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When a bubble bursts at the surface of a liquid, it creates a jet that may break up and
produce jet droplets. This phenomenon has motivated numerous studies due to its multiple
applications, from bubbles in a glass of champagne to ocean/atmosphere interactions.
We simulate the bursting of a single bubble by direct numerical simulations of the
axisymmetric two-phase liquid-gas Navier-Stokes equations. We describe the number, size,
and velocity of all the ejected droplets, for a wide range of control parameters, defined
as nondimensional numbers, the Laplace number which compares capillary and viscous
forces and the Bond number which compares gravity and capillarity. The total vertical
momentum of the ejected droplets is shown to follow a simple scaling relationship with a
primary dependency on the Laplace number. Through a simple evaporation model, coupled
with the dynamics obtained numerically, it is shown that all the jet droplets (up to 14)
produced by the bursting event must be taken into account as they all contribute to the total
amount of evaporated water. A simple scaling relationship is obtained for the total amount
of evaporated water as a function of the bubble size and fluid properties. This relationship
is an important step toward building a physics-based model of the ocean-atmosphere water
vapor fluxes controlled by bubbles bursting at the surface.

DOI: 10.1103/PhysRevFluids.5.033605

I. INTRODUCTION

The production of droplets due to bubbles bursting at the surface of a liquid has long been
considered as a fundamental mechanism controlling larger-scale fluxes between the liquid and
the gas. This is particularly true in a geophysical context, with the pioneering studies on aerosol
generation of Woodcock and Blanchard [1,2]. Blanchard was the first to measure the size of the
droplets produced by a bursting bubble [3]. In a follow-up article [4] they estimated the height of the
ejected droplets. The overall importance of this mechanism for large-scale atmospheric (bio)physics
was further underlined by Blanchard and collaborators in subsequent articles [5,6]. After a relatively
quiet interval, the topic was revived in the 1990s by the important experimental studies of Spiel, who
obtained statistics on the number, sizes, and velocities of the droplets produced by bubbles bursting
in water [7] and in salt water [8]. More recently, this process was also studied in the context of the
spread of aroma of sparkling beverages, in particular champagne wine [9,10].

From a theoretical perspective, recent advances in the description of two-phase interfacial
flows coupled with the development of accurate numerical methods have led to a much-improved
understanding of the experimental measurements. The first direct numerical simulation of the
axisymmetric bursting was carried out in our group in 2002 [11] and led to the discovery that
the main parameter controlling the speed and size of the first-ejected droplet is the ratio of
the surface tension and viscous forces (as estimated with the Laplace or Ohnesorge number).
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More specifically, and somewhat counterintuitively, this study showed that there exists an optimal
viscosity (corresponding to a Laplace number around 1000) for which jet focusing is most efficient
and leads to the ejection of very fast, tiny droplets (several tens of m/s for air in water). In the
meantime, the use of high-speed cameras has also led to very detailed and accurate experimental
data on the size and velocity of the first droplet [12—14]. These experimental data sets, combined
with high-resolution numerical results obtained using the methods developed in our group [15,16],
now give a very consistent picture of the behavior of the jet focusing and first-ejected droplet
[17,18], for the whole range of controlling parameters. These results have been used very recently
by Gafidn-Calvo [19,20] and Gordillo and Rodriguez-Rodriguez [21] to propose scaling models
able to describe accurately the size and velocity of the first droplet, for Laplace numbers larger
than the optimal value. Lai ef al. [22] reconciled such scalings with the cavity collapse and jet
formation described by inviscid inertio-capillary self-similar solutions, therefore providing universal
functional form for the dynamical process up to the ejection of the first drop.

While the behavior of the first-ejected droplet can thus be considered as relatively well under-
stood, the number, sizes, and speeds of subsequent droplets are much more poorly documented.
From our knowledge, the only experimental data sets were obtained by Spiel [7,8] for air bubbles in
water and saltwater. Numerical results on subsequent droplets are also scarce. When considering the
integrated flux due to the entire history of bubble bursting, there is no objective reason to assume
that the dominant role is played by the first-ejected droplet. This observation was the motivation
behind Spiel’s 1994 experimental study.

The primary aim of the present article is to understand the behavior of all the droplets produced,
in the perspective of being able to explain and predict the resulting fluxes due to the entire bubble
bursting process. The main result used to achieve this goal is an extensive data set obtained through
direct numerical simulations. After a brief summary of the numerical setup (Sec. II), we describe
in detail the process of multiple droplet generation by a bursting bubble. The numerical setup is
validated through a systematic study of the first droplet behavior, compared to experimental and
numerical results available from previous work (Sec. III). Section IV constitutes the bulk of the study
with systematic data on the number, sizes, and speeds of all droplets produced and an interpretation
of these results. The resulting vertical momentum is then discussed. Finally, in Sec. V we show how
these data can be used to build a semiempirical model able to explain and predict the total amount
of water vapor transferred from water to air as a function of the size of the bursting air bubble.

