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We study buoyant displacement flows with two miscible fluids of equal viscosity in the
regime of low Atwood number and in ducts that are inclined close to horizontal. Using
a combination of experimental, computational and analytical methods, we characterize
the transitions in the flow regimes between inertial- and viscous-dominated regimes,
and as the displacement flow rate is gradually increased. Three dimensionless groups
largely describe these flows: densimetric Froude number Fr, Reynolds number Re
and duct inclination 8. Our results show that the flow regimes collapse into regions
in a two-dimensional (Fr, Recos 8/Fr) plane. These regions are qualitatively similar
between pipes and plane channels, although viscous effects are more extensive in
pipes. In each regime, we are able to give a leading-order estimate for the velocity
of the leading displacement front, which is effectively a measure of displacement
efficiency.

Key words: gravity currents, lubrication theory, multiphase flow

1. Introduction

We consider high-Péclet-number miscible displacement flows in near-horizontal
ducts (pipes and plane channels) with a heavier fluid displacing a lighter fluid
downwards, i.e. density-unstable. Such flows occur in many oil industry processes,
concerned with either well construction (drilling, cementing, fracturing) or production
(pipelining), as well as in other process industries. Laminar flows often occur in
these processes, owing to either high viscosities or other process constraints, and non-
Newtonian fluids are also prevalent. In many situations it is not feasible to separate
fluid stages physically as they are pumped. Two practical questions are: (A) to what
degree does the fluid mix across the duct; and (B) what is the axial extent along
the duct of the mixed region (meaning that in which we find both fluids present)?
The aim of our paper is to present results of an extensive study, targeted primarily
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at understanding question (B) in the case of long, near-horizontal ducts. At these
inclinations, transverse buoyancy forces act to stratify the fluid streams during the
displacement flow, so that many flows are relatively laminar and structured. For other
flows, inertial instabilities grow at the interface, signifying the onset of mixing, which
is often limited by buoyancy at these inclinations. In both cases, question (B) is
answered by estimating the displacement front velocities. Only low Atwood numbers
At = (py — p1)/(Pu + pr) are considered, and the density of the displacing fluid (o)
always exceeds that of the displaced fluid (p;). Thus, buoyancy acts to spread the
fluids along the duct and to lengthen the mixed region. Only iso-viscous fluids are
considered (viscosity [1).

Exchange flow in an inclined pipe (imposed mean flow velocity, V, = 0)
has been extensively studied by Seon et al. (2004, 2005, 2006, 2007a,b), also
considering iso-viscous fluids and low Afr. Seon et al. (2005) classify exchange
flows phenomenologically as either inertial or viscous according to which effect is
dominant in balancing buoyancy forces, and we adopt the same terminology. Where
the flow remains primarily laminarized and unidirectional, with a clean interface
and no evidence of instability, this is referred to as viscous. Where two- and three-
dimensional regions of flow are observed, typically associated with instability and
(at least localized) mixing close to the interface, this is referred to as inertial. Seon
et al. (2005) succeed in giving quantitative predictions of the front velocities at each
inclination in terms of characteristic inertial and viscous velocity scales, \A/t and Vv,
respectively:

o 0RD [ o G p0RD AesiD?
P POSD _\ argh, ¥, = LT o80T _AOSDT
(on + Pr) 200 Q

where p = (py + p1)/2, D is the pipe diameter and g is the gravitational acceleration.
Evidently, V, and V, represent velocities at which buoyancy is balanced by inertial
and viscous forces, respectively. The novelty of our work with respect to Seon et al.
(2004, 2005, 2006, 2007a,b) is the study of imposed displacement velocities, \70 > 0.

The preliminary results of our study were reported in Taghavi et al. (2010). As
an increasingly strong mean flow, V, > 0, was imposed on a pipe exchange flow, the
observations suggested a primary classification in terms of three regimes:

(pl) exchange flow-dominated regime (low \70);
(p2) imposed flow-dominated regime (moderate \70); and
(p3) fully mixed regime (high Vo).

Counter-intuitively, it was observed that increasing the imposed mean flow could
even cause an inertial exchange flow to become progressively laminar and stable,
(pl) — (p2), i.e. injecting inertia reduces instability. Taghavi et al. (2011) studied the
flows that occur at the transition between regimes (pl) and (p2). Right at the transition,
we find flows for which the less dense displaced fluid remains in a stationary layer at
the top of the pipe, over the relatively long duration of our experiments, e.g. layers
remained for 7 > 10°D/V,. Although the layer is stationary, the fluid within the layer
is in counter-current motion, with zero net flux. The same phenomenon was observed
in channel displacement flows, simulated numerically. Good quantitative predictions
of the stationary layer were obtained by analysing a lubrication/thin-film model,
extending from Seon et al. (2005) and Taghavi et al. (2009).
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Taghavi et al. (2011) studied flows at the transition (pl) — (p2), leading to a
secondary classification based on the behaviour of the trailing front near the top of the

pipe:

(s1) sustained back-flows, in which buoyancy forces are strong enough to produce a
sustained upstream motion of the trailing front (low f/o);

(s2') stationary back-flow, as described above, which is simply a marginal state;

(s2) temporary back-flows, when the trailing front moved upstream only for a finite
time, eventually reversing and moving downstream (low—moderate V;); and

(s3) instantaneous displacements, when the trailing front moves directly downstream
(moderate—high Vo).

The novelty of the work in this paper, compared to Taghavi et al. (2010, 2011), is
threefold. First, the results of Taghavi et al. (2010) were preliminary, based only on
a limited number of pipe flow experiments. In this paper we confirm the generality
of these results, both with a much larger data set and with a second geometry
(plane channel). We also characterize the dynamics of each regime in significantly
more detail than was possible in Taghavi et al. (2010). In particular, we show
via a similarity scaling that regime (p2) is a viscous regime. Secondly, although
Taghavi et al. (2011) studied the transition (pl) — (p2), it is focused on the stationary
back-flows (s2'). This leaves largely unexplored the relation between the primary and
secondary classifications. Also missing are quantitative estimates of the front velocity,
f/f, which are essential for predicting displacement efficiencies. Essentially the

displacement efficiency is proportional to V;/ \A/f, as discussed in Taghavi et al. (2009).
From a more fundamental perspective, both primary and secondary classifications are
phenomenological. They describe displacement front behaviour but do not classify the
physics, e.g. whether a particular regime is stable/unstable or viscous/inertial. Here we
develop and present a complete classification of these flows that includes leading-order
predictions of front velocity in each regime and a description of the primary physical
balances. This is done for both pipe and channel geometries. Thirdly, later in the paper,
we consider the issue of how to model inertial effects for flows with greatly elongated
displacement fronts (as we observe). We adopt the weighted-residual approach for
two-layer flows (see Amaouche, Mehidi & Amatousse 2007), which allows us to
consider weak inertial effects on both the flow stability (long wavelengths) and on the
displacement front shape and velocity.

Regarding the existing literature, high-Péclet-number miscible displacements have
been studied analytically, computationally and experimentally in the case of iso-dense
fluids by Chen & Meiburg (1996), Petitjeans & Maxworthy (1996), Rakotomalala,
Salin & Watzky (1997) and Yang & Yortsos (1997). These studies show that sharp
interfaces persist over wide ranges of parameters for dimensionless times (hence
lengths) smaller than the Péclet number. At longer times (lengths), the dispersive
limit is attained. However, for fixed lengths and for increasing Péclet number (while
remaining laminar), the flow is comparable to an immiscible displacement (with zero
surface tension). On including buoyancy, there are a number of displacement flow
studies in vertical ducts, for both miscible and immiscible fluids (e.g. Joseph &
Renardy 1993; Lajeunesse et al. 1997, 1999; Sahu et al. 2009b).

When buoyancy forces are strong, the flow characteristics can vary considerably
with inclination. The most comprehensive study of these effects is in the
absence of the imposed flow by Seon er al. (2004, 2005, 2006, 2007a,b) using
experimental methods. Three-dimensional computations have been performed by
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Hallez & Magnaudet (2008) and largely confirm the qualitative picture of Seon
et al. (2005, 2006). The computations of Hallez & Magnaudet (2008) are focused
mostly at inclinations away from horizontal and they consider mostly inertial flows.
They also study exchange flows in plane channels, concluding that the structure of
buoyancy—inertia driven flows is markedly different in two-dimensional and three-
dimensional settings. This is largely due to the three-dimensional effects of mixing.
Sahu & Vanka (2011) have recently considered immiscible exchange flows in two-
dimensional plane channels, carrying out computations using both a lattice Boltzmann
method and a finite volume method. In vertical pipes there have been a range
of exchange flow studies focused towards the study of mixing in inertia—buoyancy
dominated regimes (e.g. Baird et al. 1992; Debacq et al. 2001, 2003), but also more
geophysically oriented studies at low Reynolds number (e.g. Stevenson & Blake 1998;
Huppert & Hallworth 2007; Beckett et al. 2011). There are also many general studies
of buoyancy-driven flows of miscible Newtonian fluids over near-horizontal surfaces
in oceanographic, meteorological and geophysical contexts (e.g. Benjamin 1968; Hoult
1972; Didden & Maxworthy 1982; Simpson 1997; Shin, Dalziel & Linden 2004;
Birman et al. 2005, 2007).

Much of our study concerns regimes for front propagation. However, in our results,
we also observe instabilities at the interface as it elongates. There are a limited
number of studies associated with the instability of such flows (e.g. Goyal & Meiburg
2006; Goyal, Pichler & Meiburg 2007; Sahu et al. 2009a,b). Once the interface
elongates, the flow on any particular cross-section is not distinguishable from a
miscible multi-layer flow. There is also an extensive literature on the instability of
immiscible parallel multi-layer flows, dating from the classical study of Yih (1967).
Explanations of the physical mechanisms that govern this type of instability for
Newtonian fluids have been offered by Hinch (1984) and Charru & Hinch (2000).
In the context of miscible multi-fluid flows there is less work on shear instabilities,
where the term multi-layer is ill-defined if the fluids can mix. Linear stability studies
assume a quasi-steady parallel base state. Ranganathan & Govindarajan (2001) and
Govindarajan (2004) analysed the stability of miscible fluids of different viscosities
flowing through a channel in a three-layer Poiseuille configuration. They obtained
instabilities at high Schmidt numbers and low Reynolds numbers, resembling those of
Yih (1967). In Couette flow, it appears that the stability characteristics of the miscible
flow are predicted by those of the immiscible flow with zero surface tension (see
Ern, Charru & Luchini 2003). However, for core—annular flow, this is not the case
(see Selvam et al. 2007). Recent studies have considered convective instabilities in
miscible multi-layer flows, both experimentally by d’Olce (2008) and d’Olce et al.
(2008, 2009) and computationally/analytically by Selvam et al. (2009). Sahu et al.
(2009a,b) have considered the onset of convective instabilities in three-layer plane
channel flows. Three-dimensional effects in buoyant displacement flows in Hele-Shaw
geometries have also been studied very recently by Oliveira & Meiburg (2011) and
John et al. (2011). These computational studies are focused on miscible Navier—Stokes
displacements at low Re, and expose interesting details of the flow that are lost in the
conventional Hele-Shaw approach.

1.1. Problem setting
The scenario studied throughout the paper is that fluid 1 displaces fluid 2 along a duct
that is inclined close to horizontal. The duct has transverse dimension D (either the
pipe diameter or the channel height), and the mean imposed displacement velocity is
‘70, in the downhill direction. The fluids have the same viscosity [i, are miscible and
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Schematic showing the
initial set-up of the flows studied.

have differing densities: the displacing fluid 1 is heavier than the displaced fluid 2. In
general, we study laminar flows. The length L of the duct satisfies L > D and the
initial interface is transverse to the duct axis, somewhere away from the ends; see
figure 1.

