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The effect of freezing on contact line motion is a scientific challenge in the understanding of the
solidification of capillary flows. In this Letter, we experimentally investigate the spreading and freezing of a
water droplet on a cold substrate. We demonstrate that solidification stops the spreading because the ice
crystals catch up with the advancing contact line. Indeed, we observe the formation and growth of ice
crystals along the substrate during the drop spreading, and show that their velocity equals the contact line
velocity when the drop stops. Modeling the growth of the crystals, we predict the shape of the crystal front
and show that the substrate thermal properties play a major role on the frozen drop radius.
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When freezing occurs during capillary flows, such as for
droplets impacting very cold substrates [1,2] or trickles
flowing over subzero substrates [3,4], the modification of
wetting due to an ice layer formation leads to the creation of
surprising ice patterns. The interplay between contact line
motion and phase change has received increasing attention
over the past years [5–7]. In particular, understanding the
dynamics of contact line in the presence of solidification
enables the tuning of the interaction between the ice and the
solid [8,9] and finds numerous applications over various
fields going from metallurgy [10] to icing and de-icing in
aeronautics [11] or inkjet-like ice printing [12].
An important question that arises often in these situations

is the arrest of a moving contact line because of solidifi-
cation. Despite numerous studies looking at the arrest
criteria for a moving contact line on a subcooled substrate,
the different potential mechanisms are still debated, lacking
a global understanding. They include dissipation increase at
the contact line due to solidification [13,14], solidification
of a critical volume [15], or crystal growth pinning [16–18].
In this Letter, we investigate experimentally the spread-

ing and arrest of a water drop deposited on a cooled
substrate for temperatures down to Ts ¼ −25 °C. We
observe that, in this temperature range, the colder the
substrate, the smaller the arrest radius. We demonstrate for
the first time that this is due to ice crystals that catch up with
the advancing contact line. Indeed, we observe the ice
crystals growing in the drop at the contact with the substrate
while the droplet spreads, and show that the crystal growth
velocity along the substrate equals the contact line advanc-
ing velocity at the time of arrest. Based on the strong heat
transfer between the ice and the substrate, we propose a
model for the crystal growth dynamics that matches our
experimental measurements and allows us to predict the
shape of the crystal front. Our study discriminates therefore

between the debated mechanisms behind contact line arrest
due to solidification.
In the experiments, a droplet of initial tip radius r0 ¼

3.1� 0.23 mm is brought in contact with a cold sapphire of
temperature Ts, thermal diffusivity Ds ¼ 11.5 mm2 s−1,
and thickness 5 mm, cooled using liquid nitrogen. The
drop-sapphire contact angle was measured as θ ≈ 61°. The
droplet is attached below a flat glass plate [see Fig. 1(a)]
which is then moved downward at low velocity until the
drop touches the cold sapphire. As the spreading lasts less
than a second, the position and the temperature of the glass

(a)

(b)

FIG. 1. (a) Schematic side view of the experiment. (b) Temporal
sequence of a droplet spreading on sapphire cooled at Ts ¼−3.2 °C observed from the side. The contact line speed decreases
with time until it gets pinned by solidification as seen in the final
picture.
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plate can be considered constant during the experiment. To
avoid frost formation, the setup is placed in a humidity
controlled box with relative humidity Hr < 3%. The
droplet initial temperature Td is equal to the box temper-
ature and constant in all experiments, close to 10 °C. The
spreading dynamics is recorded from two synchronized
high speed cameras at 6000 fps. One provides a side view
of the spreading, using a 205 mm lens and the other one a
top view, using a ×12 Navitar lens. The top-view pictures
are recorded under cross-polarized light to directly observe
the crystal growth.
Figure 1(b) shows a side view recorded time sequence of

a droplet spreading on the cold substrate. After contact with
the substrate, the contact line advances at early times
symmetrically and ultimately the spreading stops, with
an arrest radius ra. The spreading typically lasts a few
tenths of a millisecond.
Figure 2 displays the rescaled arrest radius ra=r0 plotted

against the undercooling ΔT ¼ Tm − Ts, where Tm ¼ 0 °C
is the melting temperature of the ice. It shows a clear
decrease of the maximum spreading radius asΔT increases.
For some experiments, the arrest radius is not the same on
the left and the right sides of the image, an effect
represented with the error bars on the graph. Noticeably,
the arrest radius decreases by a factor of 3 over the range of
temperatures explored. The inset of Fig. 2 displays, in a
log-log scale, the evolution of the rescaled radius rðtÞ=r0,
with the time normalized by the inertial-capillary time

