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We study experimentally the effect of a mean flow imposed on a buoyant exchange flow of two
miscible fluids of equal viscosity in a long tube oriented close to horizontal. We measure the
evolution of the front velocity Vf as a function of the imposed velocity V0. At low V0, an
exchange-flow dominated regime is found, as expected, and is characterized here by Kelvin–
Helmholtz-like instabilities. With increasing V0 we observed that the flow becomes stable. Here also
Vf increases linearly with V0 with slope of �1. At large V0 we find Vf �V0. © 2010 American
Institute of Physics. �doi:10.1063/1.3326074�

Gravity currents of a heavy fluid displacing a lighter
fluid over a nearly horizontal surface are widespread both in
natural �oceanography, hydrology, and atmospheric sciences�
and industrial systems �chemical and petroleum
engineering�.1–3 Such flows are driven by buoyancy, but the
physical mechanisms that limit the flow may be inertia or
viscosity depending on the geometric configuration, the
mean flow, and the type of fluids.4 These processes, often
studied in unconfined geometries,5,6 are strongly influenced
by flow confinement. The lock-exchange problem in both
confined4,7–10 or unconfined geometries11–13 has been previ-
ously investigated in sloping channels. The present letter is
an extension of this work in which we superimpose a mean
flow on the lock-exchange problem in a confined geometry.14

Specifically, we measure and analyze the evolution of the
front velocity Vf of the displacing fluid as a function of the
mean flow velocity V0 for fluids with different densities but
of equal viscosities. We report the influence of the pressure-
driven flow on the flow stability for the case of displacement
of a lighter fluid by a heavier fluid in an unstable configura-
tion, i.e., the heavier fluid is displacing the lighter fluid, in a
long nearly horizontal tube.

In recent work in this area, Séon et al.4,8 studied the
lock-exchange problem and reported on the different flow
regimes as a function of tube angle �, measured relative to
vertical, for a number of fluids of different densities and for
different values of their common viscosity. No pressure
driven flow was imposed in this case. For tubes far from
horizontal, they observed mixing at the interface between the
two fluids15 and characterized the results as a function of the
ratio of the buoyancy to inertial forces. By equating these
terms, these authors advanced the argument that the charac-
teristic velocity Vt for the exchange flow in this configuration

is related to the square root of the density differences be-
tween the fluids �Vt=�Atgd� and defined the Reynolds num-
ber Ret=�Atgdd /�.

Here At is the Atwood number, defined as At= ��2

−�1� / ��2+�1�, �i are the densities of the displaced �i=1� and
displacing �i=2� fluids, respectively, g is acceleration due to
gravity, d is the diameter of the tube, and � is the common
kinematic viscosity of the fluids. In contrast to this, for the
case of tubes close to horizontal they observed an exchange
flow without mixing. Here, a quasiparallel flow was ob-
served in each fluid layer, indicating that the inertial forces
are negligible. In this limit, they concluded that the buoyancy
force must be balanced by the viscous force and defined this
as the viscous flow regime. The transition between the iner-
tial and viscous flow regimes was found to occur for
Ret cos ��50.

In the present letter we demonstrate that the imposition
of a pressure-driven flow on an exchange flow strongly in-
fluences the front velocity and the physical mechanisms that
dissipate energy. Below, after discussing the experimental
setup, the front velocity is presented as a function of the
mean flow velocity V0 from which we identify three different
flow regimes. Following this, we report an important finding
of this work: the transition of the flow from inertia-
dominated behavior to viscous-dominated behavior with in-
creasing energy introduced into the system by increasing V0.

The study was performed in a 4 m long, 19 mm diameter
transparent tube with a gate valve located 80 cm from one
end �Fig. 1�. The tube was mounted on a frame which could
be tilted to a given angle. Initially, the lower part of the tube
was filled with water colored with a small amount of ink and
the upper part of the tube by a denser salt-water solution. The
tube was fed by gravity from an elevated tank. The imposed
flow rate was controlled by a valve and measured by a rota-
meter and a magnetic flowmeter located downstream of the
tube. Experiments were conducted using water as the

a�Author to whom correspondence should be addressed. Electronic mail:
seon@math.ubc.ca.