From a modelling perspective, a natural formulation involves a
concentration—diffusion equation coupled to the Navier—Stokes equations. The change
between pure fluids 1 and 2 is modelled via a scalar concentration, ¢. On making the
Navier—Stokes equations dimensionless using D as length scale, V, as velocity scale
and subtracting a mean static pressure gradient before scaling the reduced pressure, we
arrive at

1 ¢
(1 +¢At)(ut+u-Vu):—Vp+FeV2u+Weg, (1.2)
V.u=0, (1.3)
1
¢, +u-Ve=—Voc. (1.4)
Pe

Here e, = (cos 8, —sin B) and the function ¢ (c) = 1 — 2c interpolates linearly between
1 and —1 for ¢ € [0, 1]. The four dimensionless parameters appearing in (1.2) are the
angle of inclination from vertical, 8, the Atwood number, At, the Reynolds number,

Re, and the (densimetric) Froude number, Fr. The last two are defined as

VoD V,V, v 1%
0z _ 10 , Fr= 0 :TO. (1.5)

D /2 ~
v Vi argh Vi

Here b is defined using the mean density 6 and the common viscosity /i of the fluids.
A fifth dimensionless group also appears in (1.4), the Péclet number, Pe = VoD/D,,
with ﬁm the molecular diffusivity (assumed constant for simplicity). Commonly, the
Péclet number is very large, as we consider laboratory- or industrial-scale flows
rather than micro-fluidic devices, e.g. Pe > 10° is common. If the fluids are initially
separated, we expect diffusive effects to be initially limited to thin interfacial layers
of size ~Pe'/?, remaining sharp over experimental time scales in the absence of
instability, mixing and dispersion. Such flows are close to their immiscible fluid
analogues at infinite capillary number (i.e. vanishing surface tension), which are
modelled by setting Pe = oo and ignoring the right-hand side of (1.4). The direct
effect of the density difference on inertia is captured by Ar. If we restrict our attention
to density differences of the order of 10% (as in our experiments), we see that
Ar < 0.05. We expect that, for such moderate density differences, the solution for

Re =
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FIGURE 2. Schematic view of experimental set-up. The interface shape is illustrative only.

At =0 will give a reasonable approximation. Note also that the incompressibility
condition (1.3) in fact requires small Az in order to be valid for intermediate ¢ in the
case that the two individual pure fluids can be considered incompressible. Essentially
this is the Boussinesq approximation. Note that, for such flows, we can still have
significant buoyancy effects (captured by Re/Fr?). Thus, the overall aim of our study
is to build a quantitative description of the different flow regimes found, in terms of
(Re, Fr), for B close to m/2, assuming Pe — oo and At — 0.

1.2. Outline

The main content of our paper proceeds in three sections. The next section (§2)
concerns pipe flow displacements. The main methods are experimental and semi-
analytical, using a lubrication/thin-film modelling approach. The following section (§ 3)
presents analogous studies in a plane channel geometry. Here the physical experiments
are replaced with numerical experiments. In both geometries we obtain reasonable
agreement with predictions from the semi-analytical models. The discrepancies are
possibly attributable to inertial effects, which we study in § 4. We also study the flow
stability in § 4. The paper ends with a brief summary.

2. Displacement in pipes
2.1. Experimental description

Our experimental study was performed in a 4 m long, 19.05 mm diameter, transparent
pipe with a gate valve located 80 cm from one end. A schematic of the experimental
set-up is given in figure 2 and a detailed description can be found in Taghavi er al
(2010, 2011). The pipe was mounted on a frame that could be tilted to a given angle.
Initially, the lower part of the pipe was filled with a lighter fluid coloured with a
small amount of ink, and the upper part by a denser solution. The pipe was fed
from an elevated tank, forced by gravity to avoid disturbances induced by a pump.
The imposed flow rate was controlled by a valve and measured by both a rotameter
and a magnetic flowmeter, located downstream of the pipe. We also measured the
velocity profile at 80 cm below the gate valve, using an ultrasonic Doppler velocimeter
(UDV) DOP2000 (model 2125, Signal Processing SA). Most of the experiments were
conducted using water as the common fluid, with salt (NaCl) as a weighting agent to
densify one of the fluids. To achieve higher viscosity, glycerol solutions were prepared
by diluting pure glycerol with water. Our experiments were conducted over the ranges
shown in table 1.

Our main measurement method was based on quantitative image analysis, extracting
information regarding large-scale features of the flow such as the front velocity. The
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B (deg) » (mm?s') Ar(x1073) V, (mm s") Re Fr

83 1-2 1-40 0-841 0-16021 0-19.45
85 1-2 1-91 0-80 0-1524 0-5.37
87 1-2 1-10 0-77 0-1467 0-5.63

TABLE 1. Experimental plan. Note that most of the experiments were conducted in the
ranges At (x107%) € [1, 10], V, € 0-110 (mm s~ ').

imaging system consisted of two digital cameras with images recorded at a frame
rate of typically 2 or 4 Hz. Each of these cameras covered 160 cm of the lower
part of the pipe. In order to help the visualization of the phases, the pipe was
illuminated from behind by a light box containing fluorescent light tubes filtered
through a diffusive paper giving a homogeneous light. Light absorption calibration
was carried out for both cameras. During the experiment (after opening the gate
valve), images were obtained at regular time intervals, which enabled us to create
spatiotemporal diagrams of the averaged concentration profiles along the length of the
pipe. The fronts were marked on these diagrams by a sharp boundary between the
different relative concentrations of the fluids. The front velocities were obtained from
the slope of this boundary. Examples of this analysis can be found in Taghavi et al.
(2010, 2011).

We first calibrated our apparatus against exchange flow results of Seon et al
(2005, 2007b) for different Atwood numbers at 8 = 85° and B = 87°. The errors
in measured front velocity were always below 2% for the cases studied and the
experiments had a high degree of repeatability.

2.2. Observations

In a typical displacement experiment, we observe a short inertial phase following the
opening of the gate valve. The fluids are initially at rest. When the gate valve is
opened the static head accelerates both fluids from rest and at the same time the
density difference between fluids accelerates the fluids in opposing directions. This
first stage is very fast (of the order of seconds). Inertia is always the main balancing
force for buoyancy in the first part of the experiment, when the interface is transverse
to the pipe axis. Although the time evolution from an initial acceleration phase to
an inertia—buoyancy balance (and potentially thereafter to a viscous—buoyancy balance)
is interesting in itself, for most of our study we disregard the initial phase and
concentrate on characterizing longer-time dynamics.

Over longer times we characteristically observe two fronts emerging. The leading
front is towards the bottom of the pipe and moves downstream faster than the
mean flow. The trailing front is towards the top of the pipe and moves slower than
the leading front. Depending on the buoyancy forces, the trailing front may move
either upstream against the mean flow (buoyancy forces dominate imposed flow) or
downstream (imposed flow dominates buoyancy forces). The front may also move
initially upstream and then become washed downstream over a longer time interval.
The interface between these two advancing fronts is essentially stretched axially
along the pipe. These regimes correspond to the secondary classification (s1)—(s3)
described in § 1, and have been explained in Taghavi et al. (2011). Here we are more
interested in the primary classification (p1)—(p3), observed by Taghavi et al. (2010) as
V, increases. Certainly, one of the most interesting aspects of the transition between
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FIGURE 3. A sequence of snapshots from experiments with increased imposed flow rate,
with B = 83°, At = 1072 and ¥ = 1 mm? s~!. From top to bottom are shown images for

f/o =9, 19, 31, 44, 56, 57, 72, 108, 257, 474, 841 mms~'. A 1325 mm long section
of the pipe a few centimetres below the gate valve is shown. Regimes 1-3 correspond to the
primary classification (p1)—(p3) in § 1. The secondary classification (s1)—(s3) is also made:
SB = sustained back-flow; TB = temporary back-flow; ID = instantaneous displacement.

regimes is the laminarization as V, increases. We take a more detailed look at this
transition here.

In figure 3 we show snapshots from a sequence of experiments performed for
progressively larger Vo. In this case the pure exchange flow (Vo = 0) is strongly
inertial and in the first few snapshots we see a propagating layer of heavy fluid
at the bottom of the pipe with a significant mixed layer on top. At intermediate
imposed velocities, we see the clear laminarization of the flow (e.g. at ‘70 =57 and
72 mm s~!). Finally, at larger Vo, we see progressively more mixing, except now
there is sufficient inertia to mix across the whole pipe cross-section. The secondary
classification (s1)—(s3) is also shown in figure 3.

Examples of spatiotemporal diagrams related to flows in the first and second
regimes (pl) and (p2) are shown in figure 4(a,b) (from a different sequence than
figure 3). For the parameters selected, the pure exchange flow is again inertial. For low
\70 =30 mm s~!, the flow remains unstable. In figure 4(a), we can observe the initial
front propagating and behind it unstable waves appear at the interface, as evidenced
below the initial sharply defined dark region in figure 4(a). We observe a range of
wave speeds differing slightly from the front propagation speed. No second front is
observed, because for this experiment the trailing front moves backwards, upstream
against the flow. For an increased f/o =75 mm s~!, the flow has become stable;
see figure 4(b). The slope of the line separating the black region and grey region
represents the velocity of the leading front, at the lower wall. We can also discern a
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FIGURE 4. Examples of spatiotemporal diagrams and corresponding UDV measurements
obtained for B = 85°, Ar =102 and D = I mm®s™": (a,¢) Vo =30mms~'; (b,d) V, =
75 mm s~!. The velocity is measured through the pipe centreline in a vertical section, with the
UDV angled at 74° to the surface of the pipe, positioned at 80 cm below the gate valve. The
vertical axis shows depth measured from the top of the pipe. Velocity contours are averaged in
time over 15 consecutive velocity profiles, (1.8 s).

separating curve between the grey and white regions: the slope of this curve represents
the (lower) velocity of the trailing front at the upper wall.

The corresponding UDV results for the same two experiments are shown in
figure 4(c,d). In figure 4(c) we observe temporal oscillations corresponding to the
flow instability. The sustained back-flow is evident in the negative velocity values at
the top of the pipe. The stable flow is illustrated in figure 4(d). The UDV images
are ensemble-averaged over 15 consecutive images, corresponding to a time average
over a local interval of 1.8 s. This eliminates small, high-frequency fluctuations, which
correspond to the UDV sampling rate. If we look carefully, we can observe the
presence of negative values of flow velocity towards the top of the tube. In this
experiment there is no back-flow of the trailing front, but this does not preclude
negative velocities. These regions correspond to a temporary recirculation at this
position inside the upper fluid, which persists for 7 &~ 125 s, by which time the trailing
front reaches the UDV probe located at x = 80 cm. After the trailing front has passed,
a more Poiseuille-like flow is recovered. Note also that, in this initial period, when
negative velocities are found in the upper layer, the velocities in the lower layer must
be correspondingly higher (observe the dark red region) to maintain the fixed imposed
flow rate.
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FIGURE 5. (Colour online) Variation of the front velocity \A/f as a function of mean flow

velocity V, for different values of density contrast and viscosity at 8 = 85°. (a) Sustained
back-flows (s1) and instantaneous displacements (s3) are marked by the superposed squares
and circles, respectively. Data points without marks are either temporary back-flows,
stationary interfaces or undetermined experiments. (b) Illustration of the imposed flow-
dominated regime (p2). Compared to panel (a), all sustained back-flows are excluded. The

dashed lines are linear fits of data points for each set of increasing \70 (fixed At and D).
The inset shows normalized front velocity \A/f / (V, cos B) as a function of normalized mean
flow velocity Vo / (V, cos B), for which the data superimpose. The solid line is a linear fit
to all the normalized data points. In both panels, the data correspond to: At = 9.1 x 1072
(»), At =1.1 x 1072 (m), At =3.5 x 1073 (o), At = 1073 (A) with v = 1 mm? s™'; and
At =3.7 x 1073 (v) with D = 1.7 mm? s~

Figures 3 and 4 capture many of the features of flows in regimes (pl) and (p2),
adding significantly more detail to the characterization from Taghavi et al. (2010),
which is based simply on the leading front velocity. It is also possible to have flows
in regime (pl) that are viscous (see later). The variation of leading front velocity
with mean flow velocity V, for all our experiments is qualitatively similar to that
already observed in Taghavi er al. (2010). Typical results are plotted in figure 5(a)
for different experimental sequences at fixed angle, § = 85°. In this figure we observe
mostly regimes (pl) and (p2) of the displacement, i.e. an initial plateau at low V,
(exchange flow regime) followed by a linear increase in \A/f at larger V. The secondary
classification (s1)—(s2) is also represented in figure 5(a). As well as the transition from
exchange flow-dominated to imposed flow-dominated displacement regimes, we also
observe the transition from sustained back-flow through to instantaneous displacement
on each data set, as \70 1s increased.

