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The buoyancy driven interpenetration of two fluids of different densities has been studied in a long
tilted tube in the strong mixing regime for which the mean concentration profile along the tube
length satisfies a macroscopic diffusion equation. Variations of the corresponding macroscopic
diffusion coefficient D and of the front velocity V, are studied as a function of the Atwood number
At, the viscosity v, the tube diameter d, and the tilt angle 6. Introducing the characteristic inertial
velocity V; and the Reynolds number Re,, the normalized front velocity V,/V, and dispersion
coefficient D/(V,d) are observed to scale, respectlvely, as Re; 3% and Re, 32 for Re,s 1000. Also, V¢
increases linearly with tan 6 and the ratio (D/V ) remains of the order of (35+£10)d/V, in a wide
range of values of the tilt angle and of the other control parameters. This close relation observed
between the variations of D and Vf is discussed in terms of the characteristic time for transverse
mixing across the flow channel. © 2007 American Institute of Physics. [DOI: 10.1063/1.2821733]

I. INTRODUCTION

Buoyancy induced mixing of liquids is a widespread
phenomenon in natural systems (oceanography, hydrology,
atmospheric sciences) with large potential consequences on
the environment and is also encountered frequently in chemi-
cal or petroleum engineering. Such processes are strongly
influenced by flow confinement when they take place inside
a tilted or vertical tube;l’2 this is the case for two miscible
fluids of different densities suddenly put in contact® [the flu-
ids are initially separated in an unstable configuration, each
of them occupying half of the tube length as in Fig. 1(a)].
Two types of macroscopic measurements may be performed
during the development of mixing between the two fluids:

* The displacement with time of the outer boundaries of the
interpenetration zone (this displacement is characterized
by a “front velocity” Vf4).

» The profile along the tube length of the mean relative con-
centration C(x,7) in the tube section.’

For low tilt angles 6 of the tube with respect to vertical and
high enough relative density contrasts characterized by the

Atwood number At=(p,—p,)/(p,+p;), the profile C(x,)

satisfies a diffusion equation dC/dt=D*C/ x> involving a
macroscopic diffusion coefficient D’ In previous experi-
ments the variations of D and V; with the tilt angle ¢ from
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vertical have been studied for fluids of different kinematic
viscosities v and displayed similar trends.*’

The present work is therefore devoted to the study of the
relation between D and V; in flow regimes for which both
parameters can be measured and of the scaling laws satisfied
separately by D and V; as a function of the experimental
parameters.

A possible explanation for the close relation between D
and V; is the fact that the corresponding processes involve
the same combination of physical phenomena: the longitudi-
nal interpenetration of the fluids is driven by buoyancy
forces proportional to the component of gravity parallel to
the tube axis.®”'" This spreading effect is balanced by trans-
verse mixing in the tube section induced by Kelvin—
Helmholtz instabilities of the pseudo-interface between the
fluids.'> ™ In tilted tubes, the development of these instabili-
ties is limited by the segregation effect of the transverse
gravity component g sin 6 which acts to keep the two fluids
separated. 1316

The diffusive spreading of the mean concentration pro-
file is only observed at small tilt angles 6, high density con-
trasts At, and low viscosities v; this reflects the fact that an
effective transverse mixing is required to achieve this trans-
verse regime. The strong influence of transverse mixing also
explains the increase of V, and D with 6 or v reported in
Refs. 4 and 5; mixing becomes poorer, leading to higher
local density contrasts and, therefore, to larger local buoy-
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FIG. 1. Schematic view of the interpenetration of a light (dark color) and a
heavy fluid (light color) inside a tilted tube. (a) Initial configuration with
separated fluids. (b) Development of an interpenetration zone after the two
fluids have been put in contact.

ancy forces."” If 6 is increased further with given At and v
values, the spreading of the concentration profile is no longer
diffusive and D becomes meaningless. In this domain, the
front velocity V; reaches a value Vi’ =0.7(At gd)""* indepen-
dent of the viscosity v; this implies that the front dynamics
results solely from a balance between inertial and buoyancy
forces with a local density contrast at the front equal to the
difference between the densities of the two original fluids
(i.e., pure displacing fluid reaches the front’). At still higher
tilt angles 6 (tubes close to horizontal) a viscous counterflow
of the two fluids is observed.

