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When thin brittle rods such as dry spaghetti pasta are bent beyond their limit curvature, they
often break into more than two pieces, typically three or four. With the aim of understanding
these multiple breakings, we study the dynamics of a rod bent just below its limit curvature and
suddenly released at one end. We find that the sudden relaxation of the curvature at the newly
freed end leads to a burst of flexural waves, whose dynamics are described by a self-similar solution
with no adjustable parameters. These flexural waves locally increase the curvature in the rod and
we argue that this counter-intuitive mechanism is responsible for the fragmentation of brittle rods
under bending. A simple experiment supporting the claim is presented.

PACS numbers: 62.20.Mk, 46.50.+a, 46.70.De

The physical process of fragmentation is relevant to
several areas of science and technology. Because different
physical phenomena are at work during the fragmenta-
tion of a solid body, it has mainly been studied from a sta-
tistical viewpoint [1–5]. Nevertheless a growing amount
of works have included physical considerations: surface
energy contributions [6], nucleation and growth proper-
ties of the fracture process [7], elastic buckling [8, 9],
and stress wave propagation [10]. Usually, in dynamic
fragmentation, the abrupt application of fracturing forces
(e.g. by an impact) triggers numerous elementary break-
ing processes, making a statistical study of the fragments
sizes possible. This is in contrast to quasi-static fragmen-
tation where a solid is crushed or broken at small applied
velocities [11].

Here we consider such a quasi-static experiment
whereby a stick of dry spaghetti is bent beyond its limit
curvature. Most of the time, the pasta does not break in
half but typically into three to ten pieces. This simple
and intriguing experiment, which puzzled Feynman him-
self [12], remains unexplained to date. In this Letter, we
explain this multiple failure process and point out a gen-
eral mechanism of cascading failure in rods: a breaking
event induces strong flexural waves which trigger other
breakings, leading to an avalanche-like process.

Let us consider a rod which is held at both ends and
bent quasi-statically with an increasing, uniform curva-
ture. It breaks at time t = 0 when its curvature κ0

reaches its limit value κ∗: a dynamic crack crosses the
weakest section and breaks the rod into two halves. As
the rod was initially bent with uniform curvature, the
location of this first failure point is that of the strongest
defect. We shall not further discuss this initial breaking
event, but instead focus on the subsequent dynamics of
either half of the rod, for t > 0, and show that this dy-
namics generically leads to new breaking events at later
times.

Since we are not interested in the statistics of the initial
breaking event, we introduce and analyze throughout this
Letter a model problem in which the release of a rod
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FIG. 1: The dynamics of a rod fragment following the initial
breaking event in a brittle rod is modeled by releasing at time
t = 0 a rod with fixed length L, initial curvature κ0 and no
initial velocity.

mimics the initial breaking event. Both problems indeed
obey the same equations but the advantage of the model
problem is that the length L of the fragment is known
in advance. In the model problem, the rod is initially
uniformly bent and at rest. This is achieved by clamping
one end and applying a moment M0 at the other end: M0

plays the role of the internal moment transmitted across
the section that is about to fail, see Fig. 1. At time t =
0, this end is suddenly released as the applied moment
M0 is removed instantaneously. The rod no longer is in
equilibrium and we study its subsequent dynamics.

The dynamics of thin rods are described by the cele-
brated Kirchhoff equations [13] which in the limit of small
planar oscillations take the form:

L4 κ,s4(s, t) + T 2 κ,t2(s, t) = 0, (1)

where s is the arclength and a comma in indices denotes
a partial derivative. Here, we have introduced a typ-
ical time T built from the rod mechanical properties:
T = L2/γ where γ =

√

EI/(ρA), with E the Young’s
modulus, ρ the mass density, A the area and I the prin-
cipal moment of inertia of the cross section. For a rod
with circular cross section of radius r, I = πr4/4 and
γ = c r/2, where c =

√

E/ρ is the sound velocity in the
material. Note that T is directly proportional to the pe-
riod of the fundamental mode of free oscillations of the
rod [14], Tfree = 1.79 T .

Equation (1) calls for some remarks. First, we base
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our presentation on the equations for rods in the limit
of small oscillations, and we show that this linear the-
ory captures the essence of the phenomenon (nonlineari-
ties are only considered at the end, in the simulations of
Fig. 4). Second, we are only interested in planar config-
urations of the rod: the rod geometry is parameterized
at any time t by a single unknown function of the arc-
length s, its curvature κ(s, t). Although the Kirchhoff
equations are classically studied in terms of the trans-
verse displacement y(s, t), we use the curvature as it is
the physical quantity connected to the failure of the rod.