Figure 5(b) examines the imposed flow-dominated regime (p2) more closely for
the data at inclination angle B8 = 85°. We exclude only those data points classified
as sustained back-flow (s2) and observe that for this case these correspond well to
the imposed flow-dominated regime and show an approximately linear increase with
Vo. The dashed lines give an approximate linear fit to each data set. The inset of
figure 5(b) shows that, by normalizing with V, cos B, the data in the imposed flow-
dominated regime collapses onto a single curve, which we explain in §2.3. We have
found a similar data collapse with other experimental sequences in regime (p2). It is
this collapse of the data onto a single curve that establishes the essentially viscous
nature of the flow in this regime.
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2.3. Lubrication/thin-film model

To explain the similarity scaling evident in our data (e.g. figure 5b), we resort
to a lubrication/thin-film style of model (assuming the immiscible limit Pe — 00).
This type of model has been developed for plane channel displacements in Taghavi
et al. (2009). Exchange flows have been studied using this type of model in Seon
et al. (2007b), and in Taghavi et al. (2011) we extended this type of model to the
displacement regimes studied here. For brevity, we refer the reader to Taghavi et al.
(2011) for the derivation.
The interface height evolution is governed by the following dimensionless equation:

d d
ape M+ gq(h, he) =0. 2.1)

In this model & € [0, 1] is the dimensionless interface height (scaled with the diameter),
a(h) € [0, 1] is the area fraction occupied by the heavy fluid (under the interface),

a(h) = ! cos (1 — 2h) — %(1 —2h)\Vh — h?, 2.2)

4
and the scaled flux of fluid in the heavy layer is denoted g(h, hs), with

32 1 Fo(x — h

q(h, he) = / ( — - yz) dxdy + XTI (g oy (23
JT a(h) 4 4

The first term is the Poiseuille component and the second term is the exchange flow

component; Fj is given by Seon et al. (2005) as Fy = 0.0118. The variables T and &

are the dimensionless time and length variables, respectively, given by

tVy X
T=-—6 §&==396, 2.4
D D
where
Y Vi
“Vvo _ 0 (2.5)

B (Pu — 1)@ sin B D? v, sin 8’
This type of model contains the balance between viscous, buoyant and imposed

flow stresses. Only a single dimensionless parameter x remains following the model
reduction:

cotp  (py— pr)gcosBD*  2V,cosB  2Recosp
8 Vo Vo Fr?

which represents the balance of axial buoyancy stresses and viscous stresses due to
the imposed flow. The interface slope h: generates additional axial pressure gradients
that contribute to the exchange flow component of flux in (2.3), but as the interface
extends progressively longer, this effect becomes irrelevant, except possibly in local
regions. Thus, purely from the perspective of dimensional analysis, the similarity
scaling evident in figure 5(b) (inset) is expected: it simply shows that the long-time
front velocity depends uniquely on the parameter .

Although the algebraic form of (2.1) differs from that analysed for the plane
channel, we find qualitatively similar behaviour. Typically, we find a short initial
transient, during which the interface elongates from its initial position, and diffusive
spreading due to the presence of the term h: in g dominates the behaviour. This is

; (2.6)
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FIGURE 6. (Colour online) Normalized front velocity, Vf/ (V, cos B), plotted against
normalized mean flow velocity, Vo / (V, cos B), for the full range of experiments in the first
and second regimes (limited by Re < 2300) in table 1. Data points with the same symbols

belong to experimental sets of increasing Reynolds number (via V) for fixed Az or viscosity.
The thick solid line indicates the scaled front velocity from the lubrication model. The
thick circle indicates the theoretical transition (x = x. ~ 116.32). The thin solid line shows

Vf = Vy, below which front velocities are not possible (denoted by the circled 1). The region
denoted by the circled 2 represents flows with increasingly significant buoyant effects.

followed by the emergence of a distinct leading front, which abuts the lower wall of
the pipe (including & = 0), and always propagates downstream at a speed V; > 1. By
front we mean an interval of 2 that moves at constant speed. At large values of y,
buoyancy is strong and a second trailing front emerges that moves upstream. As x
is reduced, the trailing front speed decreases until there is no back-flow (at a critical
X = X ~ 116.32). The interface displaces only in the positive direction for x < ..

The long-time behaviour of the system is governed by the hyperbolic part of (2.1),
i.e. setting g = q(h, 0). The equations determining the leading front speed (V;) and
front height (hy) are

IV, = a0, Vi= Lm0y |9 B 27
a(f)f—Q(f’ ), f—ah(f:)|:dh(f)] ) 2.7

which can be solved numerically to give V;(x).

The superposition of the experimental data shown in the inset of figure 5(b)
corresponds to a (near-linear) variation of the normalized leading front velocity with
x ' It is natural to compare the experimental front speeds with the calculated front
speeds from our lubrication model. This is done in figure 6 for the full range of
experimental data that fall in either exchange-dominated regime or imposed flow-
dominated regimes (pl) and (p2). The thick line indicates the scaled front velocity
obtained by the lubrication model, i.e. solving (2.7). The thick circle on the bold line
indicates the theoretical balance between these two regimes, at x = x. ~ 116.32 where
the stationary layer flow (s2') is found for the lubrication model.
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For values x < x., where instantaneous displacements in the imposed flow-
dominated regime are found, the collapse of the data onto the theoretical curve is
evident. This emphasizes that in this regime the balance is primarily between viscous
forces generated by the imposed flow and buoyancy. Although we have a high degree
of agreement with this simple model (considering also the experimental uncertainty),
we note that the experimental data do generally lie just above the theoretical curve, in
the imposed flow-dominated regime. We hypothesize that this discrepancy is an effect
of inertia and examine this possibility in § 4.

2.4. The exchange flow-dominated range

In the region denoted by the circled 2 in figure 6, we see some experimental sequences
that agree reasonably well with the viscous lubrication model, but also others that
diverge significantly. Inertial effects are not included in the lubrication approximation
and thus divergence of the data from (2.7) suggests the increasing importance of
inertia in balancing the buoyancy-driven exchange component. It would be beneficial
to have a predictive model also for these data, of similar accuracy to (2.7).
According to Seon et al. (2007b) inertial exchange flows in near-horizontal pipes are
found for
Re,cos = 2 ‘;;’Sﬂ > 50, 2.8)

t

and the front velocity can be approximated by
Vi~ yV, withy~0.7. (2.9)

This scaling confirms that V, is the relevant scale as V, — 0 for inertially dominated
flows. We might then consider that y is simply the leading-order term in an expansion
with respect to small Fr = V;/V,, i.e. for x > x. we assume

\Z , Fr*
T =f(Fr) =~ f(0) + Frf'(0) + Tf ) +---, (2.10)

t

where f(0) = y ~ 0.7. With this ansatz we rescale \A/f with V, for all our experimental
data x > yx. that satisfy (2.8). We use these data to fit the coefficients in (2.10). We
find f/(0) = 0.595 and f”(0) = 0.724, which are in the confidence intervals f'(0) €
(0.454,0.735) and f”(0) € (0.478,0.970) with confidence level 95%. Figure 7(a)
shows a comparison of front velocity data in the exchange flow regime with the
prediction

A

“f/f =0.7 4+ 0.595Fr + 0.362Fr”. (2.11)
t

The collapse of the data with respect to Fr is evident and the approximation is quite
reasonable.

To explore the validity of the approximation (2.11) as x decreases, we plot in
figure 7(b) the same data but normalized with the viscous scale (e.g. as in figure 6).
The dashed curves now denote (2.11), which is different for different experimental
sequences. However, the curves appear to converge in this figure close to the
critical value Vo/(V,cosB) = 2/x., which is marked, and diverge thereafter. Note,
however, that in our experiments we have observed that even inertial exchange flows
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FIGURE 7. (Colour online) (a) Normalized front velocity, Vf / \7,, as a function of normalized

mean flow velocity Vo / V,=Fr (equivalently Froude number), plotted for three experimental
sequences in the inertial regime. Data correspond to: Ar = 9.1 x 1072 at 8 = 85° (e),
At =4 x 1072 at B =83° (¢) and Ar = 107 at B = 83° (M), all with v =1 mm?s".
The broken line shows V;/V, = 0.7 + 0.595Fr + 0.362Fr>. (b) Normalized front velocity,
Vf/ (V, cos B), as a function of normalized mean flow velocity, Vo / (V, cos B). Data points
with the same symbols belong to the same experimental sequence: increasing Reynolds
number through V,. The thick solid line indicates the scaled front velocity from the

lubrication model. The thin solid line shows V; = V. The broken lines show our inertial
exchange approximation through the simple model.

become viscous on increasing \70 (see figures 3 and 4). Thus, above the critical
Vo/(V, cos B) =2/ x. our experimental sequences are fitted well by (2.7).

2.5. Overall classification of the flow regimes

We are now in a position to summarize the observed flow regimes. In contrast to
Taghavi et al. (2010, 2011), we are able to give quantitative predictions of both where
each flow regime is found and the leading front velocity. We plot our experimental
results in the (Fr, RecosB/Fr) plane (equivalently the (\70/\7,, V, cos ﬂ/V,) plane).
Note that lines of constant x correspond to linear rays through the origin, in the
positive quadrant. Figure 8 plots the data from the full range of our experiments,
as described in table 1. Each experiment has been classified according to the
classifications (s1)—(s3) of Taghavi et al. (2011). Only data satisfying Re < 2300
have been used. The critical value x. = 116.32... corresponds to the line
RecosB .

