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We consider the viscous limit of a plane channel miscible displacement flow of two
generalized Newtonian fluids when buoyancy is significant. The channel is inclined
close to horizontal. A lubrication/thin-film approximation is used to simplify the
governing equations and a semi-analytical solution is found for the flux functions. We
show that there are no steady travelling wave solutions to the interface propagation
equation. At short times the diffusive effects of the interface slope are dominant
and there is a flow reversal, relative to the mean flow. We are able to find a short-
time similarity solution governing this initial counter-current flow. At longer times
the solution behaviour can be predicted from the associated hyperbolic problem
(where diffusive effects are set to zero). Each solution consists of a number N � 1
of steadily propagating fronts of differing speeds, joined together by segments of
interface that are stretched between the fronts. Diffusive effects are always present
in the propagating fronts. We explore the effects of viscosity ratio, inclinations and
other rheological properties on the front height and front velocity. Depending on
the competition of viscosity, buoyancy and other rheological effects, it is possible to
have single or multiple fronts. More efficient displacements are generally obtained
with a more viscous displacing fluid and modest improvements may also be gained
with slight positive inclination in the direction of the density difference. Fluids that
are considerably shear-thinning may be displaced at high efficiencies by more viscous
fluids. Generally, a yield stress in the displacing fluid increases the displacement
efficiency and yield stress in the displaced fluid decreases the displacement efficiency,
eventually leading to completely static residual wall layers of displaced fluid. The
maximal layer thickness of these static layers can be directly computed from a one-
dimensional momentum balance and indicates the thickness of static layer found at
long times.

1. Introduction
In this paper we consider miscible displacement flows along a plane channel of

width D̂ in the large Péclet number limit Pe � 1 (where Pe = D̂Û0/D̂m, with Û0
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the mean displacement velocity and D̂m the molecular diffusivity). In this limit, in
the absence of any flow instability, the fluids have insufficient time to mix on time
scales of experimental interest and a reasonable approximation is to model the two
fluids via a kinematic equation, rather than a concentration-diffusion-equation (CDE)
approach. The stability of the flow cannot generally be determined beforehand and
often the reason for this type of model simplification is to make study of the stability
problem possible, as well as to gain basic understanding of the laminar flow. The
scenarios that we consider involve fluids of different densities, with Newtonian or
non-Newtonian shear rheology.

Within the class of large Péclet number displacement flows, we consider those in
which buoyancy is a significant force in driving the fluid motion and restrict our study
to those in which the channel is approximately horizontal. In the absence of a mean
flow (Û0 = 0), the only driving force would be buoyancy. For sufficiently small density
differences there exists a viscous regime in which inertial effects are small and for
which the interface slumps under gravity and elongates along the channel. If now a
mean displacement flow is introduced, we may expect that the viscous regime persists
for at least small Reynolds numbers Re (= ρ̂Û0D̂/μ̂). Indeed, when the flow topology
evolves into an elongated slumping interface with near-parallel streamlines, of aspect
ratio δ � 1, inertial effects remain negligible provided that δRe � 1. This allows for
a more practical range of Re to be studied. It is such flows that we consider in this
paper.

Although for mathematical simplicity we adopt a plane channel geometry, our
motivation comes from duct flows, (commonly pipes). The detailed study of laminar
miscible displacement flows in ducts is relatively recent, although of course the
dispersive regimes of Taylor (1953) and Aris (1956) were studied much earlier. Many
practical processing situations involving aqueous liquids in laminar duct flows with
diameters D̂ ∼ 10−2 m and mean velocities Û0 � 0.1 m s−1 necessarily fall in to the
category of high Pe flows, typically in the range 103–107. However, for such flows
the Taylor-dispersion regime is strictly found only for duct lengths L̂ � D̂Pe, which
are arguably less common in processing geometries for laminar regimes, even though
D̂/L̂ � 1 is usual. Thus, study of the non-dispersive high Pe regime for long ducts
has substantial practical application.

This high Pe regime inevitably approaches the zero surface tension immiscible
limit (Pe → ∞) provided the displacement flow remains stable, as has been shown
analytically, computationally and experimentally in the works of Petitjeans &
Maxworthy (1996), Chen & Meiburg (1996), Rakotomalala, Salin & Watzky (1997)
and Yang & Yortsos (1997). Briefly, these studies show that sharp interfaces persist
over wide ranges of parameters for dimensionless times (hence distances) t � Pe, with
smearing of the interface and effective diffusion across the duct for t ∼ Pe, eventually
approaching the dispersive limit. These studies focus on Newtonian fluids, with little
effect of buoyancy. The dispersive limit of miscible isodensity displacements, also for
a range of simple non-Newtonian fluids, has been considered by Zhang & Frigaard
(2006).

For flows in which buoyancy effects are significant, there is a large literature
on gravity currents, stratified flows and mixing in (at least partly) unconfined
geometries stemming from oceanographic and environmental applications. Slightly
closer to our study are those of lock-exchange flows in tanks (open channels). Such
flows are typically studied in a regime where viscous effects are unimportant and
buoyancy forces are balanced by inertia. The velocity is essentially constant in each
interpenetrating stream. The mathematical approach for studying these flows dates
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back to the work of Benjamin (1968) (See Shin, Dalziel & Linden 2004 and references
therein for an overview and critical appraisal.). Recently Birman et al. (2007) have
studied gravity currents in inclined channels. These are high Re flows, vulnerable
to interfacial instabilities (loosely of Kelvin–Helmholz type), and local mixing. Thus
typically the edges of gravity currents are not well defined due to local instability and
mixing.

In the absence of an imposed mean flow, a detailed experimental study of buoyancy
driven miscible flows in inclined pipes has been carried out by Seon et al. (2004, 2005,
2006, 2007). In these studies the pipe is closed at the ends so that an exchange
flow results. Seon et al. (2005) experimentally characterized the velocity of the
interpenetrating fronts of light and heavy fluids, as a function of viscosity ratio, density
ratio and inclination angle. For different inclinations of the pipe from horizontal to
vertical they observed three flow regimes: increasing front velocity, constant front
velocity and decreasing front velocity. In the first regime, found close to horizontal,
the fluids are separated into two parallel counter-current streams. In the second
regime, the front velocity is independent of inclination angle and fluid viscosity,
controlled by the balance between inertia and buoyancy. For the first and the second
regimes, they obtained a correlative formulation based on characteristic viscous and
inertial velocities. In the last regime segregation and mixing effects control the front
velocity.

The near-horizontal regime is studied in more detail by Seon et al. (2007), who
found a small critical value of inclination, above which the front velocity is fully
controlled by inertia. When the inclination is below this critical value, the front
velocity is initially controlled by inertia but later by viscosity. As soon as viscous
effects start to control the front velocity, it gradually decreases towards a steady-state
value, which is proportional to the sine of the inclination angle, from horizontal. This
final velocity thus tends to zero for a horizontal tube. They also showed that the fluid

concentration/interface profiles depend on the reduced variable x̂/
√

t̂ , i.e. spreading
diffusively. In viscous regimes for near horizontal pipes the transverse gravitational
component suppresses the development of instabilities, so that there is no mixing
between the fluids and the interface remains clear. This shift from an initial inertial-
buoyancy balance to a viscous-buoyancy balance was also found by Didden &
Maxworthy (1982) and Huppert (1982), who considered viscous spreading of gravity
currents with an imposed flow. In the absence of an imposed mean flow there is some
subtlety in the transition between strictly horizontal ducts and slightly inclined ducts.
Buoyancy acts both via the slope of the duct and the slope of the interface, relative
to the duct axis. When the interface elongates the latter effect of buoyancy diminishes
but the former effect remains present. For our study there is a third driving force,
that of the imposed flow, which does not diminish over time. Thus, the distinction
between strictly horizontal ducts and slightly inclined ducts is not so critical as in the
analysis in Seon et al. (2007).

Also related to our study are studies of viscous spreading of thin layers fed with
an imposed flow at a source. These arise in particular in the context of lava dome
formation and spreading (see Griffiths 2000). Frequently, the models and experiments
used to understand these phenomena are complicated with thermal effects, which then
bears little resemblance to our work. However, Balmforth et al. (2000) and Balmforth,
Craster & Sassi (2002) have studied lava dome formation in an isothermal setting and
with viscoplastic fluids of the type considered here. Although the lubrication/thin-film
modelling is similar, these flows are unconstrained single fluid flows in which the flux
function is typically determined analytically and hence progress is simpler.
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The literature for non-Newtonian fluid displacements in ducts is obviously less
developed than that for Newtonian displacements. By far the largest body of work
concerns Hele-Shaw geometries, where there are several numerical, experimental and
analytical studies of viscous fingering with non-Newtonian fluids; see Wilson (1990),
Sader, Chan & Hughes (1994), Kondic, Palffy-Muhoray & Shelley (1996), Coussot
(1999) and Lindner, Coussot & Bonn (2000) as examples. Gas–liquid displacements
in tubes have been studied for viscoplastic fluids by Dimakopoulos & Tsamopoulos
(2003, 2007) and by De Sousa et al. (2007). The focus here is typically on residual
layers in steady-state displacements. The flow around the displacement front is multi-
dimensional. Other multi-dimensional displacement flows with generalized Newtonian
fluids have been studied, numerically and analytically by Allouche, Frigaard & Sona
(2000) and Frigaard, Scherzer & Sona (2001), as well as experimentally by Gabard
(2001) and Gabard & Hulin (2003). These are all isodensity viscous-dominated
displacements of miscible fluids in the high Pe regime.

In such viscous-dominated flows various instabilities arise. Interfacial instabilities
of ‘bamboo’ type were reported by Joseph & Renardy (1993) in the context of
oil–water parallel flows. Similar instabilities have been observed by Gabard (2001)
and by Gabard & Hulin (2003) in their displacement flow studies, also when the
interface elongates and the flow is pseudo-parallel. The viscosity ratio in Gabard’s
studies is inverse to that reported in Joseph & Renardy (1993) and the instabilities are
instead of ‘inverted bamboo’ type. Frontal instabilities were evidenced in a sequence
of miscible displacement studies by Lajeunesse and coworkers. Lajeunesse et al. (1997,
1999) investigated the downward vertical miscible displacement of fluids in the gap of
a Hele-Shaw cell at high velocities. They distinguished a base two-dimensional state in
which a tongue of constant thickness propagates steadily. For certain viscosity ratios
and flow rates the two-dimensional pattern breaks into three-dimensional fingers.
These are studied in more detail in Lajeunesse et al. (2001). Of more interest to
our study is the observation of critical viscosity ratios at which the steady front
shows shock-like behaviour and other viscosity ratios for which the propagation of
multiple fronts at different speeds is observed, including a rapidly moving ‘spike’ in
the channel centre. A lubrication-type displacement model is advanced to explain
these non-inertial phenomena.