In the present work, we study the strong mixing regime
in which a macroscopic diffusion coefficient can be mea-
sured and all experiments are realized therefore for moder-
ate, although nonzero 6 values. The case of vertical tubes has
been studied previously and is discussed elsewhere.” It has
been shown to display special properties compared to the
tilted case’ and, in addition, the velocity Vy is often difficult
to determine experimentally when #=0. The variations of D
and V; with 6 and v, as well as with the tube diameter d and
of At will be studied systematically and the corresponding
scaling laws as a function of these parameters will be deter-
mined. A particularly interesting point will be the proportion-
ality between D and Vf observed in some regimes; their ratio
will be related to the characteristic time for transverse mix-
ing across the tube section.

Il. EXPERIMENTAL SETUP AND PROCEDURE

The experimental setup has been described in detail in a
previous work.”>” The experiments use a 4 m long transpar-
ent tube which can be tilted at all angles € from vertical to
horizontal. Initially, the lower half of the tube length is filled
with a light dyed fluid (salt-nigrosin solution of density p;)
while the upper half is filled with a denser transparent fluid
(water-CaCl, solution of density p,>p,); the Atwood num-
ber At for these pairs of fluids ranged between 4 X 10™* and
3.5X 1072 with a common viscosity »=10"° m?s~!. In order
to investigate the influence of the viscosity, other series of
experiments were achieved by adding equal amounts of
glycerol to both solutions, leading to v=2X 1076, 4% 1076,
and 6X 107 m?s~'. Most experiments took place inside
a tube of diameter d=20 mm; other diameter values
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FIG. 2. (Color online) Left—continuous lines: Variation of the mean con-

centration E(x,t) (horizontal scale) with the distance x from the gate valve
(vertical scale) at two different times =75 s and r=225 s. Dashed lines: Fits
of the concentration profiles with solutions of Eq. (1) using the same value
of D for the two curves. Dotted lines (respectively, arrows): Location (re-
spectively, direction of motion) of the front at =75 s. Right—spatio-

temporal diagram of the variation of the mean concentration C(x,1) (gray
levels) with the distance x from the gate valve (vertical scale) and time
(horizontal scale). 0:30°, At=4 X 1073, »=10"° m? s~!. Dashed lines: Linear
fits corresponding to the stationary front velocity.

d=30 mm and d=12 mm have also been used in order to
analyze the influence of the parameter d. The two fluids are
initially separated by a sliding gate valve which is opened at
the origin time to start the mixing process. The tube is illu-
minated from the back and images of the transmitted light
are recorded at 0.5-2 s intervals by a digital camera with a
high dynamical range (4096 gray levels). Each image has
about 1300 X 20 pixels. Video recordings of the flow are per-
formed simultaneously; they provide qualitative information
at a higher frame rate (25 images per second).

Prior to the experiments, reference images are obtained
with the tube fully saturated with transparent and dyed fluid,
respectively. After a suitable calibration using images ob-
tained with dye solutions of different concentrations, one ob-

tains maps of the local concentration C(x,y,7) (each value
corresponds to an integral of the concentration in the third z
direction and x is the distance along the tube from the gate
valve). In the turbulent mixing regime observed in the
present work, the transverse concentration gradients along y
are small and almost constant across the tube: one obtains
therefore a good estimate of the mean concentration in a
section (x=cst.) by averaging C(x,y,f) over y across the
diameter of the tube. Figure 2 (left) displays the profiles
along the tube of the normalized concentration C (x,2) at two
different times.

