direction of f = (0, 0, f > 0). The integral of motion I0

becomes I0 = f mz, with mz constant.
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• We choose the ex and ey axis such that the rod at s = 0 lies in the (ex, ez) plane (i.e.
d3y(0) = 0).

• We note m(0) = (mx0, my0, mz0). We have seen [NH03] that we could restrict our study to
solutions with my0 = 0 since the ones with my0 6= 0 either do not fulfill clamped boundary

conditions or are congruent to solutions having my0 = 0. Note that we will refer to mz0 as
simply mz since it does not depend on s. The constant m3 is given by : m3 = mx0 d3x(0) +

mz d3z(0).

2.2 Symmetries of the solutions

With d3y(0) = 0 and mK = (mx0, 0, mz)
T , the solutions of (2) and (3) have the following symme-

tries:

x(−s) = −x(s) , y(−s) = y(s) , z(−s) = −z(s) (7)

d3x(−s) = d3x(s) , d3y(−s) = −d3y(s) , d3z(−s) = d3z(s) (8)

2.3 Clamped boundary conditions

We consider the case where the rod is held in a strong anchoring way: at both sides the position

A
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A
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Figure 1: A rod with clamped boundary conditions: the axis ` (joining point A1 to point A2) and
the tangent of the rod at both ends are aligned. The end-shortening Di of a configuration is the
distance between the point A1 in that configuration and the point A1 in a straight configuration:
D1 = 0, 0 < D2 < L and L < D3 < 2L.

and the tangent of the rod are fixed. Moreover in what we call a clamped configuration, the
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tangent of the rod at both ends is aligned with the axis joining the two ends (see fig. 1). These
clamped boundary conditions can be written as :

d3(−π) = d3(π) (9)

r(π)− r(−π) = k d3(π) with k ∈ ]− 2π; 2π] (10)

Using symmetries (7) and (8), the clamped boundary conditions reduce to :

d3y(π) = 0 (11)

x(π) d3z(π)− z(π) d3x(π) = 0 (12)

2.4 Solution manifold

Writing, as a definition of the initial value θ0

d3(0) = (sin θ0, 0, cos θ0)T ,

we see that the system (2), (3) has one free initial condition {θ0} and three parameters {mz, f,mx0}.
The problem of finding all the rod configurations which satisfy clamped boundary conditions is
equivalent to the problem of finding all the set of values of the global coordinates {mz, f,mx0, θ0}
for which the integration of (2), (3) yields solutions that fulfill eqs. (11) and (12). Hence in the
4D global representation space spanned by {mz, f,mx0, θ0}, we are looking for the 2D solution

manifold implicitly defined by eqs. (11) and (12). The computation of this solution manifold is
explained in section 3. It has the following discrete symmetries:

(mz, f,mx0, θ0) → (−mz, f,−mx0, θ0) (13)

with (x, d3x, y, d3y, z, d3z) → (x, d3x,−y,−d3y, z, d3z)

(mz, f,mx0, θ0) → (mz, f,−mx0,−θ0) (14)

with (x, d3x, y, d3y, z, d3z) → (−x,−d3x,−y,−d3y, z, d3z)

(mz, f,mx0, θ0) → (mz,−f,mx0, θ0 + π) (15)

with (x, d3x, y, d3y, z, d3z) → (−x,−d3x,−y,−d3y,−z,−d3z)

Symmetry 13 is what is left of the continuous register symmetry. Symmetry 14 comes from

the freedom of choosing the orientation of the ex axis. Symmetry 15 comes from the freedom
of choosing the orientation of the ez axis, hence the sign of the constant f which is here taken

positive.
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2.5 End Shortening

We define the end-shortening d as :

d
def
= 1− (r(π)− r(−π)) · d3(π)

2π
= 1− k

2π
. (16)

This is the difference of the distance between the ends when the rod is buckled compared to the

distance between the ends when the rod is straight (=2π). Circularly closed configurations (also
called rings) have d = 1. Taking into account the symmetries of the center line we can write :

d = 1− x(π) d3x(π) + z(π) d3z(π)

π
. (17)

It is sometimes imposed that the rod has constant values of the end shortening. The problem
then boils down to following 1D-curves on the 2D solution manifold (see [CS00, LM94, DLM96]).