τc ¼
ffiffiffiffiffiffiffiffiffiffiffi
ρr30=γ

q
≈ 21 fv, for three undercoolings. It confirms

that the substrate temperature has a strong effect on the
arrest radius (see horizontal dashed lines ra=r0), and shows
that the spreading dynamics itself is neither affected by ΔT
nor by the solidification [16].
In the first stage of the drop spreading, inertia resists to

the liquid motion and the evolution of the droplet radius
follows:

rðtÞ
r0

¼ C

�
t
τc

�
α

; ð1Þ

where the theoretical prediction gives α ¼ 1=2 [19], valid
for both wetting and partially wetting substrates at short
times [20].
The inset of Fig. 2 shows that (i) the spreading dynamics

observed on cooled substrates can be well modeled by this
law until the time of pinning, (ii) the fitted coefficients C
and α are independent of the substrate temperature, and
(iii) the exponent α ¼ 0.47� 0.05 agrees with the theo-
retical prediction (see also Supplemental Material [21]).
These results are in agreement with former studies realized
with other liquids and smaller temperature range [16,18].
To understand the mechanism responsible for the arrest

of the contact line and its dependence with the substrate
undercooling, we performed direct visualizations of the ice
growth and its interaction with the spreading front. Figure 3
shows top views of the experiment under cross-polarized
light, enabling a clear visualization of the crystal growth, as
seen on the sequence of Fig. 3(a), and on the final shape of
the deposits [Fig. 3(b)]. The temporal evolution can be
divided into four phases. First, the drop spreads without ice
nucleation: the contact line is circular (t < 0.8 ms). Then,
nucleation happens within the wetted disc (t ¼ 0.8 ms),
and nuclei grow without affecting the contact line shape nor
the dynamics (t < 3.7 ms). Third, the contact line gets
locally pinned (t ¼ 3.7 ms), either by nucleation of crystals
very close to it, as it is the case at the lower part of the drop,
or by growing crystals catching it, as seen on the right of the
drop between 2.7 and 3.7 ms. Here it seems that pinning
occurs when the growing crystals catch the contact line.
Finally, the contact line is entirely stopped when pinned on
its full perimeter by the crystals (t ¼ 24 ms). Then, the ice
grows perpendicular to the substrate in the droplet bulk.
The final contact line shapes of the deposits, displayed

on Fig. 3(b), show a global decrease of the frozen drop
radius with lower substrate temperatures, as seen on Fig. 2.
These pictures also enable to see clearly the crystal shape
when the drop stops spreading. In Fig. 2, ra is the mean
radius determined from the side views, and larger error bars
at intermediate undercoolings are a consequence of the
symmetry breaking in the contact line shape. Other
definitions for the arrest radius have also been tested, such
as the equivalent radius determined from the area of the
final deposit, or the radius of the first pinned point of the

FIG. 2. Rescaled arrest radius ra=r0 as a function of the
undercooling ΔT. Error bars are computed based on spreading
asymmetry. The circular marker represents the isothermal case.
The inset shows a log-log temporal evolution of the rescaled
spreading radius. Before pinning, all curves superimpose and
the coefficients fitted from Eq. (1) are C ¼ 1.15� 0.06 and
α ¼ 0.47� 0.05. The arrest diameter ra=r0, in dotted lines is
determined at the time where the curve departs from the power-
law behavior.