One observes first that the overall concentration varia-
tion has the characteristic error function like shape expected
for a diffusive spreading process and that the slope of the
profile near the gate valve decreases with time. Also, the
location of the fronts at the outer boundaries of the mixing
zone is marked on the relative concentration profiles by
sharp variations of C(x,7) (dotted horizontal lines in the
curve t=75 s). In order to analyze the motion of these fronts,
it is convenient to use spatio-temporal diagrams in which
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FIG. 3. (Color online) Flow regime map displaying the observation of dif-
fusive (gray shade) regimes in which Eq. (1) is satisfied and nondiffusive
ones in tilted tubes. Bottom axis: Tilt angle 6 from vertical. Left axis: Tube

diameter d. Atwood number At=1072 viscosity »=10"° m?>s~!. Insets:

Views of the part of the tube above the gate valve for values of 6 and d
corresponding approximately to the location of the image on the map.

C(x,1) is coded by gray levels in a plane where the coordi-
nates are x and ¢ [Figure 2 (right)]; the locations X«(t) of the
upper and lower front at the different times appear in these
diagrams as boundaries between black/light and gray shade
regions. The slopes of these boundaries directly provide the
front velocities V; the velocity values used in the following
are determined at times long enough so that a stationary flow
regime has been reached and V; may be considered as
constant'’ (dashed line in the figure). The macroscopic dif-
fusion coefficient D is determined by fitting the profiles

C(x,t) by solutions of the diffusion equation,

aC _FC
__D_

= . 1
ot ax? )

Such fits are shown in Fig. 2 (left) by dashed lines. As ob-
served previously in experiments in vertical’ and tilted’
tubes, a good fit is obtained at different times using a single
value of the dispersion coefficient D. In all cases, D is many
orders of magnitude larger than the molecular diffusion co-
efficient D,, since the diffusive process reflects random mo-
tions of macroscopic fluid packets and not the thermal agita-
tion of molecules. The profiles selected for these fits
correspond to times ¢ short enough so that the displacement
fronts have not yet reached the ends of the tube and long
enough so that the concentration has been homogenized in
the tube sections. For each profile, the fits are achieved in the
intermediate mixing zone between the fronts where Eq. (1) is
satisfied.

The limiting angle 6. up to which Eq. (1) is valid in-
creases at higher density contrasts and lower viscosities (see
Ref. 5). The angle 6. also increases with the tube diameter d
as shown by Fig. 3. The insets of the figure displays views of
the flow in the nondiffusive and diffusive regimes; even
though segregation effects are visible in both cases, trans-
verse mixing is more efficient in the latter case and homog-
enizes the concentration in the section after a transition dis-
tance from the front, allowing one to observe a diffusive
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FIG. 4. Variation of the front velocity V, as a function of the tilt angle ¢
for fluids of 3 different viscosities (H): v=1,=10°m?s7!; (X)
v=2x10" m?s7"; (B) v=4X107° m*s~". Inset: Variation of V,/(v/v,)**
as a function of # with the same symbols as in the main graph (At=1072,
d=20 mm). The dashed line is a guide for the eye.

regime for longitudinal spreading. The segregation effects
are stronger at higher tilt angles 6, higher viscosities, smaller
tube diameters, and lower density contrasts.

Finally we wish to emphasize that, in the diffusive re-

gime, the distance of the isoconcentration points [C(x,?)
=cst. ] of the profile from the gate valve increase as '’ while
the distance x((#) of the front from the valve increases as ¢ (in
the stationary regime). The front appears therefore as a cut-
off point in the concentration profile but, in the same experi-
ment, its motion has advective characteristics while the con-
centration profile spreads out diffusively.