This can be done by using classic path following algorithms, see [AG97, Gov00, BCD+02] and

references therein.

3 Numerics: discretization and continuation

The reduced 6D system is:

ẋ = d3y
˙d3x = f x d3z −mz d3y

ẏ = d3y
˙d3y = f y d3z −mx0 d3z +mz d3x

ż = d3z
˙d3z = −f x d3x − f y d3y +mx0 d3y.

x(0) = 0 d3x(0) = sin θ0

y(0) = 0 d3y(0) = 0
z(0) = 0 d3z(0) = cos θ0

d3y(π) = 0
x(π) d3z(π)− z(π) d3x(π) = 0

(18)

We wish to compute the solution manifold of this system over some part of the global rep-

resentation space. We first discretize using a conservative second order finite difference scheme,
then use a recently developed continuation method to find a polygonal tiling of the surface.

3.1 Discretization of the reduced 6D system

We discretize eq. (18) using the Keller box scheme [Kel76] which is second order, and stable.
With a nonuniform mesh {si}, for i = 0, ..., N , and

s0 + s1

2
= 0, si−1 < si,

sN−1 + sN
2

= π
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and the notation (with hi = si+1 − si)

Ag(si+ 1
2
)

def
=

g(si+1) + g(si)

2
= g

(
si+1 + si

2

)
+O(h2

i ) (19)

Dg(si+ 1
2
)

def
=

g(si+1)− g(si)

si+1 − si
= ġ

(
si+1 + si

2

)
+O(h2

i ) (20)

the box scheme is then

Dx = Ad3x Dd3x = fAxAd3z −mzAd3y

Dy = Ad3y Dd3y = fAyAd3z −mx0Ad3z +mzAd3x

Dz = Ad3z Dd3z = −fAxAd3x − fAyAd3y +mx0Ad3y

Ax(s 1
2
) = 0 Ad3x(s 1

2
) = sin θ0

Ay(s 1
2
) = 0 Ad3y(s 1

2
) = 0

Az(s 1
2
) = 0 Ad3z(s 1

2
) = cos θ0.

Ax(sN− 1
2
)Ad3z(sN− 1

2
)− Az(sN− 1

2
)Ad3x(sN− 1

2
) = 0

Ad3y(sN− 1
2
) = 0

This is a second order approximation for both the differential equation and the boundary condi-
tions, and it has the same invariants as the differential equation. Note that for any two functions

u(s) and v(s) :

D(u(si+ 1
2
) v(si+ 1

2
)) ≡ Au(si+ 1

2
)Dv(si+ 1

2
) +Du(si+ 1

2
)Av(si+ 1

2
) (21)

Using the discrete equations, and this identity, we have

D(d3
2
x + d3

2
y + d3

2
z) = D(d3.d3) = 0

D(fx2 + fy2 − 2mx0y + 2d3z) = DI1 = 0.
D(fxd3y + (mx0 − fy)d3x +mzd3z) = DI2 = 0.

So if exact floating computations were done, the difference scheme would preserve the same quan-
tities as the differential equations.

3.2 Continuation

The discrete equations are a nonlinear system of the form

F (u), F : IR6N+10 → IR6N+8.

The dimension 6N + 10 comes from the fact that at each of the N + 1 mesh points we have

six quantities (x, y, z, d3x, d3y, d3z), and that we have four free parameters (mz, f,mx0, θ0). The
dimension 6N + 8 comes from the fact that we write matching equations at N points for the

six quantities (x, y, z, d3x, d3y, d3z) and that besides we have 8 boundary conditions. We use the
multiple parameter continuation algorithm, described in detail in [Hen02], to compute the solutions

of this system. This algorithm requires two calculations: finding a basis for the null space of the
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Jacobian Fu (this is the tangent space of the solution manifold), and projecting a point onto the
manifold orthogonal to the tangent space.