II. NUMERICAL METHOD

We consider two Newtonian, immiscible fluids separated by an interface with constant surface
tension. We note p; and p; the density and viscosity of fluid i. y stands for the surface tension
coefficient and g is the acceleration of gravity. The radius of the bursting bubble is denoted Ry,.
Four dimensionless numbers describe the problem fully. We set the density and viscosity ratios
t0 Pliq/ Peaz = 998 and iiq/heaz = 55, which is close to the values for air and water. For the two
remaining numbers, we chose the Laplace number, La, which compares the capillary forces with the
viscous forces, and the Bond number, Bo, which compares the gravitational forces with the capillary
forces. They are defined as

iqV R
La— plq)z/ b’ )
Miig
igR?
Bo = 18T @)
14

The initial condition is given by the shape of a bubble at rest below an horizontal interface. This
temporary equilibrium shape is due to the long drainage time of the thin liquid film separating the
top of the bubble from the outside gas phase, compared to the time taken to reach balance between
surface tension forces and buoyancy. This balance of forces is described by the Young-Laplace
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(a) (b)

FIG. 1. Shapes of a bubble at rest used to initialize the simulations. The shapes are obtained by solving
the Young-Laplace equation for varying Bond numbers: (a) Bo = 0.00094; (b) Bo = 0.0088; (c) Bo = 0.074;
(d) Bo = 0.63.

equation [12,23], which we solve numerically [24]. Figure 1 represents the different bubble shapes
obtained when varying the Bond number (which is the only relevant parameter for the Young-
Laplace equation).

The 2D axisymmetric simulations are performed using the Basilisk open-source library [25],
solving the two-phase incompressible Navier-Stokes equations with surface tension. The principle
of the method and the numerical schemes are close to that used in our previous work [17,22,26-28]
using the Gerris solver [15,16], but their implementation benefits from the various improvements
brought by the new Basilisk framework, in particular regarding the mesh adaptation methods.
The adaptive mesh is critical to the success of these simulations as it allows fast solution for
discretizations with an equivalent resolution of up to 4'* grid points.

While gravity is always taken into account to obtain the initial shape, its action is not taken into
account in the dynamics, for Bond numbers below 0.1. This approximation is justified as will be
shown later when validating with previous results.

Figure 2 summarizes a typical sequence of droplet generation for a Bond and Laplace number of
Bo = 0.0094 and La = 4847, respectively. The bottom three panels give the axisymmetric profiles
of the free surface and ejected droplets. The top graph illustrates the evolution with time of the
vertical position of the tip of the jet (black) and of each generated droplets (colors), the vertical
position normalized by the bubble radius Ry,. The time is normalized by the capillary timescale 7, =
v/ ,oling /v - The position of the center of mass of the droplets is obtained by integrating numerically
over each subset of contiguous grid points, separated by the gas phase. The mass of each droplet is
also obtained in this way and is conserved accurately during their evolution.

Using this summary data, we can extract automatically the initial ejection speed, V, and volume
of each generated droplet. We define the capillary number:

V 1ig
y 9

which compares the jet (or droplets) velocity with the visco-capillary velocity y /uiiq. Each droplet
velocity will be denoted Ca,, with i the index of the droplet (1 for the first droplet, 2 for the second,
etc.).

Ca= 3)
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FIG. 2. Jet formation and ejection of multiple droplets by a bursting bubble for Bo = 0.0094 and La =
4847. Top graph: Evolution with time of the vertical position of the jet tip (black) and droplets (colors). Time
is normalized by the capillary timescale 7. = /piqR}/y . Bottom three panels: Axisymmetric profiles of the jet
and droplets at the three different times (a), (b), and (c) indicated in the top graph.

III. FIRST DROP DYNAMIC STUDY
A. Velocity of the first droplet

As underlined in the introduction, the velocity of the first-ejected droplet, as a function of
the control parameters, is now well known, both experimentally and numerically. To validate our
numerical setup, as well as the algorithms in Basilisk, we first compare our results to previous
numerical and experimental data. As pointed out in Deike et al. [17], some care needs to be taken
in the definition of the ejection speed in order to obtain meaningful comparisons. We use the speed
of the droplet just after its formation. This is comparable to the plateau in the jet velocity used in
Deike et al. [17].

Figure 3 illustrates the evolution of the first droplet dimensionless velocity Ca,, for a range of
Laplace (500 to 500 000) and Bond numbers (0.94 x 1073 to 1). Both our data (filled diamonds)
and data from Deike et al. [17] (empty triangles) are represented. The data from Deike et al. were
validated against experimental data from Ghabache et al. [12]. Good agreement between the two
data sets is obtained for the whole range of Laplace and Bond numbers. A maximum in ejection
speed of around three times the visco-capillary velocity is obtained for a Laplace number around
1000 at low Bond numbers. At higher Bond numbers this maximum decreases (down to around 0.4
for Bo = 0.64) and the value of the corresponding optimal Laplace number increases (up to around
4000 for Bo = 0.64).