On Eq. (1), we impose clamping conditions at s = L:
κ,s2(L, t) = 0, κ,s3(L, t) = 0, and free boundary condi-
tions at s = 0: κ(0, t) = 0, κ,s(0, t) = 0. These four
boundary conditions in s associated with the two initial
conditions κ(s, 0) = κ0 and κ,t(s, 0) = 0 (uniform curva-
ture κ0, no initial velocity) warrant, in principle, a unique
solution κ(s, t) to Eq. (1).

A key remark must be made here, which is at the heart
of the rich dynamics of the released rod. These initial
and boundary conditions are inconsistent: the curvature
κ(0, t) at the free end has to be κ0 6= 0 at initial time
t = 0, while the free end condition requires that it van-
ishes at any time t > 0. This inconsistency can be un-
derstood easily: the initial configuration with uniform
curvature κ0 violates the constitutive relation of the rod
(the curvature is proportional to the internal moment,
even in the dynamic theory of rods) and must there-
fore vanish near a free end. This is a typical boundary
layer situation. The boundary layer, studied in a sep-
arate paper [15], restores the small thickness r of the
rod into the equations and introduces a small timescale
Ts = r/c, of order 1 µs for spaghetti, where c is the typi-
cal speed of propagation of the transverse dynamic crack.
The ratio of this timescale to the ‘macroscopic’ one reads
T/Ts = 2 (L/r)2. For spaghetti, the aspect ratio is large,
L/r ∼ 250, and so T/Ts ∼ 104. The initial incompat-
ible curvature κ0 near the edge relaxes over the short
timescale Ts. This abrupt relaxation generates a burst of
flexural waves which are strong enough to break the rod,
as we show later. The separation of time scales allows
one to obtain an analytic solution [16] to our problem in
the so-called intermediate asymptotic regime

Ts � t � T (2)

which we study here. Owing to the obvious scaling
s ∼ L

√

t/T , we seek a solution of Eq. (1) in the form
κ(s, t) = κ0 u(ξ), where the self-similarity variable is
ξ = (s/L)/

√

t/T = s/
√

(γ t). Note that we have fac-
tored out the initial curvature κ0, as we use the linear
Kirchhoff equations. The boundary conditions for u(ξ)
are derived from those for κ: u(0) = 0, u′(0) = 0 and
u(+∞) → 1. Substituting this self-similar form of κ(s, t)
into Eq. (1) yields the following equation for the self-
similar solution u(ξ):

4 u′′′′(ξ) + ξ2 u′′(ξ) + 3 ξ u′(ξ) = 0 (3)
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FIG. 2: (a) Numerical solution of the Kirchhoff equation (1)
with clamped-free boundary conditions, for a uniform initial
curvature κ0. The curvature at the free end κ(0, t) relaxes
to zero within the first few time steps (quick relaxation of
the incompatible curvature near free end) while it is given
in the intermediate regime (2) by the universal self-similar
solution (4), shown in (b) as a function of ξ = s/

√
γ t. At later

times, for t ∼ T , reflections are generated from the clamped
end s = L.

Imposing that u(ξ) matches the initial condition for large
ξ implies that u′′(0) = 0, as shown with the help of an
integral of motion. This last condition, combined with
the previous ones, yields a unique self-similar solution to
Eq. (3):

κ(s, t) = 2κ0 S

(

1√
2π

s√
γ t

)

, (4)

where we have introduced the Fresnel sine integral,
S(x) =

∫ x

0
sin(π

2
y2)dy, also arising in diffraction theory.

Equation (4) does not describe a progressive wave with
constant velocity, s ∼ c t, but instead a self-similar so-
lution s ∼ √

γ t. This reflects the dispersive nature of
Eq. (1).

Bent rods that are suddenly released at one end are
all described in the intermediate regime (2) by the same
universal solution (4) independently of the material prop-
erties, of the details of the initial release or breaking (as
long as they take place over a short timescale Ts ≪ T )
and even of the boundary conditions imposed at the other
end s = L, which have not been used to derive Eq. (4).
This universal solution is plotted in Fig. 2 along with a
numerical solution of the Kirchhoff equations (1). The
latter features, as expected, the self-similar regime for
Ts � t � T in which a burst of flexural waves emit-
ted from the released end s = 0 travels along the rod
with a square root time dependence. The self-similar
solution (4) accurately describes the rod dynamics un-
til reflections on the clamped end s = L take place, for
t ∼ T .