Motivation for our study comes from various operations present in the construction
and completion of oil wells (e.g. primary cementing, see Nelson 1990, drilling, gravel
packing, fracturing). These processes often involve displacing one fluid with another
or with a sequence of different fluids. The geometries are typically pipe, annular
or duct-like, all with long aspect ratios. Large volumes are pumped so that fluids
may be considered separated, i.e. we have a two-fluid displacement, not an n-fluid
displacement. A very wide range of fluids are used. Density differences of up to 500 kg
m−3 can occur, shear-thinning and yield stress rheological behaviours are widely found
and are often the dominant non-Newtonian effects, (more exotic non-Newtonian
effects may also be present). Our study is part of a wider effort to understand these
flows in some generality, using experimental, numerical and analytical methodologies.
Here we focus on a limiting parameter regime that appears to be tractable (semi-)
analytically and which also has practical relevance.

In terms of what may be expected, more efficient displacements are generally found
with more viscous displacing fluids. Thus, in dealing with non-Newtonian fluids we
may expect some generalization of this effect. Part of the task is to quantify this
notion of ‘more viscous’ in terms of the displacement. For example, with shear-
thinning fluids we may have fluid pairs for which one fluid is more/less viscous than
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Figure 1. Schematic of displacement geometry.

the other at high/low shear rates or vice versa. In the case of yield stress fluids, it is
known that displacements may lead to static wall layers, as studied in Allouche et al.
(2000). Unlike purely viscous non-Newtonian fluids, the displacement efficiency can
asymptote to a value less than 1, and identification of this regime is consequently
important. On the other hand, inclusion of a yield stress in the displacing fluid has
the general effect of increasing viscosity.

An outline of the paper is as follows. Section 2 discusses the geometry of the
problem, derives simplified model equations and, in § 2.4, we show analytically that
there are no steady-state displacement solutions to this problem. In § 3, we present an
analysis of both long- and short-time model behaviours, for Newtonian displacement
flows. Shear-thinning and yield stress effects are considered in § 4. The paper closes
with a brief discussion and summary in § 5.

2. Two-fluid displacement flows in a near-horizontal slot
We consider a two-dimensional region between two parallel plates, separated by a

distance D̂, that are oriented at an angle β ≈ π/2 to the vertical. The slot is initially
filled with fluid 2, which is displaced by fluid 1, injected at x̂ = −∞ with a mean
velocity Û0. Cartesian coordinates (x̂, ŷ) are as shown in figure 1. Both fluids are
assumed to be generalized Newtonian fluids, with rheologies described below, and
although the fluids are miscible we consider the large Péclet number limit in which no
significant mixing occurs over the time scales of interest. The dimensionless equations
of motion, valid within each fluid region Ωk, k = 1, 2, are

φkRe

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+

∂

∂x
τk,xx +

∂

∂y
τk,xy + φk

cos β

St
, (2.1)

φkRe

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
+

∂

∂x
τk,yx +

∂

∂y
τk,yy − φk

sinβ

St
, (2.2)

∂u

∂x
+

∂v

∂y
= 0. (2.3)

Here u = (u, v) denotes the velocity, p the pressure and τk,ij is the ij th component
of the deviatoric stress in fluid k. The parameter φ1 ≡ 1, and the three dimensionless
parameters appearing above are the density ratio φ2, the Reynolds number Re and
the Stokes number St defined as follows:

φ2 = φ ≡ ρ̂2

ρ̂1

, Re ≡ ρ̂1Û0D̂

μ̂1

, St ≡ μ̂1Û0

ρ̂1ĝD̂2
. (2.4)
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Here ρ̂k is the density of fluid k, μ̂1 is a viscosity scale for fluid 1 and ĝ

is the gravitational acceleration. Further dimensionless parameters will appear in
constitutive laws, defining the deviatoric stresses. In order to derive (2.1)–(2.3) we
have scaled distances using D̂, velocities with Û0, time with D̂/Û0, pressure and
stresses with μ̂1Û0/D̂.

On the walls of the slot the no-slip condition is satisfied. Due to the scaling adopted,
we have ∫ 1

0

u dy = 1, (2.5)

in each cross-section. The slot is assumed infinite in x, with the interface between
fluids initially localized close to x = 0. We shall consider flows that are buoyancy
dominated, in which the heavier fluid lies at the bottom of the slot, separated from
the lighter upper fluid by an interface that we denote by y = h(x, t) and assume to be
single valued. Across the interface, velocity and stress are continuous. The interface
is simply advected with the flow, satisfying a kinematic condition.

2.1. Constitutive laws

The fluids are assumed to be generalized Newtonian fluids. In particular we are
interested to understand shear thinning and yield stress effects. A suitable model
that incorporates these effects is the Herschel–Bulkley model, which incorporates also
the simpler Bingham, power law and Newtonian models. Constitutive laws for the
Herschel–Bulkley fluids are

γ̇ (u) = 0 ⇐⇒ τk(u) � Bk, x ∈ Ωk, (2.6)

τk,ij (u) =

[
κkγ̇

nk−1(u) +
Bk

γ̇ (u)

]
γ̇ij (u) ⇐⇒ τk(u) > Bk, x ∈ Ωk, (2.7)

where the strain rate tensor has components

γ̇ij (u) =
∂ui

∂xj

+
∂uj

∂xi

, (2.8)

and the second invariants γ̇ (u) and τk(u) are defined by

γ̇ (u) =

[
1

2

2∑
i,j=1

[γ̇ij (u)]2

]1/2

, τk(u) =

[
1

2

2∑
i,j=1

[τk,ij (u)]2

]1/2

. (2.9)

Herschel–Bulkley fluids are described by three-dimensional parameters: a fluid
consistency κ̂ , a yield stress τ̂Y and a power law index n. The parameter κ1 = 1
and κ2 is the viscosity ratio m:

m ≡ μ̂2

μ̂1

=
κ̂2[Û0/D̂]n2−1

κ̂1[Û0/D̂]n1−1
, (2.10)

where μ̂2 is a viscosity scale for fluid 2. Note that in the case of two Newtonian fluids,
μ̂k = κ̂k . The Bingham numbers Bk are defined as

Bk ≡ τ̂k,Y

κ̂1[Û0/D̂]n1

. (2.11)

2.2. Buoyancy dominated flows: |φ − 1|/St � 1

The objective of our study is to understand a particular limit of (2.1)–(2.3), in which
inertia is not considered to be dominant and the interface orients approximately
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horizontally along the axis of the slot: moderate Re, β ≈ π/2 and φ ∼ O(1). The ratio
of buoyancy to viscous forces is given by the parameter |φ − 1|/St . We suppose that
|φ − 1|/St � 1 so that the interface elongates over some (dimensionless) length scale
δ−1 � 1. To define this length scale we assume that the dynamics of spreading of
the interface, relative to the mean flow, will be driven by buoyant stresses which
have size: |ρ̂1 − ρ̂2|ĝ sinβD̂ in the y direction. These stresses, which act across the
interface where there is a density difference, translate into axial stresses according
to the slope of the interface. If the slope of the interface has size D̂/L̂, the stress
that acts to spread the flow axially has size |φ − 1|ρ̂1ĝ sinβD̂2/L̂. This tendency to

spread is resisted by viscous stresses within the fluids, of size μ̂1Û0/D̂, which dissipate
the energy injected by buoyancy. By matching these two terms, we can obtain the
characteristic spreading length in this regime:

|φ − 1|ρ̂1ĝ sinβD̂2/L̂ = μ̂1Û0/D̂ ⇒ L̂ =
|φ − 1|ρ̂1ĝ sinβD̂3

μ̂1Û0

. (2.12)

Thus, the ratio between the axial length scale and channel width is

δ−1 =
L̂

D̂
=

|φ − 1|ρ̂1ĝ sinβD̂2

μ̂1Û0

=
|φ − 1| sinβ

St
. (2.13)

Following standard methods (see, e.g. Leal 2007) we rescale as follows:

δx = ξ, δt = T , δp = P, v = δV,

and arrive at the following reduced system of equations, in each fluid region
Ωk, k = 1, 2:

δφkRe

[
∂u

∂T
+ u

∂u

∂ξ
+ V

∂u

∂y

]
= −∂P

∂ξ
+

∂

∂y
τk,ξy + φk

cosβ

St
+ O(δ2),

δ3φkRe

[
∂V

∂T
+ u

∂V

∂ξ
+ V

∂V

∂y

]
= −∂P

∂y
− δφk

sinβ

St
+ O(δ2),

∂u

∂ξ
+

∂V

∂y
= 0.

To aid interpretation of our model results, note that the time and length variables
(T , ξ ) are related to the dimensional time and length by

|ρ̂1 − ρ̂2|ĝ sinβD̂3

μ̂1Û0

ξ = x̂,
|ρ̂1 − ρ̂2|ĝ sinβD̂3

μ̂1Û
2
0

T = t̂ . (2.14)

Note that we have used D̂/Û0 to scale t̂ , which is the usual convective time scale based
on the mean velocity and D̂. Therefore, the scale related to the slow time variable T

corresponds to the time taken to travel the characteristic spreading length L̂ at mean
velocity Û0.

We now consider the limit δ → 0 with Re fixed:

0 = −∂P

∂ξ
+

∂

∂y
τk,ξy + χ

φk

|1 − φ| , (2.15)

0 = −∂P

∂y
− φk

|1 − φ| , (2.16)
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Figure 2. Schematic of displacement types considered: (a) heavy fluid displaces light fluid
(HL displacement); (b) light fluid displaces heavy fluid (LH displacement).

where χ = cot β/δ. The parameter χ measures the relative importance of the slope
of the channel to the slope of the interface, in driving buoyancy related motions. We
wish to consider channels that are close to horizontal, where the slopes of both the
channel and the interface may be of comparable importance. Thus, we assume χ is an
order 1 parameter, i.e. we consider inclinations β = π/2+O(δ). For χ > 0 the slope of
the channel is ‘downhill’, in the direction of the flow, and for χ < 0 the flow is uphill.
Note that for larger χ the model does not necessarily break down, but effectively we
have chosen the wrong scaling as the effect of the channel slope is dominant.