Gafian-Calvo [19] proposed a scaling law for the velocity of the first drop based on a balance of
the momentum equation terms during curvature reversal, which leads to the black curve in Fig. 3(a),
given by

Ca = k,[La(La] /% — La~"/?)]7%/4, 4)
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FIG. 3. (a) Dimensionless velocity of the first drop Ca as a function of the Laplace number. Data from
Deike et al. [17] (open triangles) and our numerical data (plain diamonds). The color scale indicates the Bond
number of the simulation, varying from 1073 to 1. The scaling law proposed by Gafian-Calvo under the no-
gravity assumption [19], given by Eq. (4), and its asymptotic scaling, Ca oc La~** are shown in solid and
dashed lines, respectively. An equivalent scaling discussed in Ref. [21] is indicated. As reported by Deike ef al.
[17], gravity starts to induce a correction in the first drop velocity for Bo > 0.1. (b) Rescaled data set using
the empirical relation proposed by Deike ef al. [17], given by Eq. (5), and adapted from Gafian-Calvo [19].
Our results are fully consistent with existing literature and confirm that the jet velocity before droplet ejection
measured in Ref. [17] is similar to the first droplet ejection velocity.

where La, &~ 500 is the critical value of the Laplace number below which no droplet is produced
and k, &~ 16 is a nondimensional coefficient fitted to the data. Note that gravity is not taken into
account in this scaling (Bo = 0).

Gordillo and Rodriguez-Rodriguez [21] discussed an alternative argument for the formation
velocity of the jet at the bottom of the cavity, considering the focusing of the capillary waves.
This result is compatible with the present data and equivalent in the asymptotic limit La >> 1000,
also indicated on Fig. 3(a), as it reads Ca ~ La=%/4,

The effect of gravity is taken into account empirically in the rescaling of the x axis proposed by
Deike et al. (2018), which can be written

Ca = kypeike (1 + @Bo) /*La=¥/*(La;"/? — La™1/?)73/4, 5)

where « is a nondimensional coefficient. We fitted o = 2.2 and k,peixe = 19 to the data to obtain the
rescaling in Fig. 3(b). The rescaling seems to work reasonably well. Note that Ref. [20] discusses
another scaling that accounts for the effect of the gravity and appears fully compatible with the
present empirical formula.

B. Size of the first droplet
We now study the size of the first droplet as a function of the control parameters. The droplet
Laplace number is defined as

PYRq
Lag = —
I

with R, the droplet radius. The size of the i ejected droplet will then be denoted La,,. Figure 4
illustrates the dependency of Lag, on the control parameters (bubble Laplace number La and
Bond number Bo). The evolution with Laplace number mirrors that of the droplet velocity, with
a minimum obtained for the “optimal” Laplace number around 1000. In contrast with the droplet
velocity, though, gravity seems to have a minimal influence on the size of the first droplet. All
experimental and numerical data sets are remarkably consistent. Gafian-Calvo [19] proposed the

(6)
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FIG. 4. Droplet Laplace number Lay, as a function of the bubble Laplace number La, with Bo color-coded.
The filled diamonds are data from the present study. The open circles are experimental data from Ref. [14].
The filled squares are numerical data from Ref. [18], and the empty squares are experimental data from the
same study. An excellent match between all data is observed for all La and Bo. The black curve is the scaling
law from Ref. [19], Eq. (7), which describes well the data for La > 1000.

following scaling:

5/4

Ladlzk,|:«/L_a< La —1)} , (7)
La,

where k, is a nondimensional coefficient fitted to the data. This relationship described the data
extremely well for Laplace numbers greater than the optimal value (1000), while not capturing
the behavior below La = 1000. We emphasize the excellent match between the numerical and the
experimental data from various groups [14,18] for the full range of Laplace and Bond numbers. This
further confirms the clear understanding on the size of the first-ejected droplet for Laplace numbers
above 1000 and validates our numerical setup against previous results. Note, however, that a deeper
understanding of the physics of the entire ejection process is still needed to correct the limitations
observed in the velocity and size models for low Laplace numbers, as pointed out in Ref. [29]. We
now move on to a general study of all the droplets.

IV. A SYSTEMATIC STUDY ON ALL THE DROPLETS

Using the same simulations as presented in the previous section we now characterize all the
droplets produced by a bursting bubble.