PHYSICAL REVIEW LETTERS 128, 254501 (2022)

254501-2



contact line, showing, however, no qualitative change in the
results (see Supplemental Material [21]).
From the time sequences of Fig. 3(a), the crystal-growth

radial velocity Vc can be extracted for different temper-
atures of the substrate. Vc is observed to be constant with
time as shown in the Supplemental Material [21]. In a
typical experiment, around 10 crystals are observed and
their velocity is the same with small variations that can be
attributed to thermal fluctuations within the water or the
substrate. Thus, for each temperature, a single crystal-
growth radial velocity Vc is measured with the associated
relative error.
Similarly, the arrest velocity Va, the velocity of the

contact line just before stopping, can be determined from
the side views, taking the derivative of Eq. (1) at the time of
arrest ta, and using the fitted values of C and α for each
experiment:

Va ¼
r0Cα
ταc

tα−1a ¼ r0Cα
τc

�
ra
Cr0

�α−1
α

: ð2Þ

As illustrated in the inset of Fig. 2, the transient time
from spreading to arrest is very short, allowing a clear
definition for the time of arrest ta and its corresponding
arrest velocity. The remaining uncertainty on ta leads to
error bars smaller than the ones induced by the asymmetry
of the arrest. In Fig. 4(a), the arrest velocity Va is plotted as
a function of the crystal growth velocity Vc for a large
range of temperatures shown with a color bar. The dashed
line represents the line Va ¼ Vc and it is striking to notice
that the arrest velocity is always roughly equal to the crystal
growth velocity. This confirms our hypothesis on the
mechanism responsible for the arrest of a contact line

catched up by ice crystals: the contact line has to slow down
to the crystal velocity to get caught by the crystal. Strictly
speaking, this provides an upper limit for the arrest velocity.
Hence, the pinning occurs when Va ≲ Vc. Consequently,
we observe smaller deposits when ΔT increases [Fig. 3(a)]:
the contact line is caught earlier by the crystal as the crystal
velocity increases with the undercooling.
Noticeably, in this scenario, the nucleation process plays

a small role on the arrest criterion but could explain the
small deviations observed, namely, that the arrest velocity
always seems to be slightly smaller than the crystal one
[Fig. 4(a)]. Once the velocity criterion is met, a “lag time”
would still be necessary so that the contact line can be
caught up by the crystals. Qualitatively, we often see that
the contact line is first arrested by crystals nucleating very
close to it and hence catching it quickly when the velocity
criterion is met. This lag becomes negligible at high
undercoolings, where nucleation is very dense and uni-
formly distributed on the surface [18,22]. This could
explain the small influence of the nucleation rate on the
arrest mechanism.
Thanks to the visualizations, we can now discuss the

measured crystal growth velocities. As can be seen on
Fig. 3(a), part of the liquid is not immediately solidified
after contact, and subsequently gets cooled by the substrate.
We can assume that the liquid temperature close to the
substrate is the so-called contact temperature that arises
when two bodies of different temperature are suddenly in
contact Tc ¼ Ts þ ðTd − TsÞð1þ es=ewÞ, where es and ew
are the effusivities of the substrate and water, respectively,
ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λkρkCp;k

p
[23]. In such configuration, the temper-

ature in the water varies on a typical diffusive length
scale δ ≈

ffiffiffiffiffiffiffiffiffiffiffi
Dwτc

p
≈ 10−5 m, with Dw the heat diffusion

(b)

(a)

FIG. 3. (a) Temporal evolution of the spreading at −13 °C. Nucleation is designated by white arrows. Local pinning events are
emphasized with small arrows at t ¼ 3.7 ms. (b) Final contact line shapes for different temperatures.
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coefficient in water. δ is thus far larger than the character-
istic size of an ice nucleus (few nm) and of the tip radius of
an ice dendrite growing in water at supercooled temperature
Tc (few μm) for our range of substrate temperatures [24].
This allows us to approximate the temperature of the water
surrounding the ice crystals as Tc.
When ice grows in supercooled water, the ice formation

occurs through a series of nucleation and growth of crystals
[25]. In the liquid bulk, the growth velocity is constant [26]
but the mechanism that sets the velocity is not completely
understood. Indeed, at large undercoolings, despite a good
agreement between the experimental data available, theo-
retical models hardly catch the growth dynamics [27,28].
More precisely, the work of Shibkov et al. [28] on ice

growing freely in an infinite supercooled bulk provides a
strong set of experimental data, and fitting a power law over
their whole experimental range gives Vd ¼ KðTm − TwÞγ ,
Tw being the liquid undercooling, with K ¼ 4.83 × 10−5