The Jacobian Fu is a bordered band matrix with a border of four columns corresponding to
derivatives w.r.t (mz, f,mx0, θ0), and 8 rows corresponding to the boundary conditions. It is a

rectangular system. We can find a basis for the tangent space Φ (a (6N + 10) × 2 matrix with

Figure 2: The block structure of the Jacobian Fu. IC stands for initial conditions. FC stands for
final conditions

orthonormal columns), by finding a basis for the null space of the Jacobian

Fu(u)Φ = 0.

This is done by the usual version of Gaussian elimination for banded systems with partial pivoting
for the first 6(N − 1) equations, which leaves a 14× 16 sub-matrix. Then, by appending two zero

rows, the Lapack singular value decomposition can be used on that sub-block to find a basis for
the null space. The basis in the original coordinates can then found by back-solves.

Projecting a point s in the tangent space at a point ui onto F = 0 orthogonal to the tangent

space means solving the nonlinear system for u:

F (u) = 0,
ΦT (u− ui) = s .

We use Newton’s method and the same modified band solver. The Jacobian has the same block

structure as above, but two full rows have been added, which makes it a (6N + 10)× (6N + 10)
system. Partial pivoting to eliminate the first 6(N−1) equations results in a full 16×16 submatrix

which we factor using full pivoting. If the Jacobian Fu(ui) is full rank the Jacobian of this bordered
system is non-singular, so there will be some ball |s| < R in which Newton’s method converges

starting from ũ = u+ Φs.
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With these two operations, we can find a polygonal tiling of F (u) = 0. This will be done
using polygons in the tangent spaces Φi, at a set of points {ui}

F (ui) = 0, i = 0, ..., m− 1.

Each point has an associated polygon Pi, which is initially a square, and which is updated by
subtracting a half plane at each step of the continuation. We begin with a initial point u0 and

one tile M0 (tile i is the set of points ui + Φis, where |s| ≤ Ri and s lies the polygon Pi)

F (u0) = 0,
M0 = {u0, R0,Φ0, P0}
P0 = |s|∞ ≤ R0.

At each step of the algorithm we select a new point um, which is the projection of a point sm on
tile i onto F = 0. Tile i is chosen such that the polygon Pi has at least one vertex which is outside

the circle |s| = Ri. If v ∈ vertices(P ) and |vm| > Ri, sm = RivP/|vP |. If the polygons are updated
according to the procedure described below, this guarantees that the new point um is not closer

than Rj to any other point uj (see [Hen02]). This keeps the continuation moving outward.

Figure 3: The basis of the continuation: a new tile is added for any ui whose polygon Pi has a
vertex outside |s| = Ri. The new tile is centered at a point which is the projection onto F = 0 of
the intersection of a line between the origin and the exterior vertex and the circle |s| = Ri. The
figure represents the projection of nearby tiles into the tangent space at ui.

The polygon for tile m is initially the square Pm = {s||s|∞ ≤ Rm}. We identify each tile i

that overlaps the new tile, (|um − u < i| ≤ Rm +Ri), and subtract a halfplane from polygons Pm
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and Pi:
Pi ← Pi ∩

{
s | s.ΦT

i (ui − um) ≤ αim
}

Pm ← Pm ∩
{
s | s.ΦT

m(um − ui) ≤ αmi
}

αij =
1

2

(
1 +

R2
i −R2

j

|uj − ui|2

)
.

In the figures showing the surface we draw the polygons in the tangent space, so that the

surface is made up of planar polygonal facets. The gaps are due to the projections into different
tangent spaces, and the size of the gaps (and the distance between a point in the polygon and its

projection onto the surface) is related to the ratio of the radius and the curvature of the surface.
We have chosen the radius so that this is less than a prescribed tolerance.

Figure 4: Updating the polygons: one halfplane is removed for each overlapping point. Again, the
figure represents the projection of nearby points and polygons into the tangent space at ui. If the
manifold were flat the half spaces defined by αim and αmi are complementary, so there would be
no gap between the polygons.