A. Number of droplets

Figure 5(a) shows the number (color-coded) of droplets produced by the jet, as a function of the
Laplace and Bond numbers. The dashed line on the left delimits the range of (La, Bo) for which
no droplets are produced. This no-droplet limit is in agreement with the results of Walls ez al. [31]
and Deike et al. [17], with no droplets for La < La, & 500 and a Bond number dependency of this
boundary for Bo > 0.1. In the range of droplet production, we observe between 1 and 14 droplets
being ejected depending on the Laplace and Bond numbers. The maximum number of droplet (14)
is obtained close to the optimal Laplace number (La between 1000 and 2000) and for the smallest
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FIG. 5. (a) Number of droplets (color-coded) as a function of the Laplace and Bond numbers. No droplets
are formed for La < 500 at low Bond number and with a Bond number dependency for Bo > 0.1, Bo
La*?2. The colored lines correspond to the constant Morton numbers of the figure on the right. The red line
stands for Mo = 2.63 x 10~!! (pure water), the blue one stands for Mo = 4.3 x 107!° (solution of 89.5% of
water and 10.5% of ethanol), the green one stands for Mo = 4.4 x 107 (66.6% of water, 7.6% of ethanol
and 25.5% of glycerin), and the purple one stands for Mo = 1.1 x 1078 (55.3% of water, 4.9% of ethanol
and 39.8% of glycerin). (b) Number of droplets as a function of the bubble Laplace number, for the constant
Morton numbers indicated in the color-coded legend. Numerical (plain diamonds) and experimental results are
represented (empty circles [30] and stars [7]). Good agreement is achieved between experimental and numerical
data.

Bond numbers, which coincides with the fastest jet and smallest first droplet. The number of ejected
droplet then decreases with increasing Bond number and increasing Laplace number.

To compare our numerical results with experimental data, we consider data sets for four

4

different Morton numbers, defined as Mo = BoLa™2 = EL;%. The Morton number is constant
for a given liquid in laboratory experiments as it is set by the liquid properties only, namely,
the viscosity, density, and surface tension coefficients. Figure 5(b) illustrates the corresponding
dependencies of the number of droplets as a function of Laplace number for various solutions
of water/glycerin/ethanol considered by Ghabache [30] and Spiel [7]. Both experimental (empty
circles and crosses) and numerical (plain diamonds) results are displayed. Given the intrinsically
variable nature of the phenomenon, the agreement between experiments and numerical results is
remarkable. This plot confirms that the maximum number of ejected droplet is observed for the
optimal Laplace number (faster and thinner jet) and decreases with increasing Laplace number.
Note that, to the best of our knowledge [29], there is no theoretical understanding of the number of
ejected droplets as a function of the Laplace and Bond numbers.

liq

B. Velocity of the droplets

Within our range of control parameters, between i = 0 and 14 droplets are ejected when a bubble
bursts. We now focus on the ejection velocity of the four droplets following the first one, namely
i =2to5, shown in Fig. 6 (left column) as functions of the bubble Laplace and Bond numbers. The
scaling relation of Gafnan-Calvo [19], Eq. (4), describing the velocity of the first droplet (n = 1) at
small Bond numbers is indicated for comparison in each panel. All droplets follow a trend similar to
that of the first droplet, but with an increasing scatter as the droplet number is increased. Increasing
the Bond number tends to decrease the velocity of the droplets and even suppress the creation of
droplets entirely for large enough values (which explains the absence of red symbols on the bottom
two rows). The large fluctuations in velocity obtained for droplets 4 and 5 (as well as subsequent
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FIG. 6. (Left column) Dimensionless velocity, Cag,, of droplets number i =2 to 5 (top to bottom) as
functions of the Laplace and Bond numbers (color-coded). The solid line reproduces the scaling relation of [19]
for the first droplet, under the vanishing Bond number assumption. (Right column) Ratio of the dimensionless

velocity of droplets number i = 2 to 5 (top to bottom) to the velocity of the first droplet Cay, .
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droplets not shown here) are a sign of the very nonlinear nature of the mechanisms producing
these droplets. Preliminary studies have revealed, not unexpectedly, possible bifurcations between
multiple states, which requires a detailed statistical analysis, as already suggested by Spiel [7]. This
greatly complicates the analysis and detailed study of the breakup phenomenon and will be the topic
of a follow-up article.

Figure 6 (right column) displays the ejection velocity of the same droplets as in the left column
(i =2 to 5), normalized by the velocity of the first one. These plots confirm that the velocity of the
droplet i follows a similar trend to that of the first droplet and also shows that the ejection velocity
tends to decrease as i increases.

C. Size of the droplets

Figure 7 (left column) presents the nondimensionalized size of the drops n = 2 to 5, expressed as
a droplet Laplace number, La,, as a function of the bubble Laplace number La for the whole range
of Bond numbers (color-coded). The scaling relation of Gafian-Calvo [19], Eq. (7), that describes
the size of the first droplet (n = 1) for any Bond number (see Fig. 4) is given for comparison. The
general trends are similar to those for the droplet velocities: An overall dependency on the Laplace
number matching that for the first droplet, increasing scatter as the droplet index is increased, and
a slight increase in droplet size with increasing Bond number. As for velocity, a statistical study of
the size fluctuations would be necessary to properly quantify the variance.