PHYSICS OF FLUIDS 22, 031702 �2010�

1070-6631/2010/22�3�/031702/4/$30.00 © 2010 American Institute of Physics22, 031702-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1063/1.3326074
http://dx.doi.org/10.1063/1.3326074
http://dx.doi.org/10.1063/1.3326074


common fluid with salt �NaCl� as a weighting agent to
densify one of the fluids. A large number of experi-
ments were conducted over the ranges of �V0 ,At�
� �0–350 mm s−1 ,10−3–4�10−2�. Our imaging system
consisted of two digital cameras with images recorded at a
frame rate of 2 Hz. The tube was back lit, and after opening
the valve, images were obtained at regular time intervals,
which enable us to create spatiotemporal diagrams of the
mean concentration profiles along the tube. The displacement
of the front with time was marked on these diagrams by a
sharp boundary between domains of the different relative
concentrations of the fluids. The front velocity Vf is equal to
the slope of these boundaries. It was found that the slope of
this boundary was essentially linear after a couple of diam-
eters within experimental uncertainty.

We discuss now the experimental relation between Vf

and V0. A representative case is illustrated in Fig. 2 for �
=83°, At=10−2, and �=10−3 Pa s. Phenomenologically, we
observe three distinct behaviors as V0 is increased from zero.
�i� As V0→0, we observe an exchange-flow dominated re-

gime: the imposed flow has only a slight influence on the
dynamics of the exchange flow. For the case depicted in this
figure, we are in the inertial regime,8 since Ret cos �
=101.3�50, and the flow develops some shear instabilities
at the interface. �ii� In the second regime, the balance be-
tween pressure gradient and dissipative forces still exists but
the mean flow becomes stronger than the buoyancy driven
flow. This controls its dynamic. The main feature here is a
linear relationship between Vf and V0 �Vf /V0�1.3 in this
representative example�. We have conducted experiments at
various At in this regime, as shown in the inset of Fig. 2, and
we observe that the slope Vf /V0 does not vary significantly
with At. This is interesting because the fact that Vf is differ-
ent from V0 indicates that buoyancy has a role to play, but
this effect is almost independent of the Atwood number.
Moreover we emphasize that this linear relationship is found
for cases for which the first regime may be either inertial or
viscous, as this is the case, respectively, for At=10−2

�Ret cos ��50� and At=10−3 �Ret cos ��50�. These obser-
vations need more understanding and will be discussed in
more depth in a companion paper. �iii� For V0

�150–200 mm s−1, we observe a second linear regime with
Vf �V0. This third regime is displayed partially on the main
curve and more completely in the inset of Fig. 2. It is defined
by the buoyancy forces becoming negligible compared with
the imposed pressure gradient. In this case it occurs when the
imposed flow is turbulent �V0�150, see inset, which corre-
sponds to Re�3000�. As a result, the two fluids mix �see
inset� and are completely displaced �Vf �V0�. We also ob-
serve a transitional zone between the second and third re-
gimes in Fig. 2.

We now focus on the influence of the imposed flow on
the stability of the system. To illustrate this we show in Fig.
3 images from the flows of Fig. 2 for three different repre-
sentative imposed velocities V0. Figure 3 displays images of
the 70 cm long section of the tube, tilted at �=83°, taken 30
cm below the gate, out of view on the right hand side, for the
same density contrast. The heavier transparent fluid is mov-
ing downward, i.e., from right to left. In Fig. 3�a� we observe
an inertial gravity current where, behind the front, pseudo-
interfacial shear instabilities �Kelvin–Helmholtz-like� de-
velop and induce mixing between the two fluids transversally
across the section. This low mean flow case �V0