=ZF 2.12
Fr 2 " (2.12)

which is also marked in figure 8. The quantity Recos 8/Fr = Re,cos 8 is a Reynolds
number based on the inertial velocity scale (see Seon et al. 2007b). This quantity is
independent of f/o. The dividing line (Re,cos f = 50) between viscous and inertial
exchange flows is marked in figure 8 with the thick solid horizontal line; see
(2.8). Finally, at sufficiently large imposed velocities, we expect to transition to the
mixed (p3) regime (e.g. see figure 3). A sufficient condition for this would be the
onset of turbulence. Assuming that at high Re the buoyancy effects have minimal
effect, we might assume transition at a nominal value Re = 2300. For different pipe
inclinations these curves are marked in figure 8 with thin broken lines. At each angle
the corresponding displacement data lie below the appropriate curve.
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FIGURE 8. (Colour online) Classification of our results for the full range of experiments
in the first and second regimes (pl) and (p2) from table 1, with secondary classifications:
(s1) sustained back-flow (B, [7); (s2') stationary interface (>); (s2) temporary back-flow
(« , <); and (s3) instantaneous displacement (o). Data points indicated by filled symbols
are viscous and hollow symbols are inertial. The thick horizontal line shows the first-order
approximation to the inertial-viscous transition (Re, cos 8 = 50; from Seon et al. (2007b)).
The thick dashed line and its continuation (the thick sloping line) represent the prediction
of the lubrication model for the stationary interface, y = x.. The vertical dashed line is

\70/\7, = 0.9. The thin broken curves are only illustrative and show an estimate for the
turbulent shear flow transition, applying to the third fully mixed regime. These are based
on Re = 2300. Regions marked with v; (j =1, 2, 3) correspond to viscous regimes, and those
marked i; (j = 1, 2) are inertial regimes, as explained in the main text.

With reference to figure 8 we can identify the following regimes.

(@) Inertial exchange flow-dominated regime. This regime is found for Re; cos 8 = 50
and for Fr = Vy/V, <0.9. In figure 8 this regime is marked by ;. This flow
is characterized by development of Kelvin—Helmholtz-like instabilities and partial
mixing. Buoyancy forces are sufficiently strong for there to be a sustained back-
flow. The front velocity scales with V, and is approximated reasonably well by
(2.11).

(b) Inertial temporary back-flow regime. In figure 8 this regime is marked by i,

and is bounded by (2.12) and Fr = Vo/V, 2 0.9. On increasing the imposed flow

V,, the destabilizing influences of inertia become progressively less efficient. The

bulk flow remains generally inertial up until the critical stationary interface flow

is encountered, along (2.12), after which the flow becomes progressively laminar.

The front velocity scales with V; and is approximated reasonably well by (2.11).

Viscous exchange flow-dominated regime. This regime is observed for Re;cos 8 <

50 and x > x.. When the pure exchange flow is viscous, it appears that the

displacement flow obtained by adding a small imposed flow V; is also viscous

at long times. This regime is marked by v; in figure 8. In this regime, inertial
effects can be observed at the beginning of displacement (i.e. at short time) where
they limit the velocity of the trailing front moving upstream. Inertial effects are

(c

~—
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also significant local to the displacement front, where they usually appear in the
form of an inertial bump. However, in the bulk of the flow, energy is dissipated by
viscosity. The front velocity can be well predicted by (2.7).

(d) Viscous temporary back-flow regime. These flows are found in a regime bounded
by (2.12) and Fr = \A/O/\A/r < 0.9, marked by v, in figure 8. As with regime i, this
regime is transitionary, showing a progressive change from exchange-dominated to
imposed flow-dominated as Fr is increased. The boundary of this regime with the
exchange flow-dominated regime occurs along (2.12), where stationary residual
layers are found (see Taghavi et al. 2011). This is again a viscous regime and the
front velocity can be well predicted by (2.7).

(e) Imposed flow-dominated regime. When the imposed velocity is sufficiently strong,
for either the inertial or viscous exchange flow-dominated regimes, the flow
transitions to a laminarized state dominated by viscous effects. For the inertial
exchange flow, the stabilizing effect is seen on the whole flow, while in the
viscous exchange flow, the stabilizing effect is observed through the spreading out
of the inertial bump at the front. The front velocities in this regime are predicted
by (2.7). In figure 8 this regime is marked by v;.

(f) Mixed/turbulent regime. We have not studied this final transition in detail, but for
At < 1 we expect that the transitional Reynolds numbers should be approximately
the same as for the transitional flow of a single fluid in a pipe (as we are
iso-viscous and miscible). In this regime, the front velocity is approximately equal
to the imposed flow velocity for our experiments, but at longer times we would
expect dispersion to have significant effects.

To illustrate the above predictions graphically as V, is increased from zero, we
present two experimental sequences in figure 9. In figure 9(a) we are in the viscous
regime initially. The lubrication approximation is very good for x > x. and only
begins to diverge as the stationary interface regime is passed for increasing V.
Looking at the inset pictures below the critical stationary interface, it is clear that the
imposed flow changes the shape of the inertial bump at the displacement front. After
the critical stationary interface is attained, the inset figures show that the inertial bump
is absent. The divergence of \A/f from the lubrication prediction as V, increases suggests
that inertial effects in the flow are becoming important (see §4). Figure 9(b) shows
data from a sequence in which we are initially in the inertial exchange flow regime.
The solid line now shows the approximation with (2.11), which is again very good
for x > x.. For x < x. we observe that the imposed flow gradually laminarizes the
flow. The model (2.11) is no longer a good approximation and the viscous lubrication
approximation takes over.

3. Displacement in channels

As a second displacement flow geometry, we consider a plane channel. Whereas in
the pipe flow any detailed computations would necessarily be three-dimensional, in
the plane channel they are two-dimensional, which has distinct advantages in terms of
computational speed. Furthermore, the simpler geometry allows room for analysis that
would be prohibitively complex in the pipe geometry; see §4. One can consider the
plane channel either as an independent study or as one that allows new perspectives on
the pipe displacement flow.

In making inferences regarding the pipe flow, some caution is needed. For example,
Hallez & Magnaudet (2008) studied pure exchange flows in pipes and channels in the
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FIGURE 9. (Colour online) Example comparison of the engineering predictions of the front
velocity Vf with experimental data: (a) viscous regime for the pure exchange flow, with
B =85, At =3.5 x 1073, v = I mm?s~! (Re,cos B ~ 42); (b) inertial regime for the
pure exchange flow, with g = 83°, Ar = 1072, v = 1 mm? s~'. Sustained back-flows and
instantaneous displacements are marked by the superposed squares and circles, respectively.
Data points without these marks are either temporary back-flows, stationary interfaces or
undetermined experiments (i.e. insufficient experiment time or short pipe length above the
gate valve). The thin line shows the prediction of the lubrication model in (a) and of (2.11)
in (b). The thick vertical line shows the prediction for the stationary interface from the
lubrication model. The thick vertical broken line shows the prediction for the transition
between temporary back-flow and instantaneous displacement, through Vo/V, = 0.9. The
insets are pictures of a section of tube a few centimetres below the gate valve in the
corresponding flow domains: 264 mm long in (a) and 1325 mm long in (b).

inertially dominated regime, when the fluids mix, and have shown distinct differences
in the flow structures observed. Therefore, direct comparisons are only likely to be
valid in regimes where viscous forces dominate in balancing buoyant and imposed
pressure drops.

3.1. Computational methodology

In place of physical experiments, we have carried out a number of numerical
simulations of two-dimensional displacements in an inclined plane channel. The
geometry and notation are as represented in figure 1. The computations are fully
inertial, solving the full two-dimensional Navier—Stokes equations with phase change
modelled via a scalar concentration, ¢. The system is given by (1.2)-(1.4). Equations
(1.2)-(1.4) have been discretized using a mixed finite element/finite volume method.
The numerical method is exactly as described in Taghavi er al. (2011). Approximately
400 simulations have been carried out, as detailed in table 2. We have selected a
range of dimensional parameters that is similar in scope to those of our pipe flow
experiments. However, we have not explored very high Re (typically Re < 500 for our
simulations). At larger Re we would expect to enter a fully mixed turbulent regime, for
which we have not explored the performance of our code.

After running each simulation, the front velocities were calculated from the
spatiotemporal plot of ¢, i.e. mimicking the experimental procedure. Mesh refinement
was carried out until successively calculated front velocities on meshes differed by
1-4% (over the range of physical parameters explored). The meshes used for the
computations presented below have 28 cells across the channel, refined slightly
towards the walls, and 400 cells along the length of the channel. We acknowledge
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B D (mm?s!) Ar (x107%) V, (mms™') Re Fr
(deg.)

81 1 3.5 0-27 0-500 0-1.03
83 1-2 1-10 0-153 0-2907 0-3.53
85 1-2 1-10 0-27 0-500 0-1.92
87 1-2 1-10 0-27 0-500 0-1.92
88 1 3.5 0-27 0-500 0-1.03
89 1 10 0-27 0-500 0-0.61
90 1-2 0-10 0-27 0-500  0-o0

TABLE 2. Numerical simulation plan. Note that most of the simulations were conducted in
the range of [V (mm? s™'), At (x1073), V, (mm s7'); Re, Fr] € [1-2, 1-10, 0-27; 0-500,
0-1.92].

that the meshes used are relatively coarse, but note that the principal information being
extracted from the simulations is bulk information, e.g. spatiotemporal plots and front
speeds. These features are less sensitive to refinement, which would be advisable if,
for example, flow instabilities and mixing were to be directly studied.

3.1.1. Code benchmarking

Various simple test problems have been implemented. The code has also been
benchmarked against representative numerical and experimental studies. For example,
we have found good agreement in computed front velocities with the results of Sahu
et al. (2009D) (also in private communications with O. K. Matar and K. C. Sahu). We
also observe similar qualitative behaviour in the displacement flow behind the front.
The onset of small interfacial waves appears to occur in our simulations at slightly
higher values of the imposed flows than with their code.

We have also compared our results with those of Hallez & Magnaudet (2008) for
exchange flow in a two-dimensional channel over the range g = 60-90°, and capture
all the main trends and qualitative behaviours. The emphasis in Hallez & Magnaudet
(2008) is on the initial slumping phase (which is also inertial) and on quantifying the
details of mixing and instability. They have consequently considered shorter channel
lengths (32D) and shorter computational times than we have. For example, we observe
the strong influence of vortices periodically cutting the channels of pure fluid that feed
the advancing fronts and help to maintain constant front velocity. In near-horizontal
channels we have observed an initial inertial phase during which the front velocity
rapidly increases to an approximately constant plateau. Afterwards, viscous effects
come in to play and the front velocity decreases and attains a final velocity. On
increasing the angle from horizontal, we observed a slight increase in the front
velocity and found a constant plateau of modified Froude number versus tilt angle
between B =70 and 80° (see e.g. Hallez & Magnaudet 2008, figure 5). However, some
quantitative differences exist. For example, our front velocities were 10-15% lower
than values reported by Hallez & Magnaudet (2008), who anyway commented that
their front velocities were larger than expected (see figures 4 or 7 in their work) by
comparison with, for example, the corresponding experiments performed by Seon et al.
(2004, 2005, 2006, 2007b). This difference is at least partly attributed to the short time
scale of the numerical experiments in Hallez & Magnaudet (2008).

Apart from these comparisons, the same code has been used extensively in Hormozi,
Wielage-Burchard & Frigaard (2011) where it has been benchmarked against the
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FIGURE 10. (Colour online) Variation of the normalized stationary front velocity \A/f/ v,

as a function of the inertial Reynolds number Re,cos f§ = V, cos B/V, for lock-exchange
flows (Vp = 0). The simulation data correspond to different tilt angles, viscosities and
density contrasts in the range of [8°, D (mm?s~!), At (x107%)] € [60-89, 1-4, 1-10]. The
transition between viscous and inertial lock-exchange flows for the mentioned simulation
range occurs at Re; cos B = 25 + 5. Guidelines are drawn in this figure: the horizontal dashed

line at \A/f / V, = 0.4, the vertical dash-dotted line at Re, cos B =25, and the oblique dashed line
showing a more or less linear relation between V; and V, cos f.

recent experiments of d’Olce (2008) and d’Olce et al. (2008), in which miscible
core—annular Newtonian flows of differing viscosities develop pearl- and mushroom-
shaped instabilities. Good quantitative comparisons were made.