The ratio of droplet size to the size of the first droplet, Fig. 7( right column), reveals that close
to the optimal Laplace number (La =~ 1000), subsequent droplets are significantly larger than the
first droplet, which suggests that the finite-time curvature singularity approached by the collapsing
bubble [11,12,17,18] no longer influences the drop size selection process.

D. Total vertical momentum

The primary motivation for studying the behavior of all the jet droplets is the estimation of the
total transfer of momentum, heat, and eventually mass induced by the bursting of a single bubble
[32]. Indeed, combining this information with statistical estimates (i.e., distributions) of bubble
production, obtained from studies of, e.g., breaking waves (and their statistical distributions), could
then be used to derive the large-scale fluxes controlling the coupled ocean-atmosphere system [33].
In this section we focus on the vertical momentum transferred from a bubble bursting via the drop
ejection.

The total vertical momentum induced by bubble bursting is one of the potential candidates to
explain the observed reduction of the air-sea drag coefficient in hurricane-force winds [32]. We
combine the information on the droplet size and velocity to discuss the total vertical momentum
related to jet droplets. We start by considering the nondimensional vertical momentum associated

. \Z}
with the first droplet, e.g., F" = —L—
P R N )

the ith droplet is made nondimensional by the bubble radius, and the velocity of the ith droplet is
made nondimensional by ,/y /(p1qR) naturally coming from the characteristic timescale 7.. We can
combine the two scalings proposed by Gafian-Calvo [19], Egs. (4) and (7), and obtain

3
(1%) , shown in Fig. 8(a), where the droplet radius of

le <Rd| )3 3 —1/2 —1/2\13 -5/2
F'= —2— =) =kjklLa(La;'* —La "/*)PPLa™2. (8)
¢ Vv /(pigR) \ R ¢

The scaling in Eq. (8) is plotted with a black line in Fig. 8(a). As expected, the data for the first
droplet follow this prediction relatively well for La > 5000 since the data combine the scalings for
the velocity and size, which closely match the numerical (and experimental) data. The effect of the
Bond number is negligible, since the momentum scales like Lagll Ca,,, and the droplet size/volume is
almost independent from the Bond number, while the droplet velocity has only a weak dependence
on the Bond number. The theoretical scaling fails to describe the data close to La = 1000, which
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FIG. 7. (Left column) Sizes of the droplets i =2 to 5 (top to bottom), La,, as functions of the bubble
Laplace number, La, and Bond number (color-coded). The black line is the scaling relation Eq. (7) for the size
of the first droplet, from [19]. (right column) Ratio of the size of droplets i =2 to 5 to the size of the first
droplet.
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with the scaling prediction [Eq. (8)] obtained by combining the scalings for the first droplet velocity [Eq. (4)]
and size [Eq. (7)]. (b) Total vertical momentum for all the ejected droplets, F,i, = >, Ri,l_ Vy;. The asymptotic
scaling F" | o La'/? is indicated by the red dashed line. The scaling of the first droplet is displayed with the

black continuous line, which shows that the contributions of all droplets must be taken into account.

is a consequence of the limitation of the scaling near the optimal point. The mismatch at that
point appears to be much higher compared to the one from Fig. 4, due to the fact that it scales
in R3, which increases the apparent difference on a log scale. Note that close to La = 1000, the
ability of Gafidn-Calvo’s theoretical scaling to capture the correct velocity and size of the droplet
relies on fitting coefficients, adjusted to a larger data set, while by construction it cannot capture
the physics for La < 1000. To address this limitation, Gordillo and colleagues [21,34] proposed a
different scaling law close to La = 1000, based on the collapse dynamics due to the focusing of
the capillary waves, which also contains two fitting coefficients, the behavior for La < 1000 being
described by yet another physical argument. These uncertainties in the precise mechanism around
La = 1000, and variations in the fitting coefficients, explain the mismatch between the empirical
data (either our numerical data or experimental data described in the papers cited above) and the
scaling relationships for both the size of the first drop and its velocity. Further discussion is provided
in Ref. [29].

We now consider the total vertical momentum, F, = > i ':’, with F ai” the vertical momentum
for droplet number i normalized in a similar way as before. Figure 8(b) shows F{  as a function
of the Laplace and Bond numbers. The influence of the Bond number is now more apparent, with
an overall decreasing vertical momentum for increasing Bond number. This effect is clear for the
highest Bond numbers (Bo > 0.5) and close to the optimal Laplace number, La &~ 1000, which can
be attributed to the large differences in number of ejected droplets (see Fig. 5) combined with the
relatively large droplet size for i > 1 (see Fig. 7) in this range of control parameter.

Remarkably, by summing the vertical momentum of all the droplets, the data align along a line
over almost the full range of Laplace numbers, reasonably well approximated by Fo,, o La'/?,
represented by the red dashed line. This relation is the asymptotic scaling at high Laplace number
of eq. (8). The singular behavior close to La = 1000 is smoothed out by the large number of droplets
being ejected and by their large size. At low enough Laplace numbers, viscous dissipation causes a
decrease in the total vertical momentum, and this trend is visible in Fig. 8(b) for La < 1000. This
simple scaling can be combined with bubble distribution in order to obtain an estimation of the
effects of spray on the air-sea momentum flux, for instance.