A key property of the self-similar solution (4) is that
the curvature κ(s, t) is locally significantly larger than
the initial curvature κ0. Indeed, for ξ = 2

√
π, the self-
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FIG. 3: A dry spaghetti is bent into an arc of circle and
suddenly set free, while its lower end remains clamped. Its
subsequent dynamics exhibits a local increase of curvature.
Selected frames shot with a fast camera at 1000 Hz: (a)
release ta = 0, (b) intermediate frame tb = 0.0159 T , (c)
frame just before rupture tc = 0.0509 T , and (d) after rupture
td = 0.0596 T . Predictions of the self-similar and numerical
simulations based on equation (1) are superimposed, without
any adjustable parameters: rod profile (dotted line) and os-
culating circle (dashed lines) at the point of largest curvature
(arrow). Note that the rod breaks at the point of maximal
curvature.

similar solution reaches its maximum where the curvature
is 1.428 times its initial value κ0. This coefficient is uni-
versal, being twice the maximum of the Fresnel sine in-
tegral. It characterizes the maximum of curvature in the
intermediate regime (4) (the long time behavior of the
curvature is discussed at the end of this Letter). This
increase of curvature is indeed observed in the experi-
ment presented in Fig. 3. A Barilla n◦ 1 dry spaghetti
pasta of length L = 24.1 cm was clamped and bent into
an arc of circle, by an angle κ0 L = 195◦. Digital pho-
tographs were acquired at 1000 frames per second using a
fast camera while one end was released. A flexural wave
travelling from top (released end) to bottom (clamped
end) is clearly visible on the intermediate frames in the
form of a local increase of curvature. The predictions of
the self-similar solution, namely the point of maximum
curvature, (s/L)/

√

t/T = 2
√

π, and the smallest oscu-
lating circle with radius 1/(1.428 κ0), are superimposed
without any adjustable parameter. The rod profile given
by a numerical integration of equation (1) is shown as
well [17].

The increase of κ(s, t) is rather unexpected. Indeed,
one could imagine the motion of the rod to be essentially
given by its fundamental mode of oscillation around the
straight configuration: κ(s, t) ∝ κ0 cos(2π t/Tfree), where
Tfree = 1.79 T is the period of free oscillations. This sim-
ple picture misleadingly suggests that, after the release of
the rod, its curvature remains bounded by its initial value
κ0 at all times, and reaches this value every half-period
when the rod is bent the other way around. In fact, the
quick initial relaxation of the nonzero curvature κ(0, t) at
the free end sends a burst of flexural waves, something
that is not captured by the fundamental mode only. Such

a burst is generated when a brittle rod first breaks. By
increasing the curvature locally, this burst triggers sec-
ondary breaking events, which ultimately accounts for
the multiple failure of brittle rods.

The increase of curvature has thus been described an-
alytically and was confirmed by a direct observation. We
now focus on the long time behavior of released rods that
break, see Fig. 3 (d). We explain this delayed breaking
using the self-similar flexural wave (4), together with its
reflections on the clamped end. Analysis of the breaking
time and location provides a quantitative check of the
theory presented here.

In Fig. 3 (d), the rod ruptured at a distance s = .76 L
from the free end, at a time t = 6.7 ms after the re-
lease. From the period of free oscillations, we measured
T = 114 ms directly, hence a dimensionless fracture delay
t/T = 58.5 10−3. By repeating the experiment, we found
that the failure delay and its location along the rod vary.
Failure appears to be extremely sensitive to the initial
curvature κ0 (rods that are closer to their limit curva-
ture tend to break sooner after release, hence closer to
the released end) and probably also to the presence of
defects. Twenty-five experiments were carried out with
various pasta diameters (Barilla n◦ 1 with r1 = .57 mm
and γ1 = 0.521 m2/s; Barilla n◦ 5 with r5 = .84 mm
and γ5 = 0.735 m2/s; Barilla n◦ 7 with r7 = .95 mm
and γ7 = 0.82 m2/s) and initial curvatures (in the range
9.7 m−1–15.3 m−1), with L around 24 cm. All the break-
ing events collapse onto well-defined regions in a space-
time diagram (s/L, t/T ), see Fig. 4.