4 Results and discussion.

We applied this algorithm to the nonlinear two point boundary value problem defined by (2), (3),
(11) and (12). The computation was done in the domain −10 ≤ mz ≤, 10, −10 ≤ mx0 ≤ 10, and

0 ≤ f ≤, 16, with 100 mesh points. An initial point on the manifold was obtained by shooting,
and the continuation was restricted to the first octant (mz ≥ 0, mx0 ≥ 0, f ≥ 0) and θ0 was

considered modulo 2π. At points were the manifold crosses the symmetry planes mz = 0 or
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mx0 = 0, symmetries (13) or (14) were used to get new seed points (and hence new parts of the
manifold) without leaving the first octant. Provided the domain is chosen large enough, we could

get the complete first 8 layers (n = 1− to n = 4+) and some parts of higher n layers.

4.1 Special curves

The solution manifold comprises different important paths in the parameter space (mz, mx0, θ0, f).

• Buckling curves

The trivial planes {θ0 = 0 mod π,mx0 = 0} correspond to configurations of straight rod (d = 0)
twisted or not. On these planes, buckling curves connect straight solutions to buckled solutions

(d > 0). When θ0 = 0 mod 2π the equation of the buckling curves is :

(
cos π

√
m2
z − 4f − cos πmz

)√
m2
z − 4f = 2π f sin π

√
m2
z − 4f , with m2

z > 4f. (22)

Eq. (22) define a countable infinity of curves. Each curve corresponds to a buckling mode. The

-4 -2 2 4
mz

-4

-3

-2

-1

1

2

3

4
f

Figure 5: The thick line (m2
z = 4f) is the buckling curve for a rod of infinite length; while the

plain, dotted, dashed curves are the curves of the 1st, 2nd and 3rd (resp.) buckling modes for a
finite rod (eq. (22)).

buckling mode are numbered b = 1, 2, 3 starting with the curve nearest to the origin (see fig. 5).

Since we restrict our study to positive f , we use the symmetry (15) to fold the (f < 0, θ0 = 0)
part of each buckling curve to (f > 0, θ0 = π). Note that at f = 0, the freedom of choosing the

z axis implies a degeneracy for the angle θ0 which results in the presence of 2 buckling circles :
(f,mz, mx0) = ±wb (0, cos θ0, sin θ0), where wb is the bth strictly positive solution of tanπwb = πwb.

• Planar (untwisted) elastica curves
Other important paths are curves corresponding to the planar elastica solutions (defined by {m3 =

0, I1 = 0}). Planar elastica are divided in two families : inflexional and non-inflexional [Lov44].
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The curves for the pth non-inflexional planar elastica are :

πmx0 = 2pK

(
4f

m2
x0

)
and θ0 = π mod 2π (23)

πmx0 = 2pK

(
− 4f

m2
x0

)
and θ0 = 0 mod 2π (24)

where K(m) is the complete elliptic integral of the first kind (see Appendix of [NH03]). Again we

only consider the f ≥ 0 part of these curves. Then on (23) d ≤ 1 (resp. d ≥ 1) when p is odd
(resp. even). And on (24) d ≥ 1 (resp. d ≤ 1) when p is odd (resp. even).

The curve for the pth (p odd) inflexional planar elastica is :

π
√
f = (p+ 1)K

(
m2
x0

4f

)
and θ0 = π mod 2π (0 ≤ d < 2) (25)

The curve for the pth (p even) inflexional planar elastica is :

−2

√
m

2
cos ŝπ cos θπ = (−1)

p
2 sign(sin θ0)

√
1− cos2 θπ

(
π − 2√

f
(E(ŝπ, m)− E(m))

)

and mx0 = 0 (0 ≤ d < 2) (26)

with m = cos θ0+1
2

, ŝπ = am(π
√
f +K(m), m) and cos θπ = −1 + (cos θ0 + 1) sin2(ŝπ).