lll. QUANTITATIVE ANALYSIS OF FRONT VELOCITY
DEPENDENCE ON EXPERIMENTAL PARAMETERS

A. Front velocity dependence on the fluid viscosity
and tube diameter

The front velocity V, has been measured with fluids of
different viscosities* v. For a given angle 6, V, increases
significantly with » in the strong mixing diffusive regime
before reaching the “plateau” value VM independent of v
(Fig. 4). These different data can be collapsed onto the curve
corresponding to the lower viscosity v,=107% m?s~! by di-
viding them by (v/v,)** (see inset). Several other values of
the exponent have been tested indicating an uncertainty of
+0.05 on the value 3/4 of the exponent. In the inset, the data
points deviate from the common trend (dashed line) towards
the “plateau” value Vj‘f (v,/v)¥* at a tilt angle @ similar to the
upper limit of the diffusive regime (this value of 6 decreases,
as expected, at higher viscosities).

Another important parameter is the tube diameter. For
given values of At, 6, and v, the front velocity v, decreases
slightly at larger diameters d for low tilt angles, i.e., in the
diffusive regime, while the “plateau” value Vj‘!’ increases
(Fig. 5). In this case, the variation of V; with d is too weak
and the range of d values is not broad enough to allow one to
determine precisely the scaling power law; a value
—0.5+0.15 may be estimated for the corresponding expo-
nent. Finally, previous measurements have shown that Vi 1n-
creased with the Atwood number At, although very slowly
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FIG. 5. Variation of the front velocity V, as a function of the tilt angle 6 for
3 different tube diameters: (¥) d=12 mm, (H) d=20 mm, (#) d=30 mm
(At=1072, v=103 m?s71).

B. Scaling law for the front velocity
in the diffusive regime

We attempt now to account globally for the variations of
V; as a function of d, At, and v using a single scaling law.
The turbulent diffusive mixing regime of interest here is de-
termined by an interplay between buoyancy forces and iner-
tial effects. The logical reference velocity for such flows is
therefore the inertial velocity,

V,=VAtgd, (2)

which physically reflects a balance between buoyancy
(*Apgd) and inertial (<pV?) forces. Within a factor of 0.7,
V, is in addition equal to the front velocity in the weak mix-
ing “plateau” domain.* From this characteristic velocity V,,
one defines a characteristic Reynolds number Re,=V,d/ v.

As a first try, we assume that the scaling law satisfied by
the front velocity involves only V,, Re;, and 6 with V,/V,
«Ref". The variation of V; as »*"* determined above requires
that a=-3/4, leads to the relation

= foRe ™, 3)

1

which can also be written as
V= f(6)(At g) 3-8 "

This relation indeed predicts a very slow increase of V, with
the density contrast (as At!/®) and a front velocity decreasing
for larger tube diameters as d='® in agreement with the pre-
vious estimation. As a more quantitative test of this relation,
the renormalized ratio (V/ Vt)Re?/4 has been plotted in Fig. 6
as a function of the tangent of the angle 6. A good collapse of
all the variations in the diffusive regime is obtained in this
way and the common master curve is well fitted by the func-
tion f(#)=12(1+3.6tan #) (dotted line) as can be seen in
Fig. 6. The tan 6 variation indicates that both the longitudinal
and the transverse gravity components influence the mixing
process (note that, for values of tan 6 larger than 1 or so, the
difference between 6, sin 6, and tan 6 is large enough so that
using one parameter instead of one of the others becomes
meaningful).
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FIG. 6. Variation of the normalized front velocity (V,/ V,)Ref/4 as a function
of tan 6 for different tube diameters, Atwood numbers and viscosities. The
symbols used in the present graph and in Figs. 7-9 correspond to the
following parameter values: (@) At=3.5X1072, (®) At=3.9%1073, (V)
At=12X1073, (A) At=4X10% () v=2X10°m?s"!, (@) v=4
X100 m?s7!, (*¥) d=12 mm, (+) d=12mm and At=2X1073, (X) d
=12mm and At=4X1072, (#) d=30mm, (®) d=30 mm and v=2
X100 m?s™!, (®) d=30 mm and v=4X10° m?s~!, (V) d=30 mm and
At=1073, and () d=30 mm and At=4 X 1073; the parameters that are not
specifically precise take the values At=1072, »=10° m?>s~!, =20 mm cor-
responding to symbol (H). Dashed line: f(6)=12(1+3.6 tan 6).