Before proceeding, we observe that there are two qualitatively different types of
displacement flows:

(a) HL (heavy–light) displacement: fluid 1 is heavier than fluid 2, and the lower
layer of fluid is consequently fluid 1. Parameters are (nH , κH , BH , nL, κL, BL) =
(n1, 1, B1, n2, m, B2).

(b) LH (light–heavy) displacement: fluid 1 is lighter than fluid 2, and the lower
layer of fluid is consequently fluid 2. Parameters are (nH , κH , BH , nL, κL, BL) =
(n2, m, B2, n1, 1, B1).
These are illustrated schematically in figure 2. We do not consider mechanically
unstable configurations, i.e. heavy fluid over light fluid.

We integrate (2.16) across both fluid layers to give the pressure:

P (ξ, y, T ) =

⎧⎪⎪⎨
⎪⎪⎩

P0(ξ, T ) + χ
φH

|1 − φ|ξ − φH

|1 − φ|y y ∈ [0, h],

P0(ξ, T ) + χ
φH

|1 − φ|ξ − φH − φL

|1 − φ| h − φL

|1 − φ|y y ∈ [h, 1],

(2.17)
where P0(ξ, T ) is defined by

P0(ξ, T ) = P (ξ, 0, T ) − χ
φH

|1 − φ|ξ,

with φH = ρ̂H /ρ̂1 for the heavier fluid, φL = ρ̂L/ρ̂1 for the lighter fluid. On substituting
into (2.15), we arrive at

0 = −∂P0

∂ξ
+

∂

∂y
τH,ξy, y ∈ (0, h), (2.18)

0 = −∂P0

∂ξ
+

∂

∂y
τL,ξy − χ +

∂h

∂ξ
, y ∈ (h, 1). (2.19)

In the lubrication approximation, the leading order strain rate component is
γ̇ξy = ∂u/∂y, and the leading order shear stress τk,ξy is defined in terms of γ̇ξy via the
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following leading order constitutive laws:

∂u

∂y
= 0 ⇐⇒ |τk,ξy | � Bk, x ∈ Ωk, (2.20)

τk,ξy =

⎡
⎢⎢⎣κk

∣∣∣∣∂u

∂y

∣∣∣∣
nk−1

+
Bk∣∣∣∣∂u

∂y

∣∣∣∣

⎤
⎥⎥⎦ ∂u

∂y
⇐⇒ |τk,ξy | >Bk, x ∈ Ωk. (2.21)

Thus, for given h and ∂h/∂ξ , (2.18) and (2.19) define an elliptic problem for u(y).
Boundary conditions for u(y) are u =0 at y = 0, 1. At the interface, y = h, u is
continuous and τH,ξy = τL,ξy , representing stress continuity. These four conditions are
sufficient to determine u for given ∂P0/∂ξ . The pressure gradient is determined by the
additional constraint that (2.5) is satisfied.

For now we assume that the solution of this problem may be computed and we
note that the dependence of u on (ξ, T ) enters only via h(ξ, T ), which satisfies

∂h

∂T
+ u

∂h

∂ξ
= V. (2.22)

Combining the kinematic equation with the divergence free constraint leads, in the
usual manner, to the equation

∂h

∂T
+

∂

∂ξ
q(h, hξ ) = 0, (2.23)

where q(h, hξ ) is defined as

q(h, hξ ) =

∫ h

0

u(y, h, hξ ) dy. (2.24)

The remainder of our study concerns behaviour of solutions to the system (2.23) and
(2.24).

As boundary conditions, for an HL displacement we have that

h(ξ, T ) → 1, as ξ → −∞; h(ξ, T ) → 0, as ξ → ∞, (2.25)

as the channel is assumed full of pure fluid 1 and fluid 2 at the two ends of
the channel. As initial conditions we note that an initial profile in the unscaled
variables h(x, t = 0) = h0(x) is transformed to h(ξ, T = 0) = h0(ξ/δ). Since h0 should
be compatible with the far-field conditions we have that as δ → 0,

h(ξ, 0) → 1 − H (ξ ), (2.26)

where H (ξ ) is the usual Heaviside function. In other words, in terms of ξ , the initial
change in h is localized to ξ = 0. For an LH displacement this is reversed, i.e.

h(ξ, T ) → 0, as ξ → −∞; h(ξ, T ) → 1, as ξ → ∞, (2.27)

h(ξ, 0) = H (ξ ), (2.28)

since the far-field pure fluids are reversed.

2.3. The flux function q(h, hξ )

In the general case, finding the flux function q(h, hξ ) requires computation, and this is
addressed in Appendix A. For the particular case of a Newtonian fluid the analytical
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Figure 3. Examples of q for two Newtonian fluids: (a) b = 0 and different m; HL displacement
with m= 0.1 (�), m= 1 (�), m= 10 (�); LH displacement with m= 10 (�), m= 1 (�), m= 0.1
(�); (b) m= 1 and different b; HL or LH displacements with b = −10 (�), b = 0 (�), b = 10
(�). Examples of q for two non-Newtonian fluids in HL displacement: (c) b = 1, m= 1, B2 = 1,
nk = 1, B1 = 0 (�), B1 = 5 (�), B1 = 10 (�), B1 = 20 (�); (d ) b = 1, Bk = 1, nk = 1, m= 0.1 (�),
m= 1 (�), m= 10 (�).

solution may be found trivially. Denoting b = χ −hξ , for an HL displacement we find

q(h; b, m) = qA(h; m) + bqB(h; m). (2.29)

where qA(h; m) and qB(h; m) represent the advective and buoyancy-driven components
of the flux q(h; b, m):

qA(h; m) =
3mh2(mh2 + (h + 3)(1 − h))

3[(1 − h)4 + 2mh(1 − h)(h2 − h + 2) + m2h4]
, (2.30)

qB(h; m) =
[h3(1 − h)3(mh + (1 − h))]

3[(1 − h)4 + 2mh(1 − h)(h2 − h + 2) + m2h4]
. (2.31)

For an LH displacement, the flux function is given by

q(h; b, m) = qA(h; 1/m) + bqB(h; 1/m). (2.32)

Examples of computed q are given in figure 3. For all examples, these functions
have been computed using the procedure described in Appendix A, with the results
compared against (2.29) in the case of Newtonian fluids, to verify the numerical
method.

We observe that the curves for m =0.1 and m = 10 in figure 3(a), (with b = 0), show
a reflective symmetry, as do those for b = ± 10 in figure 3(b), (with m = 1). Note also
that in figures 3(a) and 3(b), the flux functions are relevant to both HL and LH
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displacements, but with m replaced by 1/m in the case of LH displacements. This
apparent symmetry between HL and LH displacements is not obvious. Note that
although the fluxes are mathematically identical for the same b, in fact b = χ −hξ will
not be the same since hξ will have different sign between the two displacement types.
In addition, m is the ratio of displaced to displacing fluid viscosity, which changes
with the displacement type. In other words, replacing m with 1/m and switching from
HL to LH does give the same q , but does not give the same ‘shape’ of interface
(meaning that we replace h with 1 − h, since the LH displacement front slumps along
the top of the channel). Instead the HL and LH interfaces are the same shape for the
same m in the case of a horizontal channel χ = 0, (see figures 4c and 4d ), and will
be the same shape for small inclinations if we retain the same m and replace χ with
−χ . This does not therefore contradict observations from lubrication-type models of
isodensity displacements with central finger-like interfaces, where the cases m and
1/m also produce markedly different results.

Figures 3(c) and 3(d ) illustrate non-Newtonian effects on q in HL displacements.
In figure 3(c) we observe that as the heavy fluid yield stress B1 is increased q =0 in
some interval of small h. For these thin layers the yield stress fluid remains static.
In figure 3(d ) we see that the effects of viscosity ratio m is broadly similar for non-
Newtonian and Newtonian fluids. For the examples shown, q increases monotonically
with little apparent effect of varying the parameters. This is however not always the
case, as we have presented only a limited subset of the six parameters, mostly of
O(1). With more slightly extreme parameter combinations it is not difficult to find q

that are non-monotone, for example. We shall see later that most of the qualitative
information concerning the long-term behaviour of the solution is contained in ∂q/∂h,
for which the differences are significant.

2.4. The existence of steady travelling wave displacements.

One of the most important practical questions in considering this displacement flow
is whether or not (2.23) and (2.24) admit steady travelling wave solutions. This
determines whether or not the displacement can be effective. In this section we
demonstrate that, regardless of fluid type and of rheological differences between
fluids, it is impossible for there to be a steady travelling wave solution. Having
discounted this possibility, in later sections we turn to a qualitative description of the
solutions for different fluid types.

First, let us note that the slope of the interface hξ acts always to spread the interface.
To see this note that following the construction of the previous section, we may write
q(h, hξ ) = q(h, b) where b = χ − hξ . Formally we may write (2.23) as

∂h

∂T
+

∂q

∂h

∂h

∂ξ
= −∂q

∂b

∂b

∂ξ
=

∂q

∂b

∂2h

∂ξ 2
, (2.33)

from which we see that the interface spreads diffusively provided that q(h, b) increases
with b. We prove the following result in Appendix B.

Lemma 1. q(h, b) is non-decreasing for all b.

Now we examine the condition for there to be a steady travelling wave solution.
Since fluid 1 is injected at mean speed 1, the only steady speed that needs be considered
is unity. Shifting to a moving frame of reference, say z = ξ − T , we see that if the
solution is steady in this frame h = h(z), we must have that

d

dz

[
h − q

(
h, χ − dh

dz

)]
= 0,
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and since q =0 at h = 0, this implies that

h = q

(
h, χ − dh

dz

)
, (2.34)

must be satisfied for all h ∈ [0, 1] if there is to be a steady travelling wave solution.
For an HL displacement we impose the further conditions that h(z) decreases
monotonically from 1 to 0 with z. For an LH displacement these conditions are
reversed: h(z) increases monotonically from 0 to 1 with z. Using Lemma 1, with
b =χ − dh/dz we see that the following is true.

Lemma 2. For an HL displacement, a necessary condition for there to be steady
travelling wave solution is that q(h, χ) � h for all h ∈ [0, 1]. For an LH displacement,
a necessary condition for there to be steady travelling wave solution is that q(h, χ) � h

for all h ∈ [0, 1].