=8.6 mm s−1� is in the first regime �see Fig. 2� where the
flow is driven by a balance between buoyancy and inertia
�since here Ret cos ��50�.8 In Fig. 3�b� with an increased
imposed flow we observe a stable flow in which there are no
Kelvin–Helmholtz instabilities at the interface. Consequently
there is no mixing between the two fluids. Moreover, the
front height is small and the slope of the interface with re-
spect to the pipe axis is constant and weak. We infer that the
velocity field is quasiparallel and is therefore under condi-
tions where the lubrication approximation becomes valid; the
flow dissipates its energy through viscosity. In comparison to
Fig. 3�a�, this behavior appears quite counterintuitive since
more energy is being injected into the system as V0 is greater
than in the previous case. As the mean flow approaches a
Poiseuille flow, the flow is inherently stable in this range of
Reynolds number. This demonstrates a key observation of
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FIG. 1. Schematic view of experimental setup. The shape of the interface is
illustrative only. More realistic shapes are given in Fig. 3 where the interface
shape was found to evolve both spatially and temporally. Here Vf represents
the front velocity of the displacing fluid �transparent�.
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FIG. 2. �Color online� Variation in the front velocity Vf as a function of
mean flow velocity V0 for �=83°, At=10−2, and �=10−3 Pa s. The dashed
line is a linear fit of data points in the mean flow dominated regime �slope
1.3�, whereas the dotted line shows the slope 1 of the final mean flow
regime. The top left inset displays the second regime for different Atwood
numbers: At=10−2, At=4�10−3, and At=10−3, and the dashed lines have
respective slopes: 1.3, 1.33, and 1.38. The bottom right inset displays the
same data as the main curve for a higher range of mean flow values; the
dashed square represents the range of the main plot. The insets are pictures
of a 20 cm long section of tube, 80 cm below the gate valve in the corre-
sponding flow domains.
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this letter: even though the Reynolds number is increased,
the imposed flow stabilizes the initial inertial exchange flow
by making the streamlines quasiparallel. Further, as stability
results from a quasiparallel approximation, a small perturba-
tion can break this fragile geometry and induce the propaga-
tion of a local burst along the interface. When such a burst
appears, it induces transverse mixing. Finally, if the mean
flow velocity �see Fig. 3�c�� is further increased, i.e., much
higher than the buoyant velocity, the flow reaches the third
regime where buoyancy forces are negligible. In this case,
the stretched interface combined with the transverse mixing
induced by the turbulent mean flow results in a complete
displacement. The two pure fluids are separated by a mixing
zone.

If we consider the pure exchange flow in this configura-
tion, Séon et al.4 showed that this exchange flow can become
viscous by using a lubrication approximation argument. This
regime appears when the transverse gravity component is
strong enough to block the development of the instabilities at
the interface, which occurs when the tube is close to hori-
zontal. In this regime, except in the particular case of a hori-
zontal tube, the front always reaches a constant velocity de-
fined by the balance of buoyancy and viscous forces. In this
case, Séon et al. showed that the quasiparallel approximation
is not valid everywhere in the domain. The front usually
appears in the form of an inertial “bump” with a velocity
equal to �Atgh, where h �height of the front� adapts itself to
maintain a front velocity equal to the viscous bulk velocity.
Thus, we note that the steadiness of the velocity in this re-
gime implies that this height remains constant with time.

Such a viscous exchange flow with an inertial bump is
displayed on the top image of Fig. 4. This sequence displays
a 45 cm section of the tube, a few centimeters below the gate
valve �out of view on the right hand side�. The images are
plotted every 	t=0.5 s, and this sequence corresponds to an
experiment conducted at �=87°, where the mean flow �V0

=77.4 mm s−1� was imposed after the first image. We ob-
serve in this sequence that the inertial bump disappears under
the effect of the mean flow. Indeed, the top of the bump
seems to move faster than its base, or in other words, the
Poiseuille velocity gradient spreads the initial shape of the
bump out. This demonstrates that the lubrication approxima-
tion, which could not be valid close to the inertial bump for
the exchange flow configuration, is now valid everywhere
due to the mean flow �except perhaps very close to the front�.