3.2. Exchange flow results

We first start with an examination of the pure exchange flow in the two-dimensional
channel. The objective is to gain an understanding of the transition from inertial-
to viscous-dominated exchange flows (‘70 = 0), parallel to that deduced in the
experimental studies of Seon et al. (2007b). We have seen the relevance of this
transition for pipe flows as a first-order prediction of the transition from viscous to
inertial flows in buoyancy-dominated displacement flows (V, > 0). The exchange flow
results have also given the leading-order term in the expansion (2.11). Our results are
shown in figure 10, where we have plotted the normalized front velocity \A/f / v, against
the inertial Reynolds number Re, cos 8 = V, cos B/V,.

The transition between viscous and inertial lock-exchange flows in plane channels,
as determined by our two-dimensional simulations, occurs in the range Re,cosf =
25 & 5. We see a separation between a linear increase of \A/f with the viscous velocity
scale V, cos B for Re,cos B <25+ 5 (viscous regime) and a constant plateau for which
\A/f ~ 0.4V, for the range of flow parameters studied. This compares with values of
Re,cos p = 50 and Vf ~ 0.7V, for the pipe exchange flow transition (see Seon et al.
2006). Plane channel exchange flows have also been studied computationally in two
dimensions by Sahu & Vanka (2011). In Sahu & Vanka (2011, figure 15) front velocity
is plotted against V, and is fitted to \A/f ~ 0.38V,, which is close to our value and
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FIGURE 11. (Colour online) Variation of the downstream front velocity V; as a function of
mean flow velocity ‘70 for inclination angles of (a) § = 83° and (b) B = 87°. In each plot:
At =1072 (W), At =3.5 x 1073 (o), At = 1073 (A), all with v =1 mm? s!; Ar =3.5 x 1073
(v), with v =2 mm? s~!. In all plots, sustained back-flows and instantaneous displacements
are marked by superimposed squares and circles, respectively. The thick solid line is

V, = 1.5V,.

provides a benchmark (although their computations are for significantly more inclined
channels 8 = 30° and for At = 0.004).

As Re, cos B increases, the decrease in Vf is due to (geometry-dependent) coherent
vortices that cut the channel of pure fluid feeding the front. This finally decreases
the density contrast at the front and therefore the front velocity. This interesting
phenomenon has been studied in depth by Hallez & Magnaudet (2008). However, the
extent of the plateau (in Re,cos 8) is not known. To investigate this regime would
require a detailed study of mixing regimes occurring at inclinations closer to vertical.
This is not the present objective.

3.3. Displacement flow results

Turning now to the displacement flow results, an overall comment is that there
are many aspects of the flow that are qualitatively similar to the pipe flow, but
also significant differences. Starting with bulk flow parameters, such as the leading
displacement front, there is qualitatively similar behaviour as V, is increased from
zero. Figure 11 shows the variation of Vf with V; for two of the inclination angles
studied, at different Atwood numbers At and kinematic viscosities D. Low values
of V, are dominated by exchange flow characteristics (pl) and an approximate
plateau in Vf is observed. On 1ncreasmg Vo we enter a regime where the increase
in Vf is approximately linear with V,, ie. (p2). These two regimes occur at
different inclinations, very similar to the pipe flows. As well as the transition from
exchange flow-dominated to linear regime, consideration of the trailing front leads
to a secondary classification (s1)—(s3) that ranges from sustained back-flow through
instantaneous displacement, exactly as for the pipe flow, as explored in detail in
Taghavi et al. (2011). Other features of the flow where we find similarity with the pipe
flow are as follows.

(a) Inertial effects are more prevalent as Ar increases and at steeper channel
inclinations.

(b) Imposition of the mean flow does have a laminarizing effect on the flow. For
example, we can observe an inertial region at the leading front that is strongly
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FIGURE 12. Panorama of concentration colour maps and velocity vector fields for
displacements with v = 1 mm2s~!, each taken at 7 = 25s for inclination B = 83° and
various At: (a) At = 1073, (b) At = 3.5 x 1073, and (c¢) At = 1072, The rows from
top to bottom show \70 =27, 53, 10.5, 15.8, 21.0, 26.3mms™' (equivalently Re =

50, 100, 200, 300, 400, 500). The length shown is the whole channel, L =100D.

affected by the imposed flow. However, we have not observed strongly inertial
exchange flows being fully stabilized, which was the case in the pipe flows.

(c) In the exchange flow-dominated regime, whether inertial or viscous, the basic
structure is a two-layer flow bounded by one front moving downstream and a
second front moving upstream.

We now discuss some of the significant differences with the pipe displacement
flows, starting with viscous flows (defined approximately by Re;cos 8 < 25 £ 5) and
considering the imposed flow-dominated regime. The most obvious difference is that
the front is not observed to displace in a slumping two-layer pattern, but instead a
finger advances approximately along the centre of the channel, leaving behind upper
and lower layers of displaced fluid. Typical examples are shown in figure 12, where
we show snapshots of the concentration profile and velocity vector fields at 7 =25 s
for different Az and imposed Vo. This feature is partly expected. In parallel with
our experimental study, we have considered low-viscosity fluids (essentially water)
and hence enter the viscous regime by ensuring that At is small and B is close to
horizontal. Obviously, on taking Ar — 0 we have two identical fluids and expect to
recover a plane Poiseuille flow. This is indeed the case. The smallest values of Atwood
number (A7 = 107?) correspond to a 0.2 % density difference between fluids, and it is
hardly surprising to see the front nearly symmetric and advancing close to the channel
centreline. For two identical fluids in plane Poiseuille flow, the leading front speed
would be simply Vf = 1.5V, which is the solid line marked in figure 11 (note that this
is Vf =4/ 3V, for the pipe, if a stratified interface is assumed). We can see that, as the
linear regime is entered, the front velocity lies just below this iso-dense limit.

Although the front advances towards the centre of the channel, density differences
are expressed through asymmetry of the residual layers above and below. Typically the
lower layer is shorter and thinner than the upper layer, except near the tip, where
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it seems that inertial effects act to point the tip upwards. This is the analogue
of the inertial bump that we have observed in the pipe displacement flows. In
the context of the plane channel results, it is interesting to review the pipe flow
displacement experiments again. For very similar physical parameters, we always
observed a slumping displacement front. A possible explanation for this would be
that the pipe allows for three-dimensional secondary flows, i.e. less dense fluid in a
layer underneath an advancing finger can be squeezed azimuthally around the sides of
the tube by the heavier finger. In a strictly two-dimensional geometry, this does not
happen. In this context it would be interesting to study displacements in a rectangular
cross-sectional channel.

To give a broader understanding of the flow variations with At, Re and B, figure 13
presents a panorama of concentration colour maps and velocity vector fields for two
further pipe inclinations, to compare with figure 12. We can see a clear distinction
between flows that are predominantly viscous and those that are inertial. For the
viscous regime, the interface is well defined, although we do see dispersive mixing
from secondary flows associated with the inertial tip, close to each front. Within this
class of flows, increased At and more horizontal channels tend to push the finger
towards the lower wall of the channel. We should note that the lower interface of the
finger is density-unstable and for some simulations we can observe small instabilities
developing, possibly of Rayleigh-Taylor type. The velocity profiles in figures 12 and
13 show how two-dimensional effects are progressively important at increasing At
and in steeper channels. The unsteadiness of the velocity field is clearly confined to
the mixed region where both fluids are found. Outside of this region, the laminar
Poiseuille flow is quickly re-established.

At fixed inclination, increasing At leads to the inertial regime, where we observe
Kelvin—Helmholtz-like instabilities along the top (and to a lesser extent bottom)
interface; see e.g. B = 83°, At = 1072 in figure 12. The degree of mixing is reduced
as V, increases, but the flows remain obviously inertial. For larger Az, the thin lower
residual layer observed in the viscous regime is essentially washed away. Referring
to figure 11 (which includes data from the inertial flows in figures 12 and 13), it
is noteworthy that, even when the imposed flow-dominated regime is inertial, the
increase in front velocity with Vi, still becomes approximately linear as V, increases.
Note that the entire length of channel (length L = 100D) is shown in figures 12 and
13, so some caution needs to be exercised in interpreting apparently high-frequency
flow features; these instabilities are in fact of order unity wavelength. An increase in v
serves mainly to stabilize the displacement, promoting the viscous regime, as might be
expected. Similar stabilization also comes from making the channel progressively more
horizontal.

3.4. Quantitative prediction of the front velocity

As with the pipe flows, we would like to be able to approximate the front velocities
using relatively simple models describing the longer-time evolution of the front. We
follow a similar strategy as with the pipe displacement flows.

3.4.1. Lubrication/thin-film style models

In Taghavi er al. (2011) we have focused on the transition between exchange-
dominated flows and imposed flow-dominated flows. Data from channel flow
simulations were analysed with the aid of the lubrication model of Taghavi et al
(2009). Only simulations from the viscous regime were analysed, and the lubrication
model prediction of the transition to imposed flow from exchange flow was found
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(ai) (bi) (ci)

FIGURE 13. As figure 12, except for (i) 8 = 87° and (ii) 8 = 90°.

to be very accurate. The lubrication model in Taghavi et al. (2009) is based on the
assumption that the heavier fluid will slump towards the bottom of the channel and
displace the fluid in this slumping configuration. This leads to an evolution model for
the interface height, analogous to that considered earlier for the pipe, i.e.

o 2 gt =0 G.1)
9T P) %_q s Ie) — .

(see figure 14a). The flux function q(h, hs) again depends only on the single
dimensionless parameter . The long-time hyperbolic limit of this model has a
single critical value x = x. = 69.94 at which the upper layer of displaced fluid has a
stationary interface. The efficacy of (3.1) in describing this transition is undoubtedly
due to the fact that, for viscous exchange flows, the two-dimensional computations
evolve into two-layer-type slumping flows. However, as we have seen, imposed flow-
dominated displacements generally propagate along the channel centre, being pushed
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FIGURE 14. (Colour online) Schematic of the displacement geometry for (a) two-layer
model and () three-layer model.

towards the lower wall by increasing At and 8. Although the flow is long and thin, the
two-layer topology of Taghavi et al. (2009) is not what is observed.

Instead, a three-layer structure is more appropriate (see figure 14b) and, after
assuming such a structure, it is fairly straightforward to derive a lubrication-style
model for the interface evolution. Now we have two interfaces, as illustrated, and (3.1)
is replaced by

oh 0

h’ i’h s Vi, =07 32
aT+ag‘Z( Yis e Yig) (3.2)
8y,~ 0
— - ,’l, [,h s Yi =0 33
5T T 85%( Yir he, yie) (3.3)

The height y;(§,T) is the height of the lower interface and h(&,T) reflects the
thickness of the displacing central finger, as illustrated. The two flux functions are

defined as
Vit+h Vi
qg= / udy, qp= / udy. (3.4)

Vi 0

For Newtonian fluids, it is straightforward to calculate these as functions of the
interface heights and of the parameter x (see appendix A). Note that these functions
are only defined for y; € [0, 1] and & € [0, 1 — y;], since y; 4+ h denotes the height of the
upper interface. As y; — 0, the two-layer model is recovered.