This follows directly since for an HL displacement we require that dh/dz � 0 so
that q(h, b) � q(h, χ). If this condition is not satisfied we would therefore be unable to
find a solution to (2.34), similarly for the LH displacement. Following the procedures
in Carrasco-Teja et al. (2008) we can in fact show that the conditions of Lemma 2
are in fact sufficient as well as necessary.

Finally, we shall show that the conditions of Lemma 2 are in fact never satisfied.
We focus only on the HL displacement, the LH displacement being treated similarly.
We consider solutions u(y) to the system

∂

∂y
τH,ξy = −f, y ∈ (0, h),

∂

∂y
τL,ξy = χ − f, y ∈ (h, 1),

for any of the constitutive laws, with no slip at the walls and continuity of stress and
velocity at y = h, plus the flow rate constraint (2.5), which determines f . We fix χ

and consider h = 1 − ε, noting first that both the velocity solution and f (h) will vary
smoothly with h. For any h ∈ [0, 1] we note that the shear stress throughout the light
fluid layer is given by

τL,ξy(y; h) = τL,ξy(1; h) + (1 − y)(f (h) − χ),

and as h → 1, we have

τL,ξy(y; h) ∼ τL,ξy(1; 1) − ε
∂τL,ξy

∂h
(1; 1) + ε(f (1) − χ) + O(ε2).

Thus, the velocity gradient within the light fluid layer is given by

∂u

∂y
=

∂u

∂y
(τL,ξy(1; 1)) + O(ε),

where the algebraic relation for the velocity gradient comes directly from the
constitutive laws. Hence we may straightforwardly compute the flux in the lighter
fluid layer:

qL(ε) =

∫ 1

h

u(y)dy ∼ −ε2

2

∂u

∂y
(τL,ξy(1; 1)) + O(ε3).

Now when h = 1 the channel is full with the heavy fluid, and the pressure gradient
corresponds to the Poiseuille flow solution, say f (1) = fH (1) > 0, which can be easily
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calculated. The stress at the upper wall is thus −0.5fH (1) and since the shear stress
is continuous we have

τL,ξy(1; 1) = − 0.5fH (1) < 0 ⇒ qL(ε) ∼ −ε2

2

∂u

∂y
(−0.5fH (1)) > 0.

Since via the flow rate constraint we have that the total flux is equal to unity, we
have that

q(h, χ) ∼ 1 +
(1 − h)2

2

∂u

∂y
(−0.5fH (1)) > h, as h → 1. (2.35)

Consequently for an HL displacement the necessary conditions of Lemma 2 are always
violated sufficiently close to h =1, regardless of fluid type and rheological differences.
Similarly, we can show that for an LH displacement the necessary conditions of
Lemma 2 are always violated sufficiently close to h = 0, regardless of fluid type and
rheological differences. This leads to the following result.

Lemma 3. There are no steady travelling wave solutions to (2.23).

Remarks:
(i) This is the key theoretical result of the paper. It is perhaps surprising that for

no combination of rheology or density differences are we able to achieve a ‘perfect’
displacement, (under the assumptions of the lubrication displacement model). This
changes the focus of the study. First, in order to achieve a good displacement,
we are driven to study those parameter combinations that give the best efficiency,
close to 100 %. Second, if we wish to improve the efficiency we need consider
phenomena that might do this, other than those accounted for in this simplistic
model, e.g. hydrodynamic instability and mixing, or the short-time dynamics in the
interfacial region before the interface slumps.

(ii) For a Newtonian fluid displacement, we might find this result rather more
directly as the solution may be computed. For example, in Seon et al. (2007) the
simpler problem of two Newtonian fluids of identical viscosity in an inclined pipe
is considered, in the absence of a mean imposed flow. No travelling wave solutions
are found. Here, however, the mean flow results in a different structure to the flux
functions q , i.e. for Newtonian fluids the advective and buoyant components qA

and qB are present whereas only qB is present in Seon et al. (2007), (also with an
algebraically different form). For non-Newtonian fluids the division of the flux into
qA and qB is not possible, due to nonlinearity. Thus, we have to work with qualitative
properties of the fluxes for such fluids. While we might anticipate from results such
as Seon et al. (2007) that no travelling waves solutions to (2.23) can be found, from
a physical perspective addition of a constant volume flux (i.e. a displacement) makes
this a natural and legitimate question.

(iii) Although we have focused on Herschel–Bulkley fluids for definiteness, the
same results could be demonstrated for any of the popular generalized Newtonian
models, e.g. Carreau fluids, Cross model, Casson model, etc.

3. Newtonian fluids
We commence with an analysis of Newtonian fluid displacements. Although the

industrial applications discussed in § 1 typically involve non-Newtonian fluids, many
of the qualitative behaviours are exhibited in a Newtonian fluid displacement. Analysis
of the Newtonian fluid case not only provides simplification in terms of the number



14 S. M. Taghavi, T. Seon, D. M. Martinez and I. A. Frigaard

(a)

(c) (d)

(b)

0 0.5

ξ

1.0 1.5
0

0.2

–0.5

0.4

0.6

0.8

1.0

h(
ξ
, 
T

)

ξ/T

ξ/T ξ/T

0 0.5–0.5–1.0 1.0 1.5 2.0
0

0.2

0.4

0.6

0.8

1.0

h

0.1–0.1 –0.10.3 0.5 0.7 0.9 0.11 1.3 1.5
0

0.2

0.4

0.6

0.8

1.0

h

0 0.5 1.1 1.5
0

0.5

1.0

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
0

0.2

0.4

0.6

0.8

1.0

h

0 0.5 1.0 1.5
0

0.5

1.0

Figure 4. Examples of HL displacements: (a) h(ξ, T ) for T = 0, 0.1, . . . , 0.9, 1, parameters
χ = 0, m= 1; (b) h(ξ/T ) for T = 1, . . . , 9, 10, parameters χ = 0, m= 1. Examples of HL
displacements: (c) h(ξ/T ) for χ = 0: m= 0.1 (�), m= 1 (�), m= 10 (�); (d ) h(ξ/T ) for m= 1:
χ = −10 (�), χ = 0 (�), χ =10 (�). The inset figures in (c) and (d ) show the results of LH
displacements for the same parameters.

of dimensionless parameters, i.e. (m, χ), but also since q is given by the analytical
expression (2.29) numerical solution is considerably faster. For non-Newtonian fluids,
each evaluation of q requires numerical solution of the nested iteration described in
§ A.

The convection–diffusion equation (2.23) was discretized in the conservative
form, second order in space and first order in time; and afterward, integrated
straightforwardly by using a Lax–Wendroff scheme in which an artificial dissipation
was added to the equation to recover the destabilizing effects of the known anti-
diffusion due to the first-order time discretization. The only unsatisfactory aspect of
the method applied was a small amount of smoothing close to the sharp front tip of
the interface. This feature was found to be consistent with time since the flux function
and added dissipation vanish in both walls.

3.1. Examples of typical qualitative behaviour

Example computed HL displacements are shown in figure 4. The results at long
times are not found to be particularly sensitive to the initial condition, which we
have taken as a linear function of ξ : typically h(ξ, T = 0) = ∓ξ ± 0.5 for HL and LH
displacements, respectively. When we have wished to study the early-time evolution
of the interface, we steepen the initial profile, e.g. in figure 4(a) the initial condition
is h(ξ, T = 0) = −ξ + 0.05. Figures 4(a) and 4(b) plot the solution for m =1, χ =0,
(i.e. equal viscosities in a perfectly horizontal channel). In the early times, T ∈ [0, 1]
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we observe that the interface develops quickly into a slumping profile; see figure 4(a).
Over longer times, the solution consists of two segments: an advancing front of
apparently constant shape moving at constant speed and a region at the top which
is stretched, the top of the interface simply not moving. The longer time profiles of
h may be conveniently plotted against ξ/T , in which variable the interface profiles
collapse to a single similarity profile as T → ∞ (figure 4b). To clarify interpretation of
figures such as figure 4(b), the x-axis of the final similarity profile gives the speed of
the interface at different heights: vertical lines correspond to segments of the interface
that advance at steady speed.

Note that the first interface profile in figure 4(b), for T = 1, effectively shows h(ξ, T )
at T = 1, and in this we may observe that the top of the interface is pinned to
the upper wall at the initial position ξ = −0.5. The convergence at the upper wall
as T → ∞ simply follows ξ/T = −0.5/T , and the interface itself does not move, as
evidenced in figure 4(a) over shorter times. Thus, the apparent discrepancy between
the last interface profile of figure 4(a) and the first interface profile of figure 4(b) is
simply due to the different initial conditions.

This qualitative behaviour is similar for other parameters and indeed convergence
to the ‘final’ similarity profile is relatively quick, occurring over an O(1) time scale
(in T ). For our other results we present only the interface at T = 10, which is always
very close to the final similarity profile. Figure 4(c) shows the final shape for three
different values of viscosity ratio m and figure 4(d ) shows the final shape for three
different values of the inclination parameter χ . For larger m the height of the steadily
moving front, say hf , is smaller. This is intuitive, since increasing m corresponds
to an increasingly less viscous fluid displacing a more viscous fluid. The interface
above the steadily moving front also transitions from convex to concave curvature
as m is increased, further emphasizing the extending finger. Similarly, for χ > 0 the
heavy fluid flows downhill through the lighter fluid and hf is accordingly smaller
in this configuration. The inset figures in figures 4(c) and 4(d ) show the analogous
LH displacements for the same parameters. The effects of m are identical with those
for the HL displacement, (since m is the ratio of in-situ fluid viscosity to displacing
fluid viscosity). The effect of varying χ is however reversed: χ > 0 retards unsteady
spreading for an LH displacement and χ < 0 promotes unsteady spreading.

3.2. Long-time behaviour

We have seen in figure 4 that the interface tends to evolve on an O(1) time scale
into a shape that consists of two parts: (i) a front region that remains approximately
constant but advances at steady speed; (ii) a stretched region, in which the interface
is continually extended, as t → ∞. For the HL displacement the steadily moving
front occupies the lower part of the channel, and for the LH displacement the front
advances along the upper wall. In place of computations, we would like to directly
compute this long-time behaviour. In what follows below we focus for simplicity on
the HL displacements.