• Planar rings (twisted or not)
Planar rings correspond to helices (u− = u0) of null pitch angle (θ(s) ≡ θ0 = π

2
+ kπ). They lie

on the subset m3 mz = f of the post-buckling surface. This corresponds to :

+ N-covered planar untwisted rings at : f = 0, mz = −N sin η, mx0 = N cos η, with η =

θ0 modπ .

+ N-covered planar twisted rings at : mz = ±N , θ0 = π
2

+ kπ, f = (−1)kmzmx0 (k integer).

4.2 Surface when length is infinite

Now the global post-buckling surface has somehow to include all these special paths. Let us start

by considering what happen in the case of infinite length (with f ≥ 0). The configuration of the
rod is associated with the homoclinic orbit in the phase plane (θ, ω) when m3 = mz and f > 1

4
m2
z

(see [NH03, vdHT00]). There is only one buckling curve :

m2
z = 4 f , mx0 = 0 and θ0 = 0 mod 2π (27)

and there is only one path for the planar elastica :

m2
x0 = 4 f , mz = 0 and θ0 = π mod 2π (28)
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Figure 6: Post-buckling surface in the case of infinite length (homoclinic orbit). The surface is
joining the buckling curve (plain blue, θ0 = 0) to the planar curve (dotted red, θ0 = π).

and the post-buckling surface :

m2
x0 +m2

z = 4 f with θ0 = 2 arctan

(
mx0

mz

)
∈ [0; π] (29)

simply joins the buckling curve to the planar elastica curve (see fig. 6).

As we go from infinite length to finite length, we see that the unique buckling curve splits up
in different buckling modes. In the same way the unique planar elastica path split up in different

paths. We may then imprudently conclude that in the finite length case, the solution manifold
is consisted of disconnected layers, each layer connecting the bth buckling curve to the pth planar

curve with b = p. The first problem is that each p planar elastica path is in fact made of two
paths : inflexional and non-inflexional, so there cannot be a one to one correspondence with the

b = p buckling mode.
It turns out that the post-buckling surface is not disconnected, but nevertheless can be divided

in layers. Each layer contains solutions for which the period T in the phase plane (θ, ω) is such

that the pulsation :

Ω =
2π

T
(30)

is bounded by two following integers (see fig. 7). The period T is the period of θ(s) and can be
tracked numerically with d3z(s) = cos θ(s). The layers are label with an integer n:

(odd) n = 1 + 2 Int

(
Ω− 1

2

)
if u− > u0 , (31)

(even) n = 2 + 2 Int

(
Ω− 1

2

)
if u− < u0 , (32)

where u− = cos θ(s = T
2
), u0 = cos θ0 and Int(x) = i such that i ≤ x < i + 1. The label n

is completed by a sign ± which is the sign of d − 1 with d given by eq. (16). Nevertheless,
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numerics show that all the different layers asymptotically (f → +∞) tend either (29) or to the set
(mx0 = 0, θ0 = 0, m2

z ≤ 4f). This accumulation of layers at large f explain numerical difficulties

encountered there (see [DH93, KD99]).

4.3 Connectivity of the layers

Here are the properties of the layers:

• Each n− layer contains the d ∈ [0, 1] part of the nth inflexional planar elastica. And each
n+ layer contains the d ∈ [1, 2] part of the nth inflexional planar elastica. This property can

be used to actually compute each layer by a 2D continuation : to get the n± layer we take
starting point(s) along the corresponding inflexional planar elastica and we do not permit

the continuation to cross the d = 1 set.

• Each layer n− contains the nth buckling curve, but also the d ∈ [0, 1] part of the path of the
nth non-inflexional planar elastica (eq. 23 (resp. 24) with p = n for n odd (resp. n even)).

• Each layer n+ contains the d ∈ [1, 2] part of the path of the pth non-inflexional planar elastica
(eq. 23 (resp. 24) with p = n+ 1 (resp. p = n− 1) for n odd (resp. n even)).