Indeed, the only way for the inertial bump to disappear is to
be subjected to a laminar flow in this region and this can
only be achieved when the streamlines in this region are
parallel. Therefore, the flow is now dominated by the
Poiseuille flow and the buoyancy driven flow becomes a
correction.

To conclude, these experiments have allowed us to quan-
tify the influence of a pressure-driven flow on the well stud-
ied configuration of a buoyant flow of two miscible fluids of
different densities in the confined geometry of a long tube
close to horizontal. We showed the existence of three re-
gimes as a function of V0. In the first regime, i.e., V0→0, the
influence of mean flow is negligible and therefore, the dy-
namics is governed by the balance between the buoyant and
resistive forces �which depends on the fluid properties and
can be either viscous or inertial�. In the second regime, de-
fined for higher values of the mean flow, the front velocity
varies linearly with the imposed flow velocity. This result is
in a good agreement with previous theoretical work16 for the
case of a laminar flow between parallel plates. Moreover in
this regime the imposed flow stabilizes the unstable buoyant
flow by making the streamlines more parallel. In other
words, it tends to decrease the inertial term in the governing
Navier–Stokes equations. We have seen that this inertial
term, which was not negligible at the front for the laminar
exchange flow �presence of the inertial bump�, is removed by

(a)

(b)

(c)

FIG. 3. Three snapshots of video images taken for different mean flows and showing the flow stability induced by the Poiseuille flow. These images are
obtained for �=83°, At=10−2, and �=10−3 Pa s and mean flow velocities �a� V0=8.6 mm s−1, �b� V0=71 mm s−1, and �c� V0=343 mm s−1 �the correspond-
ing buoyant velocity is Vf

V0=0=30.55 mm s−1�. The field of view is 700�19.6 mm2 and taken 30 cm below the gate valve. The images are taken at �a� 33 s,
�b� 12 s, and �c� 5 s after opening the valve.

FIG. 4. Sequence of images showing the initial bump shape spread out by
the Poiseuille velocity gradient. This sequence is obtained for �=87°, At
=10−2, and �=10−3 Pa s, and the mean flow �V0=77.4 mm s−1� is imposed
after the first image �top one�. The field of view is 452�20 mm2 and taken
a few centimeters below the gate valve. The sequence starts 7 s after open-
ing the gate valve and the time interval between images is 	t=0.5 s.
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a sufficiently strong imposed flow. A different way of view-
ing this is to note that when V0=0, the instabilities at the
surface of the current are due to the shear created by the
exchange flow �due to buoyancy�. If a mean flow is imposed,
the relative influence of buoyancy decreases compared with
that of the pressure gradient: the velocity gradient at the sur-
face will decrease whereas the stratification remains un-
changed. Thus, the local gradient Richardson number in-
creases and the flow becomes more stable. Obviously, both
explanations require quantifying. On the other hand, it is
expected that higher buoyancy forces would not stabilize the
flow. Indeed in this case, the mean flow required to stabilize
the buoyant flow may itself be unstable, and so the flow
would transit from an unstable buoyancy dominated regime
to a turbulent pressure-driven regime. Finally, in the third
regime, defined when the buoyancy forces are negligible, the
mean flow is turbulent. The two fluids are displaced at the
mean flow velocity and a mixing zone separates the two pure
fluids. In this turbulent regime, we can expect that for a
suitably strong mean flow and over long enough time scale,
the mixing zone will spread diffusively governed by turbu-
lent Taylor17 dispersion. Thus, Vf �V0 may not be strictly
valid in this regime for longer times.
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