We commence with the upper stretched region. If we denote the steady front height
and speed by hf and Vf , respectively, we observe that at long times the slope of the
interface is approximately

∂h

∂ξ
∼ −1 − hf

Vf T
→ 0, as T → ∞.
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Therefore, as T → ∞, we have that b = χ − ∂h/∂ξ → χ , and the interface motion in
the stretched region is governed approximately by

∂h

∂T
+

∂

∂ξ
q(h, χ) = 0, (3.1)

which is hyperbolic rather than parabolic. The interface in this region advances with
speed Vi(h) given by

Vi(h) =
∂q

∂h
(h, χ).

Thus, the total area of fluid flowing behind the interface in the interval [hf , 1] at long
times is

T

∫ 1

hf

Vi(h) dh = T [1 − q(hf , χ)].

Furthermore, at the front height hf the interface speed should equal the front velocity
Vf , i.e.

∂q

∂h
(hf , χ) = Vi(hf ) = Vf . (3.2)

The total area of fluid behind the interface is T and since the area of fluid flowing
behind the interface in the interval [0, hf ] is approximately T Vf hf , we have the
following relationship:

T q(hf , χ) = T − T [1 − q(hf , χ)] = T Vf hf = T hf

∂q

∂h
(hf , χ),

from which

q(hf , χ) = hf

∂q

∂h
(hf , χ). (3.3)

Equation (3.3) is an equation for the front height hf . This is instantly recognizable as
the same condition that must be satisfied in the case of a kinematic shock, in order
to conserve mass. Therefore, note that the long time behaviour is that determined by
the underlying hyperbolic conservation law.

An example of the use of the equal areas rule (3.3) to determine the front height
is shown in figure 5(a). In figure 5(b) we plot h against ξ/T for T = 1, . . . , 9, 10,
showing that hf does indeed represent the moving front, which has the same speed
as indicated in figure 5(a). Although for most of the parameters we have considered,
there is a single propagating front, some parameters result in a double front. Loosely
speaking, for Newtonian fluids this appears to arise at more extreme parameter values
when physical effects are somehow opposing one another. An example is shown in
Figures 5(c) and 5(d ). In this illustration, the competing effects are buoyancy, driven
by the downhill slope which acts to spread the interface, and the viscosity ratio which
acts to sharpen the front.

Figure 6(a) shows calculated front heights for HL and LH displacements for
different values of χ and m. To interpret this figure for the LH displacement The
front height hf for LH displacement is defined as the distance from the top wall
to the stretched part of the interface. We observe that higher viscosity ratios tend
to have a lower front height, which simply means that in order to have a more
efficient displacement, the displacing fluid should be more viscous in comparison to
the displaced fluid. Increasing χ tends to reduce efficiency for the HL displacement
but increase efficiency for the LH displacement. Via repeated computation of q for
different (m, χ) we are able to delineate the regime in the (m, χ) plane in which
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Figure 5. Use of the equal areas rule (3.3) in determining the front height: (a) a single front
height, χ =10,m= 8; (b) h plotted against ξ/T for T = 1, . . . , 9, 10, parameters χ =10,m= 8,
broken horizontal line indicates the front height determined from (3.3); (c) two front heights,
χ = 10,m= 0.08; (d ) h plotted against ξ/T for T = 1, . . . , 9, 10, parameters χ = 10,m= 0.08,
broken horizontal lines indicate the front heights.

10–1 100 101
0.5

0.6

0.7

0.8

0.9

1.0
(a) (b)

m

hf

0
10–1 100 101

m

10

20

30

40

χ

50

Figure 6. (a) Front heights for a Newtonian fluid HL displacement with χ = −10 (�),
χ = −5 (�), χ =0 (�), χ =5 (�), χ =10 (�). This figure also gives the front heights for
a Newtonian fluid LH displacement with χ = 10 (�), χ = 5 (�), χ = 0 (�), χ = −5 (�),
χ = −10 (�). For the LH displacement the front height is measured down from the top wall;
(b) Parameter regime in the (m,χ) plane in which multiple fronts (shaded area). Elsewhere
there is only a single front.

multiple fronts are found (figure 6b). Within the shaded region of figure 6(b), note
that some parameter values give front speeds that are negative, i.e. there is a backflow
driven by buoyancy.

Although the expression (3.3) for the front height is exactly the equation that would
be solved for computing a kinematic shock for the hyperbolic conservation law, it is
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Figure 7. Examples of front shapes in the moving frame of reference for an HL displacement,
computed from (3.4): (a) χ = 0, m= 0.1 (�),m= 1 (�),m= 10 (�); (b) χ = −10 (�), χ = −5 (�),
χ = 0 (�), χ = 5 (�), χ = 10 (�). Compare with transient computations in Figures 4(c) and
4(d ).

important to emphasize that the front is not a shock since diffusive effects are always
present for h ∈ (0, 1). Having determined hf from (3.3) and then Vf from (3.2), we
may shift to a moving frame of reference z = ξ − Vf T and seek a steadily travelling
solution to (2.23), which satisfies

d

dz

[
hVf − q

(
h, χ − dh

dz

)]
= 0, ⇒ hVf − q

(
h, χ − dh

dz

)
= 0. (3.4)

Equation (3.4) must be solved numerically for h ∈ (0, hf ). Example shapes are shown
in figure 7. Figure 7(a) shows HL displacement front shapes for two Newtonian fluids
for different values of viscosity ratio at χ = 0. Figure 7(b) shows HL displacement
front shapes for two Newtonian fluids for different values of χ at m = 1. These are the
same parameters as for the transient displacements in Figures 4(c) and 4(d ). Observe
from (3.4) as h → h−

f that, since hf is determined from (3.3) and Vf from (3.2), we
must have

q

(
h, χ − dh

dz

)
→ q(hf , χ) as h → h−

f ,

which implies that dh/dz → 0 as h → h−
f , as can be seen in figure 7. Evidently, as

T → ∞ the stretched region of the interface also aligns horizontally, so that the
long-time solution is smooth at hf .

3.3. Flow reversal and short-time behaviour

The model results presented so far have been derived under lubrication scaling
assumptions, with the length scale determined by dominant buoyancy effects,
compatible with the assumed stratification. Our study of the long-time behaviour
has revealed only forward propagating fronts, which of course are more common
since a positive flow rate is imposed. If the channel is horizontal then, as the front
advances and the slope of the interface decreases, the driving force to oppose the
mean flow also diminishes. Thus, we cannot expect flow reversal in a horizontal
channel at long times.

On the other hand, with an inclined channel there is a constant buoyancy force that
may either reinforce or oppose the mean flow. For example, with an HL displacement
at fixed positive inclination, χ > 0, buoyancy acts to push the lighter fluid against the
mean flow direction. For sufficiently large χ and small viscosity ratio, we observe that
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Figure 8. Profiles of h(ξ, T ) for T =0, 1, . . . , 9, 10, with parameters χ =50, m= 0.1,
illustrating flow reversal.

the lighter fluid may be driven backwards against the flow, resulting in a sustained
flow reversal. An example of this is shown in figure 8.

Flow reversal may also be observed in other situations. The most obvious of these is
the case T � 1, since for short times large interface slopes may mean that gravitational
spreading may dominate the imposed flow. Since our model is anyway an asymptotic
reduction of the full equations in which T effectively represents a long-time relative
to the advective time scale over the channel width, the limit T → 0 is one in which
the underlying assumptions of the model break down. Nevertheless, the problem for
T � 1 is mathematically well defined and of physical interest.

To study this limit, we shift to the steadily moving frame of reference z = ξ − T ,
recall that b = χ − hξ , and consider (2.23) for an HL displacement, which becomes

∂h

∂T
+

∂

∂z

[
qA(h; m) +

(
χ − ∂h

∂z

)
qB(h; m) − h

]
= 0, (3.5)

where qA(h; m) and qB(h; m) represent the advective and buoyancy-driven components
of the flux q(h; b, m), which is defined by (2.29) for two Newtonian fluids, i.e.
introducing η = z/

√
T this becomes

1

2
η
dh

dη
−

√
T

d

dη
(qA − h + χqB) + qB

d2h

dη2
+

∂qB

∂h

(
dh

dη

)2

= 0. (3.6)

Therefore, provided that T ∼ 0 we may seek a similarity solution satisfying

1

2
η
dh

dη
+ qB

d2h

dη2
+

∂qB

∂h

(
dh

dη

)2

= 0, (3.7)

or in conservative form

1

2
η
dh

dη
=

d

dη

(
−qB

dh

dη

)
. (3.8)

Since qB(h; m) vanishes at both h = 0 and h = 1, it is clear that there is some
singular behaviour in h(η) at these points. Thus, it is more comfortable to work with
the function η(h). The boundary conditions are η(0) = η0 and η(1) = η1, where η0 and
η1 are unknown at this stage. Physically, we expect that η0 > 0 and η1 < 0 as the
spreading of the interface is caused by gravitational slumping. A Taylor expansion
reveals that η(h) ∼ η0 + O(h3) as h → 0, with similar asymptotic behaviour as h → 1,
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Figure 9. (a) the similarity solution h(η) for m= 0.01, 0.1, 1, 10, 100; (b) comparison of the
similarity solution with the numerical solution of (3.5) for m= 1, at T = 0.001, 0.01, 0.1.

i.e. η′(h) → 0 quadratically at both ends of the interval. We integrate (3.8) as follows:

1

2
ηdh = d

(
−qB

dh

dη

)
, (3.9)

∫ h

0

1

2
ηdh =

∫ h

0

d

(
−qB

dh

dη

)
= −qB(h)

dh

dη
+ qB(0)

dh

dη
= − qB(h)

dh

dη
, (3.10)

(note qB(h) → 0 as h → 0 with order h3). Now taking h → 1 and using the asymptotic
behaviour qB(h) ∼ (1 − h)3, we have

1

2

∫ 1

0

η dh = 0. (3.11)

Let us now define g(h) such that η = g′. Therefore,

g(h) − g(0) =

∫ h

0

η · dh, (3.12)

and from (3.11), we see that g(1) = g(0). For convenience, we set g(0) = 0 so that
(3.10) may be written as

g′′ · g = −2qB. (3.13)

We use the initial condition g(0) = 0 and g′(0) = η0. We then integrate forwards, with
respect to h and iterate on η0 via a shooting method to satisfy g(1) = 0.