• Each layer n± has a part going to f → +∞ (each part n− is connected to the buckling curve
which goes to f → +∞ and each part n+ is connected to the nth inflexional planar elastica

path which goes to f → +∞).

A natural question arise: what happens when we change layer ? Or put another way: what are
the boundaries of the layers ? We have seen [NH03] that if starting with a (clamped) configuration

with label n± and wanting to continually deform it to another (clamped) configuration with a
different label, we had to pass through a circularly closed configuration (i.e. d = 1). Hence in the

parameter space the different layers n± are bounded by the set of solution with d = 1 : planar or
buckled rings.

4.4 The d=1 skeleton.

The set of closed configurations plays the role of the skeleton of the post-buckling surface : it
connects the n± layers with one another. Closed solutions are of two kinds: planar rings and

buckled (3D) rings. These configurations have been extensively studied in [LM94, DLM96]. There,
a strictly positive integer N was defined to account for the covering of the ring: the number of

times the centre line of the rod covers itself. Along the planar rings branches N = |mz| and
the twisting moment m3 = ±mx0. As stated in [LM94], on a branch of N -covered planar rings,

branches of buckled rings are going to bifurcate each time

|mx0(N,M)| =
√
M + 2N

√
M, (33)

with M a strictly positive integer labeling the buckling modes. The two integers (N,M) were used

to label the buckled rings branches. It has been remarked that the (N1,M1) branch emanating
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Figure 7: Sketch of the disposition of the different layers of the post-buckling surface together
with important special paths of solutions (corresponding to planar or closed configurations). The
harmonics are sorted according to their Ω = N + M value. The borders that part the different
harmonics are the buckled rings that appear for integer value of Ω and the twisted planar rings
that exist for continuous value of Ω. All planar configurations but even inflexional ones have an
integer Ω. Above (resp. under) the line of planar twisted rings, u− > u0 (resp. u− < u0) and
u− = u0 on the line.

from the M th
1 bifurcation point of the N1-covered planar ring branch was eventually joining the N th

1

bifurcation point of the M1-covered planar ring branch. In short N and M could be exchanged.

This property is consistent with our present findings: we first re-define the label M along a
planar twisted ring branch:

M
def
=
√
N2 +mx0

2 −N. (34)

Hence M monotonically increases with the twisting moment, M ∈ [0; +∞[, and bifurcation points

correspond to M reaching integer values. Moreover along planar rings branches, as seen in [NH03],
Ω =

√
m2
z +mx0

2 which yields

Ω = M +N. (35)

At a bifurcation point Ω is then an integer and along the buckled ring branch emanating from

this bifurcation point, Ω is to keep this integer value: otherwise the trajectory in phase plane
would cease to be closed and the rod shape would ceased to be a ring (see [NH03]). This property

of constant Ω along the buckled ring branches can be seen as a necessary (but not sufficient)
condition of the exchanging N ↔M property mentioned above.

We should add that as seen in [NH03], in the case of closed rods, the translational invariance
in arc-length (s → s + δ) implies that solutions with my0 6= 0 exist. Associated to any closed

solution with (mz, mx0, θ0, f) and my0 = 0, there are solutions of same shape with the same mz
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and f but with m̃y0 6= 0, θ̃0 and m̃x0 such that :

mx0 sin θ0 +mz cos θ0 = m3 = m̃x0 sin θ̃0 +mz cos θ̃0 and (36)
1

2
(m2

x0 +m2
z) + f cos θ0 = I2 =

1

2
(m̃2

x0 + m̃2
y0 +m2

z) + f cos θ̃0. (37)

This define a set of 1D continuum, each equivalent to S1, of solutions associated with each discrete
solution we compute. This together with the continuum associated with the register symmetry

yield the T 2 torus of solutions studied in [LM94, DLM96, DH01].

4.5 Description of the figures

The continuation code can output the data in different formats (e.g. the VBM file format [Paf98]).