V. EVAPORATION OF THE DROPLETS

The large majority of previous studies on bubble bursting considered only the first droplet
[11,14,18,20], arguing that the influence of following droplets might be negligible in the evaporation
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process [13]. Here we obtained the size and the velocity for all the droplets, which was not
previously reported in the literature. The results presented in the previous sections cast doubt on
this assumption. Indeed, while the ejection velocity decreases quickly with droplet number, droplet
sizes can be up to 10 times larger than that of the first droplet. With the number, velocity, and
size of all the ejected droplets, we can now consider an evaporation model taking into account all
the droplets generated by a bubble bursting and, consequently, estimate the total amount of liquid
transferred from the droplets to the air by evaporation during a bubble bursting event.

A. A simple evaporation model

We consider the trajectory of a droplet in still air while taking into account the drag, the action
of gravity, and the loss of mass due to the evaporation. The model we use has been fully described
by Ghabache ef al. [13] and compared successfully for the first-ejected drop to laboratory data. The
model assumes immediate thermal equilibrium between the water and air phases once droplets are
ejected. The ejected droplet follows an essentially ballistic trajectory (with drag corrections), and
its flight time is thus controlled mainly by its initial velocity and gravity (i.e., Bond number).

The initial conditions for each ejected droplet are given by the results discussed earlier in the
paper, namely, the ejection size and velocity of the droplets. The evaporation model then consists
on the following coupled system, solving for the time evolution of each droplet radius r;(z) and
velocity vy(t),

4 v, 1 4

gpzﬂrg _atd = —Epairﬁrjvﬁcp - gﬂplrjg, 9
8r§ . 11
o= —2jo(1+0.3Sc7 Re?), (10)

with Cp the drag coefficient of the droplet, Sc = p“ it the Schmidt number, and Re = 2t ’j" 4 the
Reynolds number. D is the diffusion coefficient of vapor in air, and jj is the evaporation parameter
[35,36].

Equation (9) describes the evolution of the velocity of the droplet. Here Cp is the drag coefficient
on a rigid sphere, in a steady motion. The Reynolds number of the ejected droplets ranges from
zero to a hundred. Therefore we cannot use the Stokes approximation for drag forces on a sphere.
Empirical studies approximates the drag coefficient as a function of the Reynolds number [37], and
we use Cp = %(1 + 0.15Re®%%7) valid for Re < 800 for solid spheres in the air [38].

Equation (10) describes the evolution of the radius of the droplet under quasisteady conditions.
Since we consider low gas temperature (20 °C), we assume that the evaporation parameter jy is
driven only by diffusion. This leads to j, = ‘)“"D(Y‘urf >, neglecting the Stefan flow [14,35].

vap Vap

We define Y., as the mass fraction of the vapor in the air: Yy,p = ’; V:" Its value at the surface and
in the far-field are considered. Equation (10) is derived using the assumption that the mass transfer
may be modeled as occurring by diffusion within a spherical shell of thickness r;/(0.3 Sc'/*Re!/?).
As a consequence, it is the combination of the d? law for the evaporation of a motionless droplet in

air, which follows the equation % = —2jo [39,40], together with the drop motion, which is taken
into account using the standard Ranz and Marshall empirical mass transfer correlations for a moving
sphere [41]; 1 + 0.3 Sc!/?> Re!/2.

The external thermodynamical parameters are the humidity ratio in the air and the temperature in
the whole system, which set the values of the evaporation parameter (see Ref. [13] for details). For
the resolution of Egs. (9) and (10), we consider water droplets evaporating in air. The air and water
both are considered at 20 °C, and the humidity rate at infinity is taken at 80%. Solving this system
leads to a shrinking droplet moving up and then back into the main liquid pool or to a complete
evaporation in the air.

This simple model of Ghabache er al. [13] was shown to give accurate predictions of the
experimentally observed, nontrivial trajectories of the evaporating droplets. These trajectories are
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nontrivial because they depend on the variations of the drag force due to the varying size of the
droplet as it evaporates. The good agreement with experimental trajectories thus indirectly validates
the evaporation model in the context of the experiments of Ghabache et al. [13], i.e., laboratory
conditions with water and ethanol solutions without air or water turbulent flows.

The simulations now provide all the necessary information on the droplet dynamics to use this
simple evaporation model, i.e., the initial size and velocity of all ejected droplets. We obtain the total
volume of evaporated liquid per droplet, e.g., for droplet i, Vevap Figure 9(a) shows the evaporated
volume for the first droplet, normalized by the initial volume of the first droplet, as a function of
the Laplace and Bond number. We observe that for vanishing Bond number, the entire droplet is
being evaporated. Then for higher Bond number, the normalized evaporated mass decreases as the
Laplace number increases and seems to reach a constant value that depends on the Bond number.
The Bond number has thus a crucial influence on the drop evaporation, probably due to the effect of
gravity and the decrease in the ejection velocity.