This numerical procedure appears to work well. Figure 9(a) plots the similarity
solutions η(h) for various m. Note that the solution is not symmetric with respect to
m. For the heavy–light displacement the heavy fluid viscosity is 1 and the light fluid
viscosity is m. Buoyancy effects have no bias between the fluids, but the more viscous
fluids evidently resist motion. Thus, we see that for large m the axial extension η0 −η1

is smaller than for small m. This effect might have been removed had we scaled
viscosity with an appropriate mean value. A symmetrical shape is of course found at
m =1.

These solutions have been compared with the solution of PDE equation (3.5) as
T ∼ 0 and agree well for short times. An example is shown in figure 9(b) for the case
m =1. Mathematically, these solutions serve primarily to demonstrate that for short
times, (e.g. after opening a gate valve in an experiment), buoyancy dominates and
an exchange flow should occur, relative to the mean displacement. For smaller mean
velocities the parameter δ → 0 and the dimensional time period over which buoyancy
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dominates extends to infinity, ensuring compatibility with exchange flow studies, for
which there is zero net flow rate and hence a flow reversal in each layer.

To explore this analogy further, let us fix β = π/2, in which case we may note that
the similarity variable η is defined in terms of dimensional variables by

η =
z

T 1/2
=

x̂ − Û0 t̂

t̂1/2

√
μ̂1

|ρ̂1 − ρ̂2|ĝD̂3
.

We may compare this with the analysis in Seon et al. (2007) for exchange flows in
horizontal pipes, wherein diffusive similarity profiles are found for Newtonian fluids
of the same viscosity. We may note that the scaling |ρ̂1 − ρ̂2|ĝD̂3/μ̂1 is the same as
the (Vνd)1/2 that scales the similarity variable x/t1/2 in Seon et al. (2007) (see (27) and
§ VII.B in this paper). However, although this is the same viscous-buoyancy balance
driving the diffusive spreading in both cases, here we have the additional criterion
that T 1/2 � 1, and we have seen numerically that the diffusive regime does not last
for longer times. This criterion can be written dimensionally as

t̂ Û0

D̂
� 1

Û0

|ρ̂1 − ρ̂2|ĝD̂2

μ̂1

=
L̂

D̂
.

The most simplistic interpretation therefore is that t̂ Û0 � L̂ , i.e. the distance advected
during the time considered must be much less than the characteristic slump length,
(dimensionlessly, we require that z � 1). Alternatively the left-hand side is the ratio
of advected distance to the channel width, whereas the quantity in the middle is the
ratio of the viscous velocity scale to the advective velocity scale. Finally, observe that
the short time diffusion is measured in a frame of reference moving with the mean
velocity. The criterion t̂ Û0 � L̂ also means that the moving frame has not moved very
far relative to the stationary frame in which the usual exchange flow analysis takes
place.

4. Non-Newtonian fluids
We turn now to results for non-Newtonian fluids. Primarily, we shall be concerned

with long-time results since the short-time behaviour does not yield simple analytical
results in the form of similarity solutions. The reason for this becomes clear if we
consider for example a Poiseuille flow of a power law fluid. The strain rate in the
fluid is proportional to the pressure gradient to the 1/nth power, and hence the areal
flow rate also. In a two-layer flow of the type we have, the short-time behaviour is
dominated by that part of q(h, hξ ) driven by the pressure gradient due to the slope
of the interface. However, the flux in fluid layer k is proportional to |hξ |1/nk and the
two fluxes are coupled via the flow rate constraint. Thus, it is immediately obvious
that there can be no single similarity variable unless the two fluids happen to have
the same shear-thinning index. In this case the similarity variable is η = z/tn/(n+1).
Although of mathematical interest, the practical interest is limited.

4.1. Shear-thinning effects

We commence by considering only shear-thinning effects Bk = 0, and shall also focus
only on HL displacements. Figures 10(a) and 10(b) show the final similarity profiles
of the interface for m =1 and χ = 0, i.e. the only effects are the relative values of
the two power law indices. We observe that for fixed nH the front height increases
as nL decreases. Conversely, for fixed nL the front height decreases as nH decreases.
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Figure 10. Examples of HL displacements for two power law fluids, Bk = 0, χ = 0: (a) h for
m= 1, nH =1: nL = 1/2 (�), nL = 1/3 (�), nL = 1/4 (�); (b) h for m= 1, nL = 1: nH = 1/2 (�),
nH = 1/3 (�), nH = 1/4 (�); (c) h for nH = 1/4, nL =1,m= 0.1 (�), nH = 1, nL = 1/4,m= 10
(�); (d ) h for m= 0.1, nH =1: nL =1 (�), nL = 1/2 (�), nL = 1/4 (�). All interfaces plotted at
T = 10.

Both effects are essentially predictable, in that with all other parameters fixed (or
neutralized in the case of inclination, χ = 0), varying the power law indices makes
one fluid progressively less or more viscous.

Less obvious effects are found when the ‘bulk’ viscosity of one fluid is for example
large but has smaller power law index than the other fluid. For example, should
nH = 1/4, nL = 1, m =0.1 provide a better displacement than nH = 1, nL = 1/4, m =10?
Typically, in industrial settings one is unable to choose the rheological properties of
the fluids. These displacements are shown in figure 10(c) and we see that in fact the
latter case displaces better. Often shear-thinning behaviour can be brought about by
the addition of a relatively small amount of a polymer additive. In cases when the
displacement is anyway reasonable, due to a viscosity ratio m < 1, shear thinning
effects can result in displacements that are close to 100 % efficient. An example of this
are shown in figure 10(d ), where for m =0.1, nH = 1 we show the effects of decreasing
nL. Note that as nL → 0, the light fluid effectively slips at the upper wall and we are
able to have a steady travelling wave displacement.

The analysis of interface motion at long times is identical to that for the Newtonian
fluid displacements of the previous section. The long-time behaviour can be analysed
over a wide range of parameters by direct treatment of the flux function q . We
present a range of parametric results below. Until now we have given only the front
height hf . However, in displacement experiments it is usually easier to estimate the
front speed Vf from captured images, especially when the interface is diffuse. The
front speed is calculated straightforwardly for Newtonian displacements, but for non-
Newtonian fluids this is more laborious. A slightly different interpretation of the front
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Figure 11. Front heights and velocities, plotted against m for an HL displacement of two
power law fluids, Bk = 0; (a) hf for nL = 1, nH =1/4; (b) hf for nH = 1, nL = 1/4; (c) hf

for nL = 1, nH = 1/2; (d ) hf for nH = 1, nL =1/2; (e) Vf for nL = 1, nH = 1/4; (f ) Vf for
nH = 1, nL = 1/4. For all plots χ = −10 (�), χ = −5 (�), χ = 0 (�), χ =5 (�), χ = 10 (�), and
the heavy broken line indicates multiple fronts.

speed is as an indicator of displacement efficiency. No single measure or definition is
universal, e.g. for finite length ducts it is common to present quantities such as the
volume fraction displaced after 1 volume of displacing fluid has been pumped, or
alternatively after an infinite volume has been pumped. Here we define

Displacement efficiency=
1

Vf

. (4.1)

At long times this approximates the area fraction behind the front that is displaced
at time T . An alternative interpretation is as the breakthrough time, i.e. the time at
which displaced fluid is first seen at unit length downstream.

Examples of variations in front height and speed, for different χ and m, as either
nH or nL is reduced, are shown in figure 11. Essentially the displacement efficiency
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Figure 12. Profiles of h plotted against ξ/T at T = 10: (a) χ = 0, nk = 1, BL =0,m= 1,
BH = 1(�), BH = 5 (�), BH = 20 (�); (b) χ = 0, nk = 1, BH = 0,m= 1, BL = 1 (�), BL = 5 (�),
BL = 20 (�).

increases as the displacing fluid becomes less shear-thinning, as would be expected, and
as the inclination increases. As with Newtonian displacements, for certain parameter
ranges the long-time behaviour is characterized by two steady fronts, with the lower
front moving faster. Parameters for which this happens are indicated in figure 11 by
the heavy broken line. It can be observed that the transition from 1 front to 2 fronts
can be either smooth or sudden. Later we illustrate in detail how these different
transitions occur. For two Newtonian fluids the occurrence of multiple fronts is
relatively easy to identify, as there are essentially only two effects that compete:
viscosity and buoyancy (figure 6). However, for power law fluids we may have fluid
combinations that are either more or less viscous than each other, for different
shear rates, and these effects are then complemented with effects of different channel
inclinations. Thus, the possible combinations of effects are vastly increased and it is
hard to map out regions in parameter space where multiple fronts exist. Flow reversal
occurs in HL displacements for large values of χ > 0 and for suitable viscosity ratios.
For example, in figure 11(b) at small m for χ = 10, the heavy broken line indicates
two moving fronts, but one front has negative speed (hence the decrease in efficiency).
The jump in figure 11(b) (at small m for χ = 10) in fact indicates a transition from
two fronts to three fronts: two moving forwards and one moving backwards!

4.2. Yield stress effects

We turn now to yield stress fluids and for simplicity we set nk = 1, i.e. these are
Bingham fluids. Such fluids are in any case shear-thinning, due to the yield stress, but
no additional power law behaviour is considered. We start by examining the effects
of a single yield stress on a Newtonian displacement (for m =1, χ = 0) by increasing
either BH or BL. Again only HL displacements are considered. Figure 12 shows the
interfaces at T = 10, plotted against ξ/T for each of these cases. It can be observed
that increasing BH improves the displacement due to the enhanced effective viscosity
(figure 12a). Similarly, increasing BL makes the displacement less efficient (figure 12b).

The new physical phenomena observed in figure 12(b) for larger BL, is the possibility
to have a static wall layer. Observe that for BL = 20 the interface at T = 10 has not
displaced the light fluid in the upper part of the channel. This will be attached to the
upper wall in an HL displacement and to the lower wall in an LH displacement. This
type of phenomena has been observed and studied before, both as part of a transient
displacement flow and as a static situation (see, e.g. Allouche et al. 2000; Frigaard,
Leimgruber & Scherzer 2003). We discuss static wall layer solutions further in § 4.2.1.
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Figure 13. Front heights and velocities, plotted against m, nk = 0; (a) HL displacement hf

versus m for BL = 0, BH = 5, (b) HL displacement Vf versus m for BL = 0, BH = 5, (c) HL
displacement hf versus m for BH = 0, BL = 5, (d ) HL displacement hf versus m for BH = 0,
BL = 20. Parameters: χ = − 10 (�), χ = − 5 (�), χ = 0 (�), χ = 5 (�), χ = 10 (�) for all plots.
Broken heavy line indicates multiple fronts.