We have used OpenDX to post-process the data and plot the figures presented here. We show θ0

projections of the layers in the half space (mz, mx0, f ≥ 0). Due to symmetry (15) the projections

in the f ≤ 0 are the same. We also make use of the two other symmetries (13) and (14) to only
show a quarter of each layer n±. Nevertheless each one of these quarters does not correspond to

the truncation of the layers in a specified octant of the (mz, mx0, f ≥ 0) half space. Indeed the

quarters we show do cross the planes mz = 0 or mx0 = 0.

In section 4.3 we stated that each n± layer comprises an inflectional elastica path and a non-

inflexional elastica path. We now use these paths (instead of the mz = 0 or mx0 = 0 planes) to clip
each layer into four quarters. A quarter is defined as a part of a layer that joins the inflectional and

non-inflectional planar elastica paths. A layer, which is itself bounded by d = 1 paths, contains 4

quarters that are split by the inflectional and non-inflectional planar elastica paths belonging to
it. In the case of a n− layer, we further need the buckling curve to part the quaters. For example

to compute one of the 4 quaters of layer 2-, we take a seed point and we prevent the continuation
to either cross any d = 1 path or the 2nd buckling curve or the p = 2 inflexional planar elastica

curve or the p = 2 non-inflexional elastica curve.

In fig. 8 to 15 a quarter of each layer from n = 1− to n = 4+ is shown. Having one quarter

of a layer, one can get the other three quarters (and hence the entire layer) by using symmetries

(13) and (14). So by reflecting each of the quarters, we produced fig. 16, but there we only kept
end-shortening values near 1 (i.e |d − 1|/d less than few % ). This unravels the connectivity of

the layers. In fig. 17 all the d values are kept but we only show the layers in one octant. Fig. 18
shows how the buckled rings (N = 1,M = 1) path is the border that parts layers 1- and 1+, and

how the planar rings paths (N = 1,M ∈ [0; 1]) is the border that parts layers 1- and 2+.

5 Conclusion

In this paper we have shown how a recently introduced continuation algorithm could be used to

compute the solution manifold of a boundary value problem arising from elasticity theory. The set
of all possible buckled configurations of a twisted rod held in an (aligned) strong anchoring way

has been computed. Making use of the symmetries of the problem (both of the material and of
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the boundary conditions), a reduction of the Kirchhoff equilibrium equations has been performed
and the properties of the solution manifold described. Moreover we have shown how this solution

manifold could be split into layers making its display easier, the borders of the layers being the
well known 1D solution set of buckled rings.
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Figure 8: A quarter of layer 1- in the half space (mz, mx0, f ≥ 0). Yellow curves correspond to
twisted rings (either planar or buckled), orange circles (at f = 0) to untwisted planar rings, red
curves to non-inflexional planar elastica, and purple curves to inflexional planar elastica. Blue
curves are the buckling curves.

Figure 9: A quarter of layer 1+ in the half space (mz, mx0, f ≥ 0).

18



Figure 10: A quarter of layer 2- in the half space (mz, mx0, f ≥ 0).

Figure 11: A quarter of layer 2+ in the half space (mz, mx0, f ≥ 0).

Figure 12: A quarter of layer 3- in the half space (mz, mx0, f ≥ 0).

Figure 13: A quarter of layer 3+ in the half space (mz, mx0, f ≥ 0).

Figure 14: A quarter of layer 4- in the half space (mz, mx0, f ≥ 0).

Figure 15: A quarter of layer 4+ in the half space (mz, mx0, f ≥ 0).

Figure 16: Layers 1±, 2±, 3± and 4± for d around 1 in the entire half space (mz, mx0, f ≥ 0).

Figure 17: Layers 1±, 2±, 3± and 4± in one octant of the space (mz, mx0, f).

Figure 18: The boundary of the (green) quarter of 1- and the (red) quarter of 1+ is the (N =
1,M = 1) (yellow) path of the buckled rings solution set. The boundary of the (green) quarter of
1- and the two (yellow) quaters of 2+ is the (N = 1,M ∈]0; 1]) (yellow) path of the planar twisted
rings solution set and the (N = 1,M = 0) (orange) path of the planar untwisted rings solution
set.
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