Figures 9(b), 9(c), and 9(d) show, respectively, the evaporated volume of the second, third, and
fourth droplets compared to the evaporated volume of the first drop. It shows, first, that, for Laplace
number larger than 2000, the evaporated volume is smaller but stays comparable to the first one and
varies with the control parameters following the same trend as the first drop, and, second, that, for
La < 2000 the droplets i > 1 evaporate more than the first one. These results are important as they
show that the evaporation of the subsequent droplets can not be neglected; the evaporation of the
droplets following the first one is comparable to the first one and at La around 1000 it even becomes
dominant.

These results are confirmed in Fig. 9(e), which shows the sum of the evaporated volumes of
all the droplets compared to the first one Y~ V,**/V**", as a function of the control parameters.
When there is more than just one ejected droplet we observe that the volume loss by the first drop
is at least twice smaller than the total evaporated volume. At Laplace close to 1000, it can even be
several orders of magnitude larger. This effect decreases with increasing Bond number, in particular
because the number of ejected droplets is reduced.

Finally, Fig. 9(f) shows the total evaporated volume for all the droplets normalized by total
ejected volume, Y, V" /(57R},). This figure further confirms that the Bond number mainly
controls the ratio between the evaporated and ejected volume, while it appears almost independent
of the Laplace number. Note that the influence of the Bond number is even stronger when the
evaporation is summed over all the droplets than just considering the first one [Fig. 9(a)].

In order to further explore the influence of the control parameters on the total evaporated volume
of the drops, it is plotted in Fig. 10(a) as a function of Laplace and Bond numbers, normalized by
the initial bubble volume. We observe a strong Bond number dependency of the total evaporated
volume, with an overall ), V;’_vap /Voubble ¢ Bo™! as shown by the dashed line, with a weaker
Laplace number dependence.

These scalings can be retrieved using the approximation proposed in Ghabache et al. [13]. We
consider the limit case where the trajectory can be approximated by a parabola: z(t) = vgt — 1/2gt>
and vs = g7y /2 with Tqy the drop time of flight. Equation (10) can then be integrated between 0
and 7yy [13], and, introducing our nondimensional numbers, the normalized evaporated volume of
the drop i can be approximated by

V'evap air La,C i 8 air i 172
e I | AT G | B e a 1+0.35c1/3<-p—@> (LagCap)'? |. (11)
Viubble Hiiq Bo 9 pliq Mair

In this equation 0.3Sc!/ 3(3 ﬁ:‘; Z Lliay /2 is much smaller than one for classical couples of liquid and
gas (0.06 for water/air, or 0.09 for ethanol/air for instance). This suggests that evaporation does
not depend much on droplet motion and allows us to neglect the second term: (Lay,Ca;)!/2. Finally,
this shows that the evaporated volume of an individual droplet scales as La~!(La, Ca;)/Bo, thus

retrieving the Bo™! scaling observed numerically.
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FIG. 9. (a) Evaporated volume of the first drop normalized by the ejected volume of the first drop,

47R} . o
V;lvap % as a function of the Laplace number. For vanishing Bond number the total mass evaporates,

while for large Laplace number and increasing Bond number, only a fraction of the ejected mass evaporates.
(b) Evaporated volume of the second drop compared to the first one, V,;***/V,*". The evaporated mass of the
second droplet is comparable to the first one at high Laplace, and larger for La close to 1000, as a consequence
of the results discussed regarding the droplet sizes. (c) and (d) Evaporated volume of the third and fourth drops
compared to the first one, V,**"/V,*" (c), and V" /V;**" (d) showing similar results than the second droplet,
with more scatter. (e) Total evaporated volume, »_, V,"* normalized by V,;*** as a function of Bond and Laplace
numbers. The total evaporated volume can be orders of magnitude larger than the evaporated volume from the
first drop. This effect becomes less important for larger Bond number since increasing the Bond number both
reduces the number of ejected droplets and the flight time of the droplets in the air. (f) Total evaporated volume
compare to the total ejected volume in the air. For high Bond number, we evaporate all the liquid. As the Bond
number increases, the volume that evaporates is smaller compared to the total ejected volume. The data suggest
that this is independent from the Laplace number and that the only effect acting on the evaporated volume is
the gravity, which controls the flight time of the droplet in the air.
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FIG. 10. (a) Total evapgrated volume for all the droplet normalized by the original volume of the bubble
> V;i **P /Viubble as a function of the Bond number and the Laplace number (color-coded). This graph shows a
high dependence in Bond number of the evaporated volume, «Bo~! (indicated with dashed line) and a small
dependency with the Laplace number. (b) The total evaporated volume per bubble expressed as a function of
our scaling: [La~'/4(/La/La, — 1)~'/2/Bo; see Eq. (12)], with a good collapse of the data on a 1:1 line except
for the largest Bond number.