The long-time analysis of solutions is qualitatively similar to that discussed earlier.
Examples showing the effects of χ and m on the front height and speed are shown
in figure 13. General effects of varying m, χ and Bk are mostly in line with our
physical intuition, i.e. effects that make the displacing fluid more viscous usually (but
not always) improve the displacement. However, for parameter ranges where some
ambiguity exists, this type of computation determines which effects dominate. We
also observe the same range of different solution types as before when the parameters
are varied, i.e. transitions from single to multiple fronts that may be smooth or
sudden.

To clarify how transitions occur between single and multiple fronts (e.g. in figure 13
and similar figures previously), Figure 14 illustrates the two different type of transition,
by showing ∂q/∂h(h, hξ = 0) at values of m just above and below the critical values
at which transition occurs. In figures 14(a) and 14(b) we observe that the smooth
transition typically corresponds to a change in the shape of ∂q/∂h(h, hξ = 0) from
unimodal to bimodal (or vice versa). We have two fronts and as a process parameter
is changed the slower front simply disappears. The sudden transition, illustrated in
figures 14(c) and 14(d ), is due to a change in the actual front height when switching
between branches of a bimodal ∂q/∂h(h, hξ =0). We have two fronts and as a process
parameter is changed the slower front increases in speed, eventually overtaking the
faster front, thus combining into one front. Note that there is no jump in the front
speed (figure 13b). We have simply plotted the height of the fastest moving front, as
this is the front that is most relevant for the displacement efficiency.
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Figure 14. Plots of ∂q/∂h showing the front positions for parameters: nk = 1: (a) BH = 1,
BL = 0, χ = 10, m= 0.1, multiple fronts; (b) m= 0.2, single front; (c) χ =0, BH = 5, BL = 0,
m= 2.3, multiple fronts; (d ) χ = 0, BH = 5, BL = 0, m= 2.4, single front.

4.2.1. The static wall layer

The defining novel feature of a yield stress fluid displacement is the possibility for
residual fluid to remain permanently in the channel, i.e. even asymptotically as T → ∞
a fraction of fluid 2 may not be displaced. The origin of the static residual layer has
a straightforward physical explanation. The lubrication displacement model that we
study is based on an underlying parallel flow of two fluids. If the wall stress created
by the displacing fluid, flowing at unit flow rate through the channel, does not exceed
the yield stress of the displaced fluid, it follows that there could be a static residual
layer on the wall. It can also be argued that there exists a uniquely defined maximal
static layer thickness, either physically or mathematically (see Allouche et al. 2000;
Frigaard et al. 2003).

On following a similar procedure to that of Allouche et al. (2000), we may show that
the maximal residual wall layer thickness depends only on the following parameters
(for an HL displacement):

nH , B̃1 =
BH

κH

, ϕY =
BH

BL

, ϕb =
χ

BL

. (4.2)

The parameter B̃1 is a rescaled Bingham number, relevant to the displacing fluid; ϕY

is simply the yield stress ratio and ϕb measures the ratio of buoyancy stress due to the
slope of the channel and the yield stress of the displaced fluid. The critical condition
for the existence of any static wall layer is independent of the buoyancy ratio ϕY .

Figure 15 shows the variation in maximum static wall layer Ystatic with the
parameters ϕY and 1/B̃1 for three fixed values of the ratio ϕb. The shaded area
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Figure 15. Maximal static wall layer thickness Ystatic(nH , B̃1, ϕY , ϕb), with contours spaced
at intervals �Ystatic = 0.1: (a) ϕb = −2, nH = 1; (b) ϕb = −2, nH = 0.2; (c) ϕb = 0, nH = 1;
(d ) ϕb = 0, nH = 0.2; (e) ϕb = 2, nH = 1; (f ) ϕb = 2, nH = 0.2.

marks the limit where no static wall layers are possible. As nH decreases, the contours
become increasingly parallel to the vertical axis, which implies that the layer thickness
is becoming independent of B̃1 =BH/κH . As ϕb increases from negative to positive
the static layer thickness is increasing.

The limit BH → 0 must be treated separately. Straightforwardly, we find that Ystatic

depends on nH , χ̃ =χ/κH and B̃2 = BL/κH . Figure 16 shows the variation in maximum
static wall layer with the parameters χ̃ and B̃ for four different fixed values of the
power law index nH . An interesting consequence of figure 16 is that for a small
change in, e.g. yield stress, it appears that we may transition from having no static
layer to having a finite static layer! An example illustration of this is given in
figure 17. Although there is a discontinuity in the thickness of static layer, there is
no discontinuity in the physical process, i.e. the layers of fluid that move do so very
slowly as the static layer criterion is violated.
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Figure 16. Maximal static wall layer Ystatic = 1 − hmin when a power-law fluid displaces
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Figure 17. An example of sudden movement of static layer corresponding figure 16(d ):
(a) h(ξ, T ) for T =0, 1, . . . , 9, 10, parameters χ =10,m= 1, nH = 1/4, nL = 1, B1 = 0, B2 = 2;
(b) h(ξ, T ) for T = 0, 1, . . . , 9, 10, parameters χ = 10,m= 1, nH =1/4, nL = 1, B1 = 0, B2 = 1.

5. Discussion and conclusions
We have considered the viscous limit of a miscible displacement flow between

parallel plates in the presence of strong density differences. The fluids considered are
of generalized Newtonian type, and the principal tool used is a lubrication/thin-film
approximation for long slumping flows. The principal contributions are as follows.

First, the semi-analytical solution for the flux functions, for yield stress and shear-
thinning fluids (see Appendix A) has not been derived before. This solution allows
one to consider this type of problem via fast computation. In the absence of such
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a solution, to compute a solution requires numerical integration across the channel
width in each fluid layer, coupled to iteration for the pressure gradients and stresses.
In place we have simply to solve two coupled algebraic equations, both of which are
monotone in their argument. This is a considerable step forwards.

We have analysed principally the long-time behaviour of displacement flows.
Although these are termed ‘long-time’ solutions we have seen in most of our computed
examples that the transients converge to something close to the long-time solutions
over time intervals T ∼ O(1). These flows are characterized by intervals of interface
that propagate at a constant speed (fronts), and other intervals in which the interface
becomes progressively stretched. The front heights are determined by consideration
of the associated hyperbolic problem and it appears that the long time solution
converges to a similarity form h(ξ/T ).

A range of parametric results have been reported in which we explore variations
in front heights and velocities with the model parameters. It is certainly fair to say
that some of the results are predictable, e.g. more efficient displacements are generally
found with a more viscous displacing fluid and some modest improvements can
also be gained with slight positive inclination of the channel in the direction of the
density difference. However, the value of the analysis really comes from quantifying
the displacements, in terms of front heights and speeds, and in particular in helping
to determine efficiency in cases where physical effects are ambiguous (figure 10c).

Probably the most impressive improvements in displacement efficiency arise when
the displaced fluid is significantly shear-thinning, by comparison with the displacing
fluid (figure 10d ). Introduction of a yield stress can help displacements by making
the displacing fluid more viscous, but if the displaced fluid has a yield stress it is very
common to find completely static residual wall layers of displaced fluid. These are
by-passed by the advancing front. Their thickness corresponds to the maximal static
layer thickness and this can be computed directly, as we have done.

The key theoretical result is to establish that there can be no 100 % efficient
displacements in this flow, regardless of rheological properties of the fluids (see
Lemma 3 in § 2.4). A consequence of this is that we can focus in two directions:

(a) For the lubrication/thin film flows that we study, we may investigate which
rheological properties give the most efficient displacements and try more generally to
understand the qualitative behaviour of solutions to the lubrication/thin film model.
This has been the focus of the present paper.

(b) We may target attention at situations in which the underlying model
assumptions break down, e.g. due to flow instabilities developing or to other
phenomena that are discounted a priori in this type of model. This is where our
ongoing research is directed.

In the above context, there are a number of model assumptions that merit
discussion. First, let us emphasize that in lubrication/thin-film models there is always
an underlying assumption about the interface configuration, i.e. here we have assumed
that the slumping configurations of figure 2 are found for HL and LH displacements.
For isodensity displacements we typically have a symmetric finger-like front advancing
in the channel centre and there is no effect of interface slope or channel inclination.
However, for small density differences both effects are present and we may expect the
symmetry to be broken, with the interface moving progressively towards this slumping
configuration. There is no inherent difficulty in modelling asymmetric finger-like fronts
within the thin-film framework. The transition between a slumping and finger-like
displacement has not been studied, to our knowledge, and it is not clear to us how one
would proceed to deduce the transition between interface configurations purely from
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this type of model. An interesting paper in this context is Shariata et al. (2004), which
illustrates that the resulting model systems can give rise to more complex behaviour
than that considered here. In the experimental context, in the miscible fluid exchange
flows of Seon et al. (2004, 2005, 2006, 2007), the interface is predominantly of the
form of figure 2 when in the viscous regime, at near-horizontal inclinations. However,
these experiments are conducted in a pipe and not a plane channel. Additionally,
these experiments have no mean flow, so that no finger would be expected.

We note that although the result of Lemma 3 is established via a local analysis, as
h ∼ 1, and results essentially from the no-slip condition at the upper wall, the no-slip
condition on its own does not imply that the interface can not propagate at steady
speed along a wall. Indeed we have seen that this occurs at the lower wall at long
times, for all parameters. More precisely, there is nothing mathematically present in
the form of the lubrication model to prevent steady interface propagation. Indeed, an
example of this occurs in Carrasco-Teja et al. (2008), where a Hele-Shaw displacement
along a narrow concentric annulus is considered. Instead it is the algebraic form of q

which distinguishes whether or not motion at the boundaries occur. Certainly, with
slip at the upper wall we could achieve a steady displacement. This is the limiting
case of nL → 0 for the shear-thinning study in figure 10(d ). In Carrasco-Teja et al.
(2008), symmetry conditions are imposed at the boundaries, which allows q to adopt
a suitable algebraic form for steady-state propagation.

A related question concerns whether or not the scaling assumptions leading to
the lubrication model may break down in the vicinity of the interface. In a strictly
hyperbolic model (i.e. of the same algebraic form as we have, with q = q(h, χ)), the
moving front becomes a kinematic shock and the scaling assumptions break down.
The kinematic and mass conservation equations are still valid, but the specification of
the flux as a function only of the interface height becomes false. In our case however
we have seen, e.g. in figure 7(b), that the interface is smooth and the frontal section of
the interface has finite width in ξ . Thus, there is no reason for the scaling assumptions
to become invalid.