If, again, we consider the long-time dynamics of a centrally propagating finger, the
system (3.2) and (3.3) can be simplified by neglecting the spreading effects of 4; and
vie and considering the remaining hyperbolic system. Necessary conditions to have a
steadily propagating wave are that

dq _ dq _9q.
her (1 31,0,0) = g(h, 3;,0,0) - and = (h,y;, 0,0) = —

(h,y:,0,0). (3.5)

i
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FIGURE 15. (Colour online) Normalized front velocity, ‘A/f/ (Vu cos B8), as a function of
normalized mean flow velocity, \70/ (V, cos B), for the full range of simulations in regimes
(pl) and (p2), i.e. Re < 500 in table 2. Data points with the same symbols belong to

computational sets of increasing mean velocity V, for fixed values of density contrast and/or
viscosity. The thick solid line indicates the scaled front velocity obtained by the two-layer
lubrication model (3.1). The thick circle shows the theoretical balance at which the stationary

interface is found. The light solid line indicates the lower bound, Vf = \70, below which front
velocities are not possible (region denoted with the circled 1). The region denoted with the
circled 2 represents flows with increasingly significant buoyancy effects. The thick broken
line represents the prediction of the scaled front velocity from the three-layer lubrication
model. The two-layer and three-layer model predictions intersect at y ~ 23-24.

The flux functions can be analysed numerically to compute values of (4, y;) for which
we have solutions to the above two conditions, at each value of x. Sometimes there
are multiple solutions to (3.5), but it is relatively simple to discount some of the
solutions on physical grounds.

Having solved (3.5), we have a prediction for the front velocity, say V;/(x), that
comes from the three-layer viscous lubrication model (3.2) and (3.3), and which
depends only on y. Similarly, analysis of (3.1) gives a front velocity prediction, say
Vos(x), from the two-layer model of Taghavi et al. (2009), which also depends
only on x. These predictions are compared with the normalized front velocities
\A/f/ (V, cos B) from our two-dimensional numerical computations in figure 15. The
transition between exchange flow-dominated flows and imposed flow-dominated flows
is marked by the thick circle in figure 15 and is at x. = 69.94. To the right
of this point, in the range x ~ 23-24, the two front velocity predictions intersect,
V3 £(x) = Vas(x), and for smaller values of x the three-layer front velocity is larger.

For viscous displacements in the range of small x where the imposed flow is
dominant, the three-layer model generally gives a better prediction of front velocity
than the two-layer model. Nevertheless, the interface speed remains faster in the two-
dimensional computations than predicted by either of the lubrication models. This
suggests that other effects such as inertia may also be significant in this range.
It is also worth mentioning that, for many of the imposed flow-dominated cases
computed numerically, the two-dimensional results are not cleanly represented by
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either lubrication model. As the flows evolve, secondary flows around the inertial tip
of the leading front act to dispersively mix fluid over a significant region, so that the
interface is not clearly defined. In addition, we have seen that the lower interface is
density-unstable and can become vulnerable to density-driven instabilities. At larger At
or f, the lower layer thickness diminishes to the size of the mesh cell, or vanishes.
In some respects, for many of the flows, we are somewhere between a two-layer and
three-layer model, e.g. with a diffuse lower layer.

For larger values of x > x., as the exchange component becomes progressively
stronger, the two-layer lubrication model gives a reasonable approximation to the front
velocity for the viscous exchange flows, up to the transition at the stationary layer flow
(see e.g. Taghavi et al. 2011). However, in figure 15 we also observe many data points
for x > x. that fall below the two-layer lubrication velocity prediction. In general,
these points correspond to inertial exchange-dominated flows, which we now discuss.

3.4.2. Inertia-dominated flows

In the range Re;cos 8 > 25 + 5 (where exchange flows have been observed to be
inertial), for positive V, we also find inertial displacement flows. As with the pipe
flows, the relevant velocity scale at zero imposed flow is the inertial velocity V,. As
\70 is increased from zero, the competition between \70 and \A/} is captured in the
Froude number Fr, again suggesting that \A/f/ V, = f(Fr). Taking a Taylor expansion of
f(Fr), for small Fr, in the style of (2.10), and comparing with the data for inertial
exchange-dominated flows leads to the model:

A

& = 0.4 + 0.407Fr + 0.704Fr>. (3.6)
t
The initial coefficient is fitted from the pure exchange flow data only (Fr =0). The
next two coefficients lie in the intervals (0.347, 0.467) and (0.629, 0.779), respectively,
at confidence level of 95 %.

The expression (3.6) is derived based on small Fr, in the exchange flow-dominated
regime. As Fr increases, the imposed flow effects become dominant, but the flows
remain inertial. As we have commented earlier, we recover a linear relationship
between \A/f and V. This is approximated reasonably by

V, ~ 1.5V, (3.7)

The transition between (3.6) and (3.7) takes place at Fr ~ 1. Figure 16(a) plots our
inertial regime data, normalized with V,. The similarity scaling is evident, i.e. the
collapse of the data with respect to Fr, and the approximation of (3.6) and (3.7) is
very reasonable. Figure 16(b) plots the data in the variables of figure 15, showing that
(3.6) effectively describes the inertial data below the two-layer lubrication model.

3.5. Overall flow classifications and front velocity predictions

Figure 17 presents data from the full range of simulations in regimes (pl) and (p2);
note that our code is not suitable for high-Re shear flow transitions, i.e. (p3). The
secondary classifications (s1)—(s3) are marked and we have also identified flows as
either viscous or inertial. The most significant difference with the pipe flows (see
figure 8) is that the criterion (Re;cos 8 = 25 + 5) separating inertial and viscous-
dominated flows appears to remain valid for Vo > 0. This criterion is derived from
the pure exchange flow (170 = 0) and has been identified by finding where the viscous
similarity scaling breaks down (see figure 10). We classify the flows as follows.
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URE 16. (Colour online) (a) Normalized front velocity, \A/f/ ‘7,, as a function of

normalized mean flow velocity, \70/ V, = Fr, plotted for simulation sequences in the pure
inertial regime 30 < Re, cos 8 < 80. Data points with the same symbols belong to the same

experimental sequence: increasing Reynolds number through Vo. The dashed line shows (3.6)
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the dotted line shows (3.7), for Fr > 1. (b) Normalized front velocity, ‘A/f / (VV cos ), as

nction of normalized mean flow velocity, ‘70 / (Vv cos B3), for different sets of simulations:
85°, At =102, v=1mm’s™' (1); 8=87°, At =102, v=1mm?s~' ();and B8 = 83°,

At =3.5 x 1073, v =2 mm? s~! (v). The thick solid line indicates the scaled front velocity

from the lubrication model. The thin solid line shows V; = V. The broken lines show the
inertial exchange flow approximation (3.6).

(a)

(b)

(c)

(d)

Viscous exchange flow-dominated regime. This regime is defined approximately as
flows satisfying x > x. and Re,cos 8 <25 £ 5. In figure 17 this regime is marked
by v;. The flow is a two-layer displacement with a sustained back-flow. The
leading front velocity is approximated by Vf VoV s(x), where V,¢(x) comes
from the two-layer lubrication model. The back-flow undergoes an initial inertial
phase before becoming viscous at longer times. We have discussed these flows in
Taghavi et al. (2011).

Viscous temporary back-flow regime. This regime is defined approximately as
flows satisfying x < x., Fr = \70/\7, < 0.7£0.1 and Re, cos B < 2545. In figure 17
this regime is marked by wv,. The trailing front advances initially upstream,
against the imposed flow direction, but is eventually arrested and displaced. The
transitionary state between this and the exchange flow regime above involves a
stationary residual layer, predicted well by x = x.; see Taghavi et al. (2011).

Viscous instantaneous displacement regime. This regime is defined approximately
by x < xe. Fr=Vy/V,>0.7 4+ 0.1 and Re,cosf <25+ 5. In figure 17
this regime is marked by v;. At smaller values of x, the front advances
predommantly along the channel centre. The front velocity is approximated

by Vf = VO max{V,,(x), Vas(x)}, where V;3,;(x) comes from the three-layer
lubrication model. The three-layer model has faster front velocities for x < 23.

Inertial exchange flow-dominated regime. This regime is defined as flows for

which Fr = V,/V, < 0.7+ 0.1 and Re,cos 8 > 25 & 5. In figure 17 this regime

is marked by i;. The leading front velocity can be predicted by the empirical
model (3.6).
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FIGURE 17. (Colour online) Classification of our results for the full range of simulations
in the first and second regimes with laminar imposed flows: sustained back-flow (B, 0),
stationary interface (»), temporary back-flow («, <), and instantaneous displacement (e, o).
Data points indicated by filled symbols are viscous and hollow symbols are inertial. The
thick horizontal line shows the first-order approximation to the inertial-viscous transition
(Re, cos g = 25, from figure 10). The thick sloping line represents the prediction of the
stationary interface from the two-layer lubrication model: x = x.. The dashed vertical line
is Vo/V, = 0.7 and the dotted vertical line is V,/V, = 1. Regions marked with v; and i
(j =1, 2, 3) are viscous and inertial, respectively, as explained in the main text.

(e) Inertial temporary back-flow regime. This regime is found for 0.7 £ 0.1 < Fr =
Vo/V, <140.1 and Re,cos B > 25+ 5. In figure 17 this regime is marked by i,.
The front velocity is still predicted by (3.6).

(f) Inertial instantaneous displacement regime. This regime is found for Fr =
Vo/V,>1+0.1 and Re,cos B > 25+ 5. In figure 17 this regime is marked by
i3. The dynamics of the flow is strongly influenced by mixing between the fluids.
In this regime (3.7) gives a good approximation for the front velocity.

Figure 18(a) shows an example of the front velocity prediction for a sequence
of purely viscous displacement flows as Vo is increased and we transition through
the regimes v,—v;. An example of the usage of the predictive models in the inertial
regime is shown in figure 18(b), for a sequence of inertial displacement flows as V; is
increased and we transition through the inertial regimes, i;—is.

Although we have good agreement with these simple models for the front velocity
and the flow regimes, within the range of our numerical experiments, we feel some
caution is needed in extending the range of our results. For our inertial regime
study, we have considered low Ar and S ~ 90° (which has meant that typically
Re,;cos B < 100). In the range Re,cos 8 = 100, for those flows we have studied, we
typically observe that coherent vortices are able to cut the channel(s) of pure fluid
feeding the front(s) during the displacement. The dynamics of the flow is progressively
defined by the mixing between the two fluid layers, rather than by inertial effects
present in the bulk flow of at least one layer. Since the (usually narrower) trailing
back-flow layer is periodically cut by vortices, it also becomes hard to define sustained
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FIGURE 18. (Colour online) (a) Front velocity f/j as a function of mean flow velocity \70
for a viscous regime displacement (8 = 87°, At = 1073, v = 1 mm? s™!, Re, cos B ~ 13).
Sustained back-flows and instantaneous displacements are marked by the superposed squares
and circles, respectively. Data points without these marks are either temporary back-flows or
stationary interfaces. The solid line represents the two-layer approximation, V; = VoV, (%),
and the broken line represents the three-layer approximation, f/f = V0V3,f(x). The thick
vertical line is at x = x. and the dashed vertical line is at \70 / \7, = 0.7. (b) Variation of the
front velocity V; as a function of V; for a sequence of inertial regime displacements (8 = 83°,

At =3.5x 1073, v = 1 mm?s™!, Re,cos B &~ 59). Sustained back-flows and instantaneous
displacements are marked by the superposed squares and circles, respectively. Data points
without these marks are either temporary back-flows or stationary interfaces. The solid line
shows the prediction (3.6) and the dashed line shows the prediction (3.7). The thick vertical

line and the dashed vertical line are at Fr = f/o /\7, =0.7and 1.

and temporary back-flows in a consistent manner. Thus, correctly, our results should be
interpreted as applying to weakly inertial regimes.