These regions can be calculated as follows. Assum-
ing the rod has no defect, it breaks as soon as its limit
curvature κ∗ is reached somewhere. The first breaking
event after the release must therefore correspond to the
first time that |κ(s, t)| reaches the value κ∗. This means
that breaking occurs necessarily at a point in the plane
(s/L, t/T ) that is a record of curvature since the experi-
ment started: for all s′ and all t′ < t, |κ(s, t)| > |κ(s′, t′)|.
This defines the so-called absolute curvature records. Un-
der the opposite assumption that defects are important,
κ∗ becomes a function of s and rupture is simply expected
to take place at a local curvature record, that is at a point
(s, t) such that |κ(s, t)| > |κ(s, t′)| for all t′ < t and same
s. Global and local curvature records determined from
numerical solution of the full (nonlinear) Kirchhoff equa-
tions define a rather narrow region, shown in Fig. 4, onto
which the experimental data points indeed collapse with
no adjustable parameter.

An analytical prediction for the times of breaking is
obtained by considering the interferences between the
self-similar wave and its reflection on the clamped end.
Constructive interferences lead to strong records of cur-
vature, where breaking events accumulate. The incident
wave is characterized by a series of local maxima indexed
by an integer k ≥ 0, see Fig. 2(b), which travel according
to s2/(4πγt) = 2k + 1: note that the main maximum,
k = 0, is slower than its precursors, k ≥ 1. The re-
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FIG. 4: Space-time diagram, in rescaled coordinates, of the
breaking events obtained by repeating the experiment of
Fig. 3 (data points) for different pasta radii and initial curva-
tures κ0. The time and location of curvature records predicted
by numerical simulations of the full (geometrically nonlinear)
Kirchhoff equations for κ0 L = π are shown in the background,
with no adjustable parameters: absolute records (black) and
local ones (grey). The breaking event are concentrated on is-
lands which lie approximately at the intersection of the paths
(dashed lines) followed by local maxima of the incident and
reflected waves (see main text). Percentages show the relative
increase of curvature κ/κ0 at selected points.

flected wave, as constructed by the method of images,
has similarly local maxima indexed by k′ ≥ 0 travelling
in the opposite direction: (2L − s)2/(4πγt) = 2k′ + 1/2.
Solving for t, the crossing time of the main incident
maximum (k = 0) and a maximum k′ ≥ 0 in the re-
flected wave, leads to an analytical prediction of discrete

breaking times: t/T = 1/[π(1 +
√

2k′ + 1/2)2], that is
t/T = 0.109, 0.048, 0.033 for k′ = 0, 1, 2 respectively.
This simple prediction based on the linear theory com-
pares well with both the accumulation of breaking events
at rescaled times t/T ≈ 0.13, 0.055, 0.030 in the exper-
iments, and with the islands obtained by numerical in-
tegration of the full (nonlinear) Kirchhoff equations, see
Fig. 4. Note that these rupture delays are considerably
shorter than what would be conjectured from a crude
analysis, t/T ∼ Tfree/T = 1.79.

In the present analysis, we have only considered the
first breaking event after release, although multiple fail-
ures were commonly observed in experiments [18]. Sec-
ondary failure events are most likely described by the
same theory, with a shorter timescale T (fragments are
shorter) and with the additional difficulty that the ini-
tial curvature profile is not uniform. The present physi-
cal mechanism for fragmentation of slender elastic bodies,
based on flexural waves, leads us to expect specific statis-
tics of fragments sizes. Recall that the maximal curvature
increases during the initial boundary layer, t ∼ Ts, and
later reaches a plateau, κ/κ0 = 1.43. If the initial curva-
ture is sufficiently close to the limit one, very early sec-
ondary breaking events should occur and the length scale
r should be present in the statistics of fragment size. We
have indeed often observed the ejection of tiny rod frag-

ments, with typical size r. However, the fragments were
most of the time much larger (with a size comparable to
L): the curvature, initially very close to the static limit
curvature, was often multiplied by three before rupture
was actually initiated. This could be due to the delayed
character of the rupture process, which remains to be un-
derstood before one can predict the statistics of fragment
sizes. The present analysis indeed provides an effective
characterization of the breaking times and locations with-
out making use of any specific rupture criterion.

When a bent rod reaches its limit curvature and breaks
at a first point, a burst of flexural waves described by a
universal self-similar solution is sent through the newly
formed fragments, which locally further increases the cur-
vature. The limit curvature is therefore exceeded again
at a later time, allowing a cascading failure mechanism
to take place. The multiple breaking of spaghetti reflects
a peculiar behavior of elastic rods: removing stress can
increase strain.
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