A further interesting question concerns the stretched layer at the top of the channel
(in an HL displacement). We note that the upper contact point of the interface
does not move (unless we have backflow), and thus at long times we are left with a
progressively thinning layer. We have seen that convergence to the long-time similarity
profile typically occurs on a time scale T ∼ O(1). As the layer thins progressively, we
may expect diffusive effects to become significant over a thickness [T/(δP e)]1/2 and
could use the final similarity profile h(ξ/T ) to estimate evolution along the channel
of the distance where diffusion is significant, i.e. effectively matching:

[T/(δ Pe)]1/2 = 1 − h(ξ/T ).

There are other interesting questions in this same direction, e.g. estimating dispersive
characteristics of miscible displacement flows, in the spirit of Taylor dispersion. We
leave these for future consideration.
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Appendix A. Computing the flux function q(h, hξ )

We address here the practicality of how to efficiently compute q(h, hξ ) for the
non-Newtonian fluid types that we consider. Since q(h, hξ ) is defined in terms of
u = u(y, h, hξ ), the first question is whether we may always find a velocity solution.
The answer is yes, and we outline this later in § A.1.

For fixed h and ∂h/∂ξ , (2.18) and (2.19) for an HL displacement are

∂

∂y
τH,ξy = −f, y ∈ (0, h), (A 1)

∂

∂y
τL,ξy = b − f, y ∈ (h, 1), (A 2)

where f = −∂P0/∂ξ and with b = χ − hξ . Note that b physically represents the
buoyancy forces that drive the flow, being divided into two components: χ , which
represents the effects of the slope of the channel, and hξ , which represents the effects
of the interface slope. Thus, the shear stresses are linear in y in each layer.

We denote the wall shear stresses in heavy and light fluid layers by τH & τL,
respectively, which may be defined in terms of the pressure gradient −f and interfacial
stress τi as follows:

τH = τi + f h, (A 3)

τL = τi + (1 − h)(b − f ). (A 4)

In terms of τi , τH and τL the shear stresses in each layer are

τH,ξy(y) = τH

(
1 − y

h

)
+ τi

y

h
, (A 5)

τL,ξy(y) = τL

h − y

h − 1
+ τi

1 − y

1 − h
. (A 6)

Using the constitutive laws of the two fluids, the velocity gradient u′(y) is now defined
at each point in the two fluid layers. We now integrate u′(y) away from the walls
at y = 0 and y = 1 (where the no-slip conditions are satisfied) towards the interface.
Depending on the choices of τH , τL and τi , and the rheological parameters of each
fluid, this leads to two interface velocities:

ui(h
−) =

∫ h

0

u′(y; τH , τi) dy, (A 7)

ui(h
+) =

∫ h

1

u′(y; τL, τi) dy, (A 8)

which need not be the same. For given wall stresses (τH , τL), we now iterate on τi ,
until

�ui(τi) ≡ ui(h
−) − ui(h

+) = 0. (A 9)

To make this procedure more clear, suppose that we have f fixed. For any given
τi , the wall stresses (τH , τL) are defined by (A 3) and (A 4). As τi increases, both τH

and τL increase. As the stress is linear in each layer and the constitutive laws are
monotonic, this means that the velocity gradients in (A 7) and (A 8) increase with
τi and therefore we see that �ui(τi) increases monotonically with τi . Therefore (A 9)
always has a unique solution (this could in fact be stated more formally and proven).
Thus, for given f we are able to determine all of τH , τL and τi by imposing continuity
of the velocity at the interface and using (A 3) and (A 4). For Herschel–Bulkley fluids
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we are in fact able to give an analytical expression for the interface velocities in terms
of the wall and interfacial stresses:

ui(h
−) = h

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[H (|τi | − BH )(|τi | − BH )mH +1 − H (|τH | − BH )(|τH | − BH )mH +1]

κ
mH

H (mH + 1)(τi − τH )
τi �= τH

sgn(τi)H (|τi | − BH )(|τi | − BH )mH

κ
mH

H (mH + 1)
τi = τH

,

(A 10)

ui(h
+) = (h − 1)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[H (|τi | − BL)(|τi | − BL)mL+1 − H (|τL| − BL)(|τL| − BL)mL+1]

κ
mL

L (mL + 1)(τi − τL)
τi �= τL

sgn(τi)H (|τi | − BL)(|τi | − BL)mL

κ
mL

L (mL + 1)
τi = τL

,

(A 11)

where H (x) is the usual Heavyside function. Note that mk =1/nk . Thus, the iteration
to find the solution of (A 9) involves simply a single monotone algebraic expression.

Having determined interfacial stress τi , we now integrate u(y) across each layer to
give the flow rates in each layer, which are thus determined as a function of f and b:

qH =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hui(h
+) − h2

κ
mH

H (τi − τH )2

{
sgn(τH )H (|τH | − BH )

(|τH | − BH )mH +2

(mH + 1)(mH + 2)

+ sgn(τi)H (|τi | − BH )(|τi | − BH )mH +1

[
BH − sgn(τi)τH

mH + 1
+

|τi | − BH

mH + 2

]}
τi �= τH

hui(h
+) − h2

2κ
mH

H

sgn(τi)H (|τi | − BH )(|τi | − BH )mH

τi = τH

,(A 12)

qL =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − h)ui(h
−) +

(1 − h)2

κ
mL

L (τi − τL)2

{
sgn(τL)H (|τL| − BL)

(|τL| − BL)mL+2

(mL + 1)(mL + 2)

+ sgn(τi)H (|τi | − BL)(|τi | − BL)mL+1

[
BL − sgn(τi)τL

mL + 1
+

|τi | − BL

mL + 2

]}
τi �= τL

(1 − h)ui(h
−) +

(1 − h)2

2κ
mL

L

sgn(τi)H (|τi | − BL)(|τi | − BL)mL

τi = τL

. (A 13)

The sum of the two flow rates gives the total flow rate. As argued above, and also
proven in § A.1, we can show that the total flow rate increases with f . Consequently
we may use any flow rate constraint to find f , via iteration. The equation for the
frictional pressure drop f is then

qH + qL = 1, (A 14)

which is again a single monotone algebraic equation. Finally, we have the solution:

q(h, hξ ) = qH ,
∂P0

∂ξ
= −f.
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Computationally, the interfacial stress and modified pressure gradient are found via
a nested iteration, i.e. for fixed f we find τi in an inner iteration and then find f in an
outer iteration. The inner iteration for τi finds a zero of (A 9). On physical grounds
we should expect that the interfacial stress lies somewhere between the wall stresses
for each of the fluid phases. This allows us to prescribe upper and lower bounds for
τi for the iteration. The iteration for f is based on solving the flow rate constraint
(A 14). On physical grounds, we might expect the pressure gradient for the stratified
flow to lie between the pressure gradients required to pump the same flow rate of
either pure fluid. This is however not the case where there are extreme differences
in rheology and a significant density difference. Thus, instead we determine initial
bounds for f numerically.

A.1. Existence of a velocity solution

Following the steps in Frigaard, Leimgruber & Scherzer (2003), for any f and b, for
fixed rheological constants and h we may write the problem for finding the velocity
u(y) as the following variational inequality:

a(u, v − u) + j (v) − j (u) � f QH (v − u) + (f − b)QL(v − u),

u ∈ W 1,1+n∗

0 (Ω), ∀v ∈ W 1,1+n∗

0 (Ω), (A 15)

where

a(u, v) = aH (u, v) + aL(u, v)

= κH

∫ h

0

|uy |nH −1uyvydy + κL

∫ 1

h

|uy |nL−1uyvy dy, (A 16)

j (v) = jH (v) + jL(v) = BH

∫ h

0

|vy | dy + BL

∫ 1

h

|vy | dy, (A 17)

QH (v) =

∫ h

0

v dy, QL(v) =

∫ 1

h

v dy, (A 18)

where n∗ = min{nH , nL} and W 1,1+n∗

0 (Ω) is a Sobolev space (see Hirsch & Lacombe
1999) defined on Ω = [0, 1] containing functions that are zero at y = 0, 1, in the
appropriate sense. Using standard theory from convex analysis (see, e.g. Ekeland &
Temam 1976), this type of variational inequality has a unique solution u.

For given f we shall denote the solution by uf . We now consider two solutions
uf1

and uf2
, corresponding to f1 �= f2. Treating uf1

as a test function for uf2
and vice

versa, we insert into (A 15) and sum, to give

a(uf1
, uf2

− uf1
) + a(uf2

, uf1
− uf2

) � [f1 − f2][QH (uf2
− uf1

) + QL(uf2
− uf1

)].
(A 19)

Using the strict convexity of a(·, ·) (see, e.g. Ekeland & Temam 1976), it follows that

[f2 − f1][QH (uf2
− uf1

) + QL(uf2
− uf1

)] � 0. (A 20)

This inequality can be made strict provided that uf �= 0. Therefore, we see that the
total flow rate QH + QL increases monotonically with f , and strictly monotonically
provided that uf �=0 (which may happen for given yield stresses). Consequently, the
criterion that

(QH + QL)(uf ) = 1, (A 21)

is sufficient to uniquely determine f . The rate of increase of the individual Qk with
f can be estimated from the constitutive laws of the individual fluids. Monotonicity
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of the flow rate with the applied pressure gradient is of course entirely intuitive from
the physical perspective.

Appendix B. Monotonicity of q with respect to b

To demonstrate the monotonicity of q with respect to b, we use the variational
method above. For fixed b (and rheological constants), we denote by (ub, fb) the
solution (u, f ) to (A 15) that satisfies the flow rate constraint (A 21). Since (A 21) is

satisfied we may restrict the test space W 1,1+n∗

0 (Ω) to the subspace V ⊂ W 1,1+n∗

0 (Ω)
such that (A 21) is satisfied for all v ∈ V . Consequently, (A 15) becomes

a(u, v − u) + j (v) − j (u) � −bQL(v − u), u ∈ V, ∀v ∈ V. (B 1)

We now consider two solutions ub1
and ub2

, to (B 1), corresponding to b1 �= b2. Treating
ub1

as a test function for ub2
and vice versa, we follow the same steps as in the above

section for uf to arrive at

[b2 − b1]QL(ub2
− ub1

) � 0. (B 2)

Thus, QL decreases with b and since q = 1 − QL we have that q increases with b.
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