IV. DEPENDENCE OF THE DIFFUSION COEFFICIENT
ON THE EXPERIMENTAL PARAMETERS

A. Diffusion coefficient dependence
on the Reynolds humber

Previous measurements in tilted tubes® have shown that,
while the macroscopic diffusion coefficient varies very
slowly with the Atwood number At, it increases faster with
the viscosity, in a manner qualitatively similar to the varia-
tion of the front velocity V. This suggests an attempt to
account for the variations of D by a scaling law of the same
type as that used for Vg,

D
= -8
v rd—h(ﬁ)(Re,) , (5)

where V, and d have been selected as the reference param-
eters for normalizing D. Equivalently, the equation can be
rewritten

D =h(0)(At g)!' PR3 1-B28, (6)

Attempts to collapse all data on a master curve similar to that
of Fig. 6 by plotting (D/V,d)(Re,)* as a function of 6 were
however not successful; different values of o were indeed
needed to collapse the data points for high and for low values
of Re,. We chose therefore instead to plot in Fig. 7 the varia-
tion of the nondimensional macroscopic diffusion coefficient
D/Vd as a function of Re, for the different values of the tilt
angle 6. The sets of points corresponding to the different
values of 6 are well separated since D significantly increases
with 6. In all cases, two domains of variation are observed
with a transition at Re,= 1000. For Re, =< 1000, D/(V,d) var-
ies as Ret_S/2 while, for Re,= 1000, D/V,d varies slower as
Ret_“ 2. These results suggest that the macroscopic diffusion
mechanism undergoes a significant change for Re,= 1000.
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FIG. 7. Variation of the normalized macroscopic diffusion coefficient
D/(V,d) as a function of the Reynolds number Re,=V,d/ v for different tilt
angles 0=10°, 20°, 30°, and 40°. Slopes of dashed (respectively, dotted)
lines=-3/2 (respectively, —1/2). Vertical dashed-dotted line corresponds to
Re,=1000. The symbols have the same meaning as in Fig. 6.

B. Scaling properties of the macroscopic
diffusion coefficient in the lower Reynolds
number regime

In the following, the discussion is focused on the mixing
process taking place at Re,=< 1000 for which a particularly
good correlation between D and V/ is observed. In this do-
main, a=3/2 and one expects D to satisfy the scaling rela-
tion derived from Eq. (5),

D=h(0)V,dRe); >, (7)
or equivalently,
D =h(0)(At g) V4d=¥42. (8)

In order to determine the function h(6) characterizing the
variation of D with the tilt angle, the variation of
DRe’?/(V,d) as a function of @ has been plotted in Fig. 8
(all data points are such that Re, =< 1000). As could be already
expected from Fig. 7 in the range of Re, values chosen, a
very good collapse of all data points onto a same master
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FIG. 8. Variation of the normalized macroscopic diffusion coefficient
D Ref/ 2/(V,d) as a function of the tilt angle @ for different tube diameters,
Atwood numbers, and density contrasts. The symbols have the same mean-
ing as in Fig. 6. Dotted line: h(6)=5X 10°(1+3.6 tan 6).
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FIG. 9. Variation of the normalized ratio (D/ V?)(V,/ d) for Re, <1000 as a
function of the tilt angle 6 for different tube diameters, Atwood numbers,
and density contrasts. The symbols have the same meaning as in Fig. 6.

curve is observed. This common trend is observed to be well
fitted by the relation (0)=5X103(1+3.6tan 6)> (dotted
line).