Finally, we should explain why the pipe displacement flow is laminarized by
increasing Re (i.e. Vo), but the channel displacement flow evidently is not. In fact,
in the channel we can observe some reduction in mixing between the two fluids, but
increasing V, never completely laminarizes the flow. The reason may be associated
with the layered structure. The pipe displacements slump to the bottom of the pipe and
the interface elongates during the displacement. The plane channel displacement front
propagates along the middle of the channel. The elongated interface in the pipe (and
upper interface in the channel) are stabilized as the displacement progresses. However,
the lower interface in the channel remains mechanically unstable. Potentially, it is this
buoyancy effect at the lower interface that instigates instability and maintains these
flows in the inertial regime.

4. Inertial effects on plane channel displacements

We now turn to the consideration of inertial effects via semi-analytical methods. The
main tool is a two-layer weighted residual displacement model, in which leading-order
inertial terms are included in a long-wave lubrication-style model (§4.1). Unlike the
previous two sections, where we could make direct comparisons between simplified
modelling approaches and (physical or numerical) experiments, here our objective
is purely to gain insight. For reasons of simplicity, we restrict our attention to the
two-layer configuration of figure 14(a) and consider only the plane channel geometry.
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Extending the pipe flow lubrication-style model to include inertial effects in the
same way appears difficult. The single interface configuration is observed in all our
pipe flow experiments, where our non-inertial lubrication model under-predicts front
velocities as V, increases. By studying the effects of including inertia (within the
channel geometry), we hope to gain insight into whether inertia could be responsible
for this under-prediction.

The two-layer configuration is also observed in our plane channel numerical
simulations in the exchange flow-dominated regime. In the viscous/laminar-dominated
regime (at higher Vo), the three-layer approach of § 3.4.1 may be more appropriate for
low-At displacements, but we have often observed a diffuse lower interface/layer in
these flows, so that the actual flow is neither two-layer nor three-layer. In any case,
some insight is also gained in the effects of inertia on front propagation; see § 4.2.

The second area where we apply our analysis is in flow stability (§4.3). The
weighted residual approach adopted leads to an extended lubrication model, the
stability of which can be analysed. Here we combine a long-wavelength linear
temporal stability analysis with numerical solution of the evolution equations for given
localized initial conditions (a spatiotemporal approach towards convective instability).
The main idea here is to gain some predictive insight into the transition to instability-
driven mixing of these flows.

4.1. A weighted residual lubrication model

We consider a two-dimensional plane channel displacement in which the two fluids are
separated by a single-valued interface at y = h(x, t). Assuming a long, thin flow with
aspect ratio § and adopting the usual scaling arguments, the flow is modelled to O(§)
by the following reduced system of equations:

8(1 £ Af)Re %Jru%qw% :—£+irk§vi1+0(82), 4.1)
aT 9E Ay s ay VT2
_IP 5% 4 o =0, 4.2)
ay 2
du IV, 4.3)
0§ 0y

where the + refers to heavy and light fluid layers, respectively. No-slip conditions are
satisfied at the walls. At the interface, both velocity and stress are continuous. The
kinematic equation governs evolution of the interface.

The variables & and T are rescaled axial length and time, respectively, i.e. § = dx
and T = 8t. We can either interpret § as the ratio of D to some arbitrary axial length
scale L, or link 8 back into the physical problem variables. For example, we may
adopt the approach of Taghavi et al. (2009), in which it is assumed that the dynamics
of spreading of the interface, relative to the mean flow, will be driven by buoyant
stresses that have size |9, — p,|&sin 8 D, which act via the slope of the interface D/L.
The buoyant stresses are balanced by viscous stresses, which leads to

L b1 — po|2 sin B D?
sl L _ |01 pi'? B , 4.4)
D nUs

and we may deduce that 28Re sin 8 = Fr>.
The method of analysis of (4.1)—-(4.3) stems from the weighted residual approach
proposed by Ruyer-Quil & Manneville (2000) for thin-film flows. This has been
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extended to two-layer channel flows by Amaouche et al. (2007), whom we largely
follow; see also the core—annular flow treatment in Mehidi & Amatousse (2009).
The streamwise velocity components in fluid k are denoted with subscript & and are
expanded in powers of §:

w, =u 4+ 8ul’ + 0%, k=1,2. (4.5)

Substituting this expansion into the x-momentum equations (4.1) indicates that the

. . 0 . .
leading-order solutions, u,({ ) are maximum of degree two in y,

ul (&, 5, T) = A€, T)y* + Bu(E, Ty + Cu(€,T), k=1,2, (4.6)

with the coefficients to be determined. Having fixed the dependence of the leading-
order streamwise velocity components on y, the x-momentum equations (4.1) can be
integrated with respect to y. This simplifies if, before the integration, we can multiply
the x-momentum equations by some suitable weight functions, g;(¢,y, T) such that
unknown terms are eliminated. In particular, we define the weight functions in such
a way that the averaged equations are no longer dependent on the first-order terms
in the velocity field expansion (4.5). The following five conditions are sufficient

_d&) 0, 4.7)

for this:
h 1
g
/gldy+/gzdy=0, =L =
0 h ay y=h ay y=h

gl(gih’ T)=g2(§’h’ T)’ gl(évoi T)ZO’ gZ(Sv laT)ZO (48)

(see Amaouche et al. (2007) for details). If the g, are chosen as polynomials in y, they
must be at least quadratic:

8,3, T) = Dy(§, T)y* + Ex(€, Ty + Fi(§, T), (4.9)

where Dy, E; and F, are functions of £ and T yet to be known. The five conditions
on g, are applied to the six unknowns D, E; and F;, and a sixth condition comes
from normalizing D;. The weight functions g, and the coefficients A;, B, and C;
(k=1,2) are given in Alba, Laure & Khayat (2011). The leading-order depthwise
velocity component is recovered from the continuity equation (4.3). Integrating the
x-momentum equations (4.1) with respect to y over each fluid layer and summing them
results, after some algebra, in

h ) ) ©) 2..(0)
ou, ) 0u © 0u 0°u,
0= [ [8(1+ANR % _
/0 (+)e<at+”1 ax 0 oy 9y?
1
+/
h

We substitute the velocity components and the weight functions, expressed in terms of
their coefficients, into (4.10) and carry out the integrations. After considerable algebra
(performed symbolically with MAPLE™ | version 12), it is found that each term can
be expressed in terms of the flux g through the lower layer and the interface height A.
We are left with the kinematic condition and (4.10), which governs the evolution of q.

]gldy

0) ©) ) 2..(0)
LA AL T )_ 2u®  ah

ot * ox 2 9y 9y? _87x+x

&2 dy.

8(1 — At)Re (

(4.10)
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FIGURE 19. (Colour online) (a) Front velocity and shape influences at x = 0: comparison
of interface shapes h(&,7T) at T = 10 for §Re = 0.01 (solid line), 5 and 50 (broken
lines). The inset shows the variation of downstream front velocity, V; versus dRe. (b) Two

experimental profiles of normalized h(X, ) for 8 = 87°, At = 1073, D = 1 mm?® s~'. The insets
indicate interfaces for 7 = 60, 65, ...,125,130s: Vo =20mms~! (x = 21, §Re = 0.84);
Vo=59mms~! (x =6, 5Re =9.39).

The coupled system is

oh  dq
— + —=0, 4.11
T + T 4.11)
oh oh aq aq
R—+R,—+R;—+R;— +Rs=0, 4.12
18T+ 28$+ 38T+ 48§+ 5 ( )
where R;, R,,...,Rs are explicit algebraic functions of ¢, h, §Re and x; see

appendix B.

4.2. Inertial effects on front shape and speed

To study inertial effects on the displacement front, we integrate (4.11) and (4.12)
numerically. The kinematic condition (4.11) is discretized in conservative form,
second-order in space and first-order explicitly in time. It is integrated using a Van
Leer flux limiter scheme (see Yee, Warming & Harten 1985). For (4.12) the same
flux limiter scheme has been used. However, (4.11) and (4.12) are solved sequentially
and we have used updated values for % in the solution of (4.12), making the scheme
semi-implicit. We have benchmarked our computational method by comparison with
results from the lubrication model in Taghavi et al. (2009), giving an acceptable
comparison.

Typical evolution of the interface globally mimics that of the lubrication model
in Taghavi et al. (2009). After initial transients, the interface either advances fully
downstream (small x) or can have both a downstream moving front and a second front
moving upstream (large x). Here we are mostly interested in the inertial correction to
the downstream front in the laminar/viscous-dominated range (small x). Figure 19(a)
shows examples of the interface shapes h(§,T) at T = 10 for §Re = 0.01, 5 and 50,
all with x = 0. For éRe < 1, the interface shape is indistinguishable from that of
the lubrication model. As inertial effects 6Re become significant, we can see marked
changes in the interface shape. In general, the transition from stretched interface to
front is smoothed out and the front height is reduced. The frontal region for the
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lubrication model is not a kinematic shock, but is a region in which the diffusive
effects of gravitational spreading remain significant. The addition of inertia appears to
extend this region axially along the channel. The reduction in front height leads to
a consequent increase in the downstream front speed, which is calculated and shown
in figure 19(a) (inset), again for x = 0 (meaning large \70). We observe a near-linear
increase with 6Re. Similar effects are observed for other values of .

Considering the potential for this effect to explain the discrepancy in front speeds
measured in the pipe flow displacements, it appears to be a plausible explanation. The
scale of increase in front speed is significant if we consider that V; = f/f/ Vo > 1 for
any displacement in this laminar/viscous regime and we have seen that front velocities
are also bounded by the zero-At¢ limit of the three-layer flow, i.e. V; < 1.5. In the
case of the pipe flow, there is an analogous zero-Ar limit in the interfacial velocity:
Vr < 4/3. (Note that for the pipe flow this limit is not equal to the scaled centreline
velocity, but to the average of the velocity in the spanwise direction.) Thus, an
increase in V; of size ~0.05 over the experimental range of 6Re would be significant
for the pipe flow.

If we return to the data from our pipe flow experlments in the laminarized/viscous
regime, although at leading order the increase in Vf with Vj, is approximately linear,

close inspection reveals that Vf increases with V; slightly more than linearly in all
experimental series, as would be the case with an inertial correction. Other parametric
changes in the slope of the curve \A/f versus V, are that: (i) the slope increases as pipe
inclination becomes steeper; and (ii) the slope increases as At decreases. Both these
qualitative trends are in the same direction as predictions from our inertial two-layer
model.

Lastly, we examine changes in front shape at similar x and 6Re observed in the
pipe flow experiments and in our model. Note that, in an experimental sequence, as
we increase \70 we both decrease x and increase §Re. In our model, the decrease in
x tends to decrease the front velocity and increase the front height, an effect that
competes against the effect of Re. The insets of figure 19(b) show the evolution of
the normalized concentration measured in two pipe flow experiments (with 8 = 87°,
At =1073, D =1 mm? s7!), for different x and SRe. In the main figure we overlay two
interface profiles at a later time and we observe that the frontal region enlarges under
the effect of increasing the imposed flow while the front height decreases.

4.3. Flow stability

The interface typically consists of propagating frontal regions connected by interfaces
that essentially stretch at long times. As the interface elongates in these connecting
regions, we might reasonably analyse the flow stability via perturbing the flow about a
constant uniform interface height h,, with corresponding steady flux ¢g,. For different x
and dRe, the front heights change so that different ranges of /4 are likely to be found
in practice. For example, at large x, where we have a back-flow, we expect only the
intermediate values of & to be stretched out between the fronts at long times. For small
X, the entire interface has positive velocity and will be stretched over a wider range of
larger heights h.