S.I and γ ¼ 2.78 for the growth velocity, consistent with
other studies [17,29]. This experimental fit is shown with
the gray dashed line on Fig. 4(b) using Tw ¼ Tc. In this
figure, our velocities Va (black diamonds) and Vc (blue
dots) are represented as a function of ΔT. Our crystal
growth velocities are systematically higher than the above
power law accounting for the ice growth velocity in liquid
bulk. In fact, several differences can be pointed out between
these two experimental configurations, among which the
heterogeneity of the water temperature, the motion in the
surrounding fluid (however, the two effects should lead to a
decrease of the Shibkov prediction), and finally the
presence of a cold substrate in the present case.
The effect of the latter was recently explored [30–32]

showing a strong coupling between the advancing crystal
and the substrate. Indeed, latent heat due to solidification is
also transferred to the substrate and in the case of a very
effusive substrate (es > ei) a higher solidification rate was
clearly observed experimentally. To rationalize our exper-
imental observations, we propose to enrich the model
originally proposed by Schremb et al. [30], which fails
to reproduce our data on the whole range of investigated
temperatures. Following their approach, we assume that the
vertical growth of the ice is well accounted by the 1D
solidification problem, as illustrated on the inset of
Fig. 4(a). However, here, we take into account the thermal
diffusion in all three phases (water, ice, and substrate), and
obtain that the growth of the ice front obeys a square-root
law in time h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

DeffΔt
p

, where Δt is the time of
solidification. Deff depends on the substrate and water
temperatures and is deduced from the self similar solution
of the coupled heat equations for the three phases (see
Supplemental Material [21]), generalizing previous results
[33,34]. Using this square-root law solution and knowing
that the crystal growth radial velocity is constant, we
obtain hðx;tÞ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Deff ½t−ðx=VcÞ�
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Deffðxtip−xÞ=Vc

p
.

Subsequently, the shape of the crystal is a parabola and
its tip radius is expressed as Rtip ¼ Deff=2Vc.
Measuring Vc and calculating the theoretical value of

Deff , we can compute Rtip for each of our experiments,
plotted in the inset of Fig. 4(b) as a function of the
undercooling. By contrast with former studies, where
Rtip was found constant [30,31] or with dendritic growth
where the tip radius decreases with the undercooling, we
obtain a clear linear dependence Rtip ¼ kΔT, with
k ¼ 2.10−8 m=K. Using this fitted law for Rtip in the
formula above relating the tip radius and Vc, we obtain
Vc ¼ Deff=ð2kΔTÞ corresponding to the green plain curve
on Fig. 4(b) which, by construction, shows a very good
agreement with our experiments. The linear law for Rtip,

(b)

(a)

FIG. 4. (a) Arrest velocity against crystal growth velocity.
Colors indicate the surface temperature. The inset shows a sketch
of the model of ice crystal growth near a substrate. (b) Arrest and
crystal growth velocities as a function of the substrate under-
cooling. The dashed line represents the dentritic growth velocity
and the plain one the model we developed. The inset shows that
the tip radius of the crystal parabola increases linearly with ΔT.
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together with our refined model, allows a good under-
standing of our results over the whole temperature range.
In conclusion, when a drop spreads on a cold substrate, its

decelerating contact line is eventually caught up and arrested
by ice crystals growing at the substrate-water interface. The
race between the spreading line and the solidification front
determines an arrest criterion, qualitatively similar to the
ones proposed in previous studies [16–18].However, thenew
experiments proposed here, on water and at large under-
coolings, provide a direct visualization of the growing
crystals, and the model reveals the role of the substrate
thermal properties on the arrest. Finally, the physical mecha-
nism leading to the pinning of the contact line when reached
by the crystal still needs to be elucidated. Several theories
have already been proposed [13–15] and this phenomenon,
which takes place at very small time and length scales, should
be the object of future experimental investigations.
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