V. MACROSCOPIC DIFFUSION COEFFICIENT-FRONT
VELOCITY RELATION IN LOWER REYNOLDS
NUMBER DOMAIN

Comparing the scaling laws established in the two pre-
vious sections for V/V, and D/ (Vfd) demonstrates that these
dimensionless quantities are extremely closely related. First,
they both depend on the variables d, v, and At only through
a power of the dimensionless combination Re, with an expo-
nent —3/2 for D which is twice that for V, (-=3/4). Moreover,
V; varies with the tilt angle proportionally to 1+3.6 tan ¢
while D is proportional to the square of this same expression.
Combining these two results, one may infer that the ratio
(D/ VJ%)(d/ V,) should depend very little on the experimental
parameters.

In order to check this assumption, Fig. 9 displays the
variation of (D/ V/%)/(d/ V,) as a function of @ for different
sets of data points corresponding to different values of d, v,
and At. The normalized ratio remains equal to 35+10. This
result is verified except for the data points corresponding to
d=12 mm and At=4X 1072 which give 50% higher values.
This latter deviation may reflect the fact that the correction
introduced by the normalization by d/V, is found to gener-
ally be a little overestimated, particularly for small diam-
eters. As a further check we looked for a possible depen-
dence of the normalized ratio (D/ VJ%)/ (d/V,) on the
Reynolds number Re,. No clear correlation between these
quantities was observed. The key point is that the deviations
of the values of (D/ Vj%)/ (d/V,) are always small compared to
the corresponding variations of the individual values of
(Vyl V,)? and D/(V,d) (a factor of more than 1-50).

VI. DISCUSSION OF THE EXPERIMENTAL RESULTS

The results presented above demonstrate that, for values
lower than 1000 of the characteristic Reynolds number Re,,
the buoyancy induced mixing flows in tilted tubes display
very original and specific features; two very important points
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are the simple scaling laws satisfied by the front velocity V
and macroscopic diffusion coefficient D as a function of the
Reynolds number Re, and the very close relation between
these two quantities [more specifically the fact that the di-
mensionless ratio (D/ ijc)/ (d/V,) is independent of 4].

A. Interpretation of the ratio D/V2 as a transverse
mixing time

In the following, the complicated flow observed in the
experiment is modeled as two separate streams of equal
cross-sectional area moving up and down at velocities +V.
The average concentrations C,(x,7) and C,(x,?) in the areas
occupied by the up and down streams vary with the distance
x along the tube and in time. We include an exchange trans-
fer between the two streams, proportional to the local differ-
ence in concentration, C,—C,, and with a rate of transfer
1/ 7. Thus our model is described by the coupled advection-
reaction equations,

Loy L, ey 9)
ar P

ac, ac, 1

T _yTdo L (¢, -Cy. 10
P P 7_( «—Ca) (10)

We assume that the velocity V and rate of transfer 1/7 are
constants and do not vary in time or position along the tube.

We consider the mean concentration given by 5:%(Cu
+C,). By adding and subtracting the pair of equations, we

obtain a single second-order equation for C,

1FC i _VriC

e E_rTrE 11
202 a2 (1)

This is the classical telegraph equation18 to be solved subject
to the initial condition of a step change,

_ 1 x<O0,
0 x>0.

The problem can be solved by Fourier transforms. The
solution has fronts propagating at velocities +V, with no
change from the initial values ahead of the fronts. The jump
in concentration across the fronts decays in time as J_r%e"/ i
In the central section away from the fronts, the solution
changes relatively slowly, so that the second derivative in
time becomes negligible, leaving the behavior governed by a
diffusion equation with an effective diffusivity,

D=%V2T.

This simple model shows that the ratio D/ V? is constant as a
result of the constant exchange rate 1/7 between the two
streams. Such a result has some analogy with Taylor disper-
sion in a laminar flow inside a capillary tube of radius a,
where transverse molecular diffusion across the tube section
occurs on a time scale 7,=a*/D,,, resulting in longitudinal
dispersion of coefficient D~ U%a*/D,,= U2TD.19’20

While this simple model helps understand the relation
between the diffusive behavior and the propagating fronts
with D/V2=7/2, it is not complete. Indeed, the model does
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not propose values of the parameters V and 7. Hence it can-
not offer any insight into why the value of 7 seems to vary
little with the angle # and other variables in the experiment.