Now, by assuming that all droplets follow the same scaling as the first one, we can combine this
expression of the evaporated volume with the scaling laws proposed by Ganan-Calvo [19], and we
obtain the following scaling for the total evaporated volume per bubble:

172

% Vi © La'LagCa La( JLa 1 (12)
= Voubble Bo Bo b |

il T \/-L_ — 1) for the whole range of the bubble
controlling parameters La and Bo. The pomts are reasonably consistent with a line of slope one,
which confirms the validity of the scaling. This relation has direct practical interest since it gives
a good estimation of the liquid volume evaporated when a bubble of a given size (Bo) bursts in a
given liquid (La).

We note that in our simplified model the droplet velocity relative to the surrounding air is
assumed to be identical to the velocity relative to the static free surface. In reality, the air surrounding
the droplets is an ascending gas jet with a significant velocity in the vicinity of the axis. Numerical
results indicate that the velocity of the droplet relative to the surrounding air can be up to 50% less
than the absolute velocity, depending on its position in the sequence of ejected droplets. However,
we have checked that these variations have only a minor influence on the total mass transfer
estimated with our model.

Note also that the coupled modeling of the dynamics of the interfaces, temperature, and
evaporation, while being possible in principle, is a challenging computational problem given
the wide range of scales involved. Numerical schemes able to accurately perform this type of
coupled thermodynamical modeling are a subject of active research. The relative simplicity of the
(experimentally validated) evaporation-trajectory model used in the present study is at present an
advantage, compared to the complexity and cost of such future DNS, as it allows one to investigate
the effect of multiple droplets on the total evaporation rate, which happens at timescales much larger
than the present simulated dynamics.

Figure 10(b) presents ) _, Narp V™" versus =

B. Applicability of the simple evaporation model for ocean-atmosphere applications

The evaporation model presented above does not take into account any small-scale atmospheric
boundary layer above the surface. As such it is more representative of laboratory conditions with
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essentially still air. The primary influence of an atmospheric boundary layer will be on the flight
time of the eject droplets which is expected to increase. The evaporation should still be described by
the d? relation, however. Indeed, the transport of the particle by the air flow will decrease the relative
Reynolds number between the droplet and the air. The flight time could also be corrected according
to the characteristics of the boundary layer and the droplet size as discussed by Refs. [32,42].

Note also that we do not consider the limiting effects of surface tension and salinity of the
water, which limits evaporation for droplets smaller than 80 um, these effects preventing complete
evaporation of the droplets.

VI. CONCLUSIONS AND PERSPECTIVES

We have presented direct numerical simulations of jet droplets produced by bursting bubbles
for a wide range of physical parameters summarised by the Laplace and Bond numbers. The
results obtained for the first droplet confirm earlier numerical and experimental studies: The first
droplet velocity decreases above an optimal Laplace number close to 1000 (which is Bond number
dependent), while the first droplet size increases with a Laplace number above 1000 and is largely
independent from the Bond number, except regarding the so-called optimal values, which are Bond
dependent.

We then extended the numerical study to all the jet droplets produced by bubble bursting and
discussed their number, size, and velocity as functions of the controlling parameters. We observe
a systematic reduction of the droplet velocity as their production number increases. The size of
the subsequent droplets vary by less than an order of magnitude except in the case of Laplace
numbers close to 1000 at vanishing Bond numbers, where the fastest and thinnest jets are produced.
These cases also correspond to the largest numbers of ejected droplets. The ejection process of
the subsequent droplets present some internal variability, which should be studied systematically
with a statistical analysis. The present extensive numerical data set will nurture the active debate on
the theoretical scalings for the number, size, and velocity proposed in the literature and the exact
physical interpretation of the underlying mechanism for various Laplace numbers [19-21,29,34],
while also providing critical quantitative data on the relative importance of jet and film drops in
ocean spray production [23,32].

The total vertical momentum of the ejected droplets is shown to follow a simple La'/< scaling for
low enough Bond numbers and above the optimal Laplace number (1000), which is an interesting
result when considering air-sea momentum fluxes.

Combining these numerical results with a relatively simple evaporation model, we demonstrated
that all the jet droplets play a significant role in the total amount of water evaporated during a
single bubble bursting event, in contrast with what was assumed in previous studies where only
the first droplet was considered. We also obtained a simple scaling relationship, consistent with
the simplified evaporation model, which describes the total amount evaporated as a function of the
bubble size and fluid properties.

The various scalings and results were obtained considering an idealized configuration of a single
bubble bursting in a quiescent liquid, neglecting various effects which could be of importance
under realistic ocean-atmosphere conditions, such as the influence of the wave field, the turbulent
boundary layers in the air or water, collective effects, or complex physico-chemistry of the interface
induced by surfactants. The evaporation model we use also presents limitations in the case of sea
water which would need to be considered when applying the proposed framework to ocean spray.
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