Two methods of analysis are adopted. First, we consider a linear temporal stability
analysis in the long-wave limit, which can be performed analytically. Secondly, we
consider a numerical approach, imposing a localized finite initial perturbation on
the interface and observing whether it grows or decays. This might be termed a
spatiotemporal approach.
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4.3.1. Long-wave temporal linear stability analysis
Here we take a classical modal approach, perturbing (4.11) and (4.12) about a
uniform steady solution (%, g;). The steady state satisfies the following relation:

xh (1 = hy)’
3 :

We suppose a linear perturbation, h = hy + ', ¢ = q; + ¢’, substitute into (4.11) and
(4.12), and retain only linear terms. We now assume a modal form for the linear
perturbations, periodic in &, so that

gs =h(3 —2h,) + (4.13)

h/ — Eeirxs-&-oT’ q/ — aeiaEﬂrT, (414)

where h and g are constants. Substituting (4.14) into the linear stability equations leads
to the following dispersion relation, quadratic in o

o i
OR; . oR; 5| =0. 4.15
RS 10 + R_Y.ziOl + 75 RX 30 + Rs.410( + 53 ( )
’ ’ oh ' aq
Here the coefficients R, are simply the R, from appendix B, evaluated at (A, g,). If
the real part of ¢ is positive, the flow is linearly unstable.
Although we can find o for any wavenumber «, for all the values that we have

tested the sign of the real part of o is determined by the long-wavelength limit o — O.
This limit is evaluated by expanding the eigenvalue around o = 0:

o=0y+ao; + ooy +---. (4.16)

We find that oy = 0, o, is imaginary and stability is governed by the sign of o,.
Marginal stability curves are obtained by putting o, = 0, which leads to

140
~ x[32hy — 1)(33h2 — 33hy + 2) — xh2(1 — hy)(73h3 — 146h2 + 92h, — 19)]
“4.17)

The marginal stability curves are plotted in figure 20(a), in the positive quadrant of
the (x, §Re) plane, for different values of h,. In this figure, long-wave instability is
found for large (x, §Re), exceeding the plotted curves. We observe that each curve
asymptotes to 6Re = oo at a critical value of x, which depends on h;. These critical
values, say x,(h;), are easily calculated:

3(2h, — 1)(33h2 — 33h, + 2)
W2(1 — hy) (7383 — 14612 4+ 92h, — 19) |~

For each value of Ay, it is necessary for x > x,(h;) in order to have instability, and
when this condition is satisfied, then the critical §Re is found from (4.17).

When we are far from the initial transients and when the displacing front has
become fully developed, we can assume that, at each streamwise location, the interface
height is at an approximately constant value, with some slight variation in the &
direction. The linear stability analysis of the weakly inertial model (figure 20a) shows
that the flow can be either stable or unstable at a given A, depending on the values
of x and SRe. For 0.45 < h < 1, figure 20(a) suggests that the flow is least stable for
h = 0.5. Potentially, one could use a single marginal stability curve (e.g. for i, = 0.5)
as an approximate practical criterion in deciding whether the displacement flow is
stable or not.

S6Re

Xs(hs) = max {Os (418)
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FIGURE 20. (Colour online) (a) Marginal stability curves for the long-wave limit, from
(4.17), for the indicated values of h,. (b) Stability diagram indicating stable flows ((J) and
unstable flows (e). The line indicates the neutral curve for the long-wavelength limit for the
interface initially located at i, = 0.4.

4.3.2. Spatiotemporal stability

To complement the linear analysis we also analyse the growth of instabilities
numerically. For this we use the full system (4.11) and (4.12) and solve an initial
value problem. For the initial values, we fix a constant h; (hence also ¢,) and
superimpose a localized interfacial disturbance on the initial condition, i.e. our initial A
takes the form

s, §¢10,2],
hE, 0) = {hs +Asinng, £ €][0,2]. (4.19)

Typically, we take the amplitude A =0.05. We now track the response of the system
(4.11) and (4.12) to this forcing, to see if the interface amplitude grows or decays
in time and space. We do this via analysis of a spatiotemporal plot of the interface
height. The unperturbed values are a steady state of the system (4.11) and (4.12). The
interface perturbation is typically advected dispersively downstream, but may either
decay or grow. Two examples of the spatiotemporal stability analysis are shown in
figure 21(a,b) for x =65 and 6Re = 0.24, and x = 35 and SRe = 8.98, respectively.
The former shows a case where the perturbation decays with time and space, while the
latter illustrates growth in the amplitude.

This numerical approach allows us to study nonlinear perturbations and to gain
insight into convective aspects of the instability, which are evident in our experiments
(physical and numerical). As with any initial value approach, there are disadvantages
in having to select a particular initial condition. To develop qualitative understanding,
we have computed the interface evolution for A, =0.1,0.2,...,0.8,0.9, over a wide
range of (x,dRe). According to the spatiotemporal plot, we categorize each point as
either unstable or stable. As an example, figure 20(b) shows the stability map obtained
for a range of §Re and yx at h, = 0.4, based on this perturbation technique. We also
superimpose the marginal stability curve from the long-wave temporal linear stability
analysis. It is interesting to note the relatively good agreement between the long-wave
temporal linear stability analysis and the spatiotemporal analysis, in the sense that all
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FIGURE 21. Examples of the spatiotemporal evolution of the interface, & — h, (illustrated by
contours of intensity) for interfaces initially located at A, = 0.5: (a) x = 65 and 6Re = 0.24
and (b) x = 35 and SRe = 8.98. The inset depicts two sample interfaces, h(§,T), at T =0
(broken line) and 7' = 5 (solid line).

unstable computations lie above the linear stability criterion. The direct implication of
this agreement is that the flow is convectively unstable.

Figure 20(b) clarifies some behaviours of the flow. Consider any point in the stable
zone: moving upwards or moving to the right both destabilize the flow. Moving
upwards parallel to the y-axis is equivalent to increasing the ratio of the inertial
(i.e SRe) to buoyant/viscous forces (since x is kept constant). In this case the flow
becomes unstable since the inertial forces exceed an instability threshold. Moving
to the right parallel to the x-axis is equivalent to decreasing viscous forces in the
flow, relative to buoyancy forces, which will eventually trigger instability. In the same
context, lines x =0 and §Re = (0 are always stable: x — O implies that viscous
forces completely dominate the buoyancy; §Re = 0 implies no inertia (i.e. the viscous
lubrication model is recovered).

If we consider the denominator of the expression on the right-hand side of (4.17),
we observe a term that is linear in x and one that is quadratic in x. The coefficient
of the linear term vanishes at h; = 0.5 whereas the coefficient of the quadratic
term vanishes at i, =0, 1. Thus, we can interpret (4.17), as h, varies, as giving a
nonlinear interpolation between conditions of the form §Rex = constant and §Rey? =
constant. The former of these translates straightforwardly into an instability criterion
of the form

Re cot > constant, (4.20)

whereas the latter is of the form
Re,cos B
J/sin B
The former is a typical shear flow instability criterion, ignoring buoyancy, but
leads to infinite Re for strictly horizontal channels. This is unrealistic, compared
to an Orr—Sommerfeld type of approach, but of course here we have strictly an
averaged long-wavelength limit. The second condition above is of the same form

as that determined empirically and marks the transition between inertial and viscous
exchange flows (e.g. see § 3.2). For 4, = 0.5 and considering +/sin 8 & 1, this relation

> constant. 4.21)
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predicts the transition at Re, cos 8 = 27.32..., which is interestingly close to what we
computationally obtain (i.e. Re, cos 8 =25 £ 5). Although both effects are expected to
be present in any instability, we feel that further work is needed to better understand
the transition to fully mixed displacement flows.

5. Summary

We have presented comprehensive results on miscible displacement flows at low
At in near-horizontal ducts, with iso-viscous Newtonian fluids. Although the flow is
controlled by three parameters (Re, Fr and B), we have been able to categorize
the types of observed flows efficiently in the (Fr, Recos/Fr) plane. In both pipe
and plane channel geometries, we are able to identify five or six different regimes,
observed at long times. These are depicted in figures 8 and 17 for pipe and plane
channel geometries, respectively.

The main advance with respect to our previous work in Taghavi et al. (2010, 2011)
is that the classifications previously developed were (largely) qualitative and
phenomenological, based on a description of the displacement fronts. Significantly
now each of the flow regimes in figures 8 and 17 is identified quantitatively, i.e. a
leading-order approximation to the regime boundaries is given. In addition, we have
identified each regime as either inertial or viscous. Finally, within each flow regime we
have been able to offer a leading-order quantitative approximation of the leading front
velocity. The leading front velocity has high practical significance as it gives directly
a measure of the displacement efficiency, i.e. Vf_1 indicates the efficiency (see Taghavi
et al. 2009). These are the key contributions.

The above results pertain to both geometries considered. It is satisfying that the
semi-analytical methods we have used (lubrication/thin-film models for the viscous
regimes and dimensional analysis for inertial exchange flows) have been able to
capture the main trends from our experiments (real in the case of the pipe, numerical
in the channel). This combination of methodologies used gives us higher confidence
in the validity and robustness of our characterization. More detail of the experimental
results, computations and analysis can be found in Taghavi (2011).

In the final part of our study, we have begun to consider how weak inertial effects
may modify our viscous theory, by using a weighted residual-type approach. This
model shows that inertial effects lead to a modification of the front velocity prediction
that is of the order of the discrepancy with our experimental results and that we see
qualitatively similar changes in front shape. We have analysed the long-wave temporal
linear stability of a two-layer flow using this model and have compared these results
with a numerical spatiotemporal stability analysis of the same model. The predictions
arising from numerical solution of the nonlinear equations for the weakly inertial
displacement flow are in good agreement with the analytical temporal linear stability
results. This confirms the convective nature of the instabilities for this flow. That said,
the stability study is quite preliminary and needs development.
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Appendix A. Three-layer lubrication model
The flux functions g, (y;, h, yie, he) and q(y;, h, yig, he) are defined as follows:

(X — yig)yih
a =23 —2y) + % (123 = 2y) +3 (1 — y)*(1 + 2y, — 2h)]
2
2y
x y,6g [hy;(12 — 12k — 15y; + 2k + 6y;h + 6y?) — 3k (1 — h)* =2y, (1 — y))*],
(A1)
g =13 —2h) + 6yh(1 —y; — h)
R (1 — hy’ 5
+ (X —Yig) | ———— +yih (1 =y, — W[ = h)(1 —2h) — 3y;(1 —y; — h)]

3

h
+ gg [—21* (1 = h)® +6h%y; (1 — )*Q2h — 1) + 3hy? (1 — y)*Q2y; — 1)]

)’-thhs 2 2
e [24 (1 — y)? +30 (1 — h)* +38y;h + 3h — 24] . (A2)
Appendix B. The coefficients R, ..., Rs

o _ (2h' =41+ 30 — 2hq + g)SRe

' 10h— Q2 —h—1)
&, _ ORe[SAR® — 90I + 9I* — 541 + gh(~144%" + 360° — 108 + 720 — 18)]
T 840213 — 312 + 1)(h — 1)h

B

n SReq*(—270h* + 270h — 81) + h*(280h* — 1120h* + 1680h* — 1120h + 280)
84023 —3h* + 1)(h — D)h '

(B2)
R — SReh (B3)
T10h— DR+ 1)’
(64h* — 12813 + 43h% — 6h + 54hq — 27q)SRe
Ry = , B4)
280(h — D(2K2 — h— 1)
RO — 305 4+ 3h* — 1) + 6h3 — 9K + 3
Ry = X¢ + )+ +oq (BS)

3(=2h— 1) (h—1)*
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