A more significant shortcoming is the detail that the
jump in concentration at the front decreases exponentially in
time, while in Ref. 17 we found it decreased in time to a
nonzero constant value. However, the model does not at-
tempt to include any additional physics of the front.

B. Characteristic transverse mixing times

As an example, for a typical Atwood number At=4
X 1073 and a tube of diameter d=20 mm, the ratio d/ V,is of
the order of 0.7 s, leading to D/V;225 s using the mean
value 35 of the data points in Fig. 9. Since d/V, does not
depend on @ or v, the weak variations of (D/V?)/(d/V,) im-
ply that the mixing time 7 is nearly independent both of 6
and v. This constant value of 7 contrasts with the variability
of the qualitative and visual properties of the corresponding
flows; it implies that the fast increase of D with 6 reflects the
variation of the front velocity V; and not that of the exchange
time.

More precisely, transverse mixing is directly related to
the development of Kelvin—Helmholtz instabilities and their
development should depend both on the viscosity (due to
viscous damping) and on the tilt angle (due to segregation
effects). Regarding the influence of viscosity and following
Ref. 21, the growth rate should reflect the viscous diffusion
time 7,=d*/v at low values of the Reynolds number Re, and
the convective time 7,=d/V/ at higher ones. This would sug-
gest using 7,=d?/ v rather than d/V, as the characteristic nor-
malization time for the ratio D/ VJ% at low Reynolds numbers
Re,<<1000. The collapse of the data points is found instead
to be poorer when this normalization is applied in Fig. 9.
This implies that other mechanisms are also active in this
range of Re, values; the influence of the segregation effects
should for instance be taken into account.

Some of these flows display intermittency which pro-
vides a direct physical meaning to the time 7. In this case,
one observes during a fraction of the time a stable counter-
flow of the heavier and lighter fluids at velocities increasing
with time until Kelvin—Helmholtz instabilities develop and
trigger an intense mixing between the fluids while strongly
reducing the counterflow. Then the instabilities damp out, the
counterflow appears and another cycle begins. In this inter-
mittent regime, the characteristic time of transverse mixing is
of the order of the period of the intermittency: In several
experiments it has been found to be of the same order of
magnitude (20—30 s) as the values quoted above for 7,. This
latter point is now being investigated experimentally.

Note finally that, when the diffusive spreading process is
considered as a random walk, the duration of the steps is of
the order of 7 (independent of # and v) and their character-
istic length is of the order of V,7. The length of the steps
increases therefore strongly both with @ and the viscosity v
until the number of steps in the length of the tube is not large
enough and the conditions for applying the central limit theo-
rem are not satisfied; then, the spreading of the concentration
profile is no longer diffusive.
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VIl. CONCLUSION

The present experimental work has demonstrated that,
for inertial Reynolds numbers Re, below 1000, there is a
close relation between the front velocity V, and the macro-
scopic diffusion coefficient D describing the spreading of the
concentration profile. Both quantities satisfy simple scaling
laws as a function of Re, and € and the ratio D/ V,% can be
interpreted as a transverse exchange time 7. Moreover, in
contrast to D and V/, the normalized time 7/(d/V,) does not
display any coherent variation trend with 6. Overall, its
variations are much smaller (typically +30%) than those of
the dispersion coefficient or of the square of the front veloc-
ity taken separately. This transverse exchange time appears
therefore as a key parameter of the phenomenon. Another
important feature is the transition towards a slower variation
of D/(V,d) as Re; "' (instead of Re;*'?) for Re,> 1000. This
implies that the mechanism for transverse mixing is different
in this range of high Re, values.

A detailed analysis of the dynamics of the mixing pro-
cess at the local scale is needed to account further for these
results and model in particular the dynamics of transverse
mixing and its dependence on the experimental parameters.
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