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Abstract. When a bubble reaches an air-liquid interface, it ruptures,
projecting a multitude of tiny droplets in the air. Across the oceans,
an estimated 1018 to 1020 bubbles burst every second, and form the so
called sea spray, a major player in earth’s climate system. At a smaller
scale, in a glass of champagne about a million bubbles nucleate on the
wall, rise towards the surface and burst, giving birth to a particular
aerosol that holds a concentrate of wine aromas. Based on the model
experiment of a single bubble bursting in simple liquids, we depict each
step of this effervescence, from bubble bursting to drop evaporation. In
particular, we propose simple scaling laws for the jet velocity and the
top drop size. We unravel experimentally the intricate roles of bubble
shape, capillary waves, gravity, and liquid properties in the jet dynam-
ics and the drop detachment. We demonstrate how damping action of
viscosity produces faster and smaller droplets and more generally how
liquid properties enable to control the bubble bursting aerosol charac-
teristics. In this context, the particular case of Champagne wine aerosol
is studied in details and the key features of this aerosol are identified.
We demonstrate that compared to a still wine, champagne fizz drasti-
cally enhances the transfer of liquid into the atmosphere. Conditions
on bubble radius and wine viscosity that optimize aerosol evaporation
are provided. These results pave the way towards the fine tuning of
aerosol characteristics and flavor release during sparkling wine tasting,
a major issue of the sparkling wine industry.

1 Introduction

1.1 Bubble bursting and effervescence

As champagne or sparkling wine is poured into a glass, the myriad of ascending bub-
bles collapse and therefore radiate a multitude of tiny droplets above the free surface,
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Fig. 1. Image on the left: the collapse of hundreds of bubbles at the free surface radiate a
cloud of tiny droplets which is characteristic of champagne and other sparkling wines and
which complements the sensual experience of the taster (©Alain Cornu / Collection CIVC).
On the right: The aerosol constituted by myriads of tiny droplets ejected from bubbles’
bursting above the surface of a coupe, as seen through laser tomography technique; the
droplets’ trajectories are materialised by blue streaks of light during the 1s-exposure time
of a digital photo camera (photograph by G. Liger-Belair, F. Beaumont and G. Polidori).

Fig. 2. Scheme of the two production ways of droplets from a bursting bubble; redrawn
from the article by Resch et al. [11].

into the form of very characteristic and refreshing aerosols, as shown in the photo-
graph displayed on the left of Figure 1. On the image on the right, laser tomography
techniques were applied to freeze this huge number of bursting events and all the
droplets ejected above champagne glasses in real consuming conditions [1].
Indeed, it is now generally recognized that bubbles bursting at a liquid surface

eject two kinds of droplets (see Fig. 2): (i) small droplets, called film drops, formed
as the film of the emerged bubble-cap disintegrates [2–4], and (ii) bigger jet drops,
formed as the so-called “Worthington jet”, driven by the collapse of the unstable
immersed cavity [5–7], ruptures through end-pinching mechanism [8–10].
On a larger scale, sea spray, known to transports dissolved gases, salts, surfac-

tants, and biological materials to the atmosphere, is largely attributed to aerosols
produced by an estimated 1018 to 1020 bubbles that burst every second across the
oceans [12–17]. This marine aerosols indeed account for the majority of the global
natural aerosol flux, thereby having a significant impact the Earth’s climate system
and biogeochemical cycling [17,18].
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1.2 Champagne fizz: A concentrate of champagne aromas

Marine aerosols have also been well described because of their important role in the
sea-air exchange of surfactant materials [19–21]. Indeed, as a bubble rises in the ocean,
the amphiphilic properties of surfactants lead them to its surface. Therefore, bubbles
drag surfactants all along their way through the liquid bulk, reach the sea surface,
to finally burst. The sea spray aerosol there produced is then highly enriched with
these surface active agents. Consequently, during rough sea conditions, when a large
amount of bubbles are entrapped, surfactant concentrations in aerosols are found to
be increased by several orders of magnitude compared with those found in the liq-
uid bulk [17].
From a conceptual point of view, the situation found in glasses of champagne,

sparkling wines, and fizzy beverages in general, is finally very similar. Champagne
holds indeed hundreds of surface active compounds. Once champagne is poured into
a glass, bubbles nucleated on the glass wall and champagne surfactants are then
dragged along with ascending bubbles through the liquid bulk [22]. Surfactants fi-
nally reach the free surface and concentrate themselves at the air/champagne inter-
face. Note that one of the consequences of the increasing concentration of surfactants
at the champagne surface is the increasing lifetime of bubbles with time [23,24] that
can be observed during tasting.
A few years ago, ultrahigh resolution mass spectrometry was used in order to

analyze the droplets released by bubbles bursting in champagne [25]. It was found
that this aerosol was indeed considerably enriched, compared with the champagne
bulk, with chemical compounds showing both surface activity and organoleptic inter-
est. This signifies that the aerosol found in the headspace above a glass poured with
champagne, the so-called champagne fizz, actually holds the organoleptic “essence” of
champagne. In other words, those droplets carry a concentrate of champagne aromas.
While flying above the glass they are expected to partly evaporate, accelerating the
transfer of the numerous aromatic volatile organic compounds above the liquid sur-
face [26]. This recent discovery supports the idea that rising and collapsing bubbles
act as a continuous paternoster lift for aromas above every glass of champagne or any
flavored carbonated beverage.
In the following, our objectives are both to improve our understanding of the ef-

fervescence physics, from bubble bursting to drop evaporation and to study, in the
context of champagne, the aerosol evaporation as a function of the effervescence con-
trol parameters in order to optimize the aroma diffusion.

2 Experimental context

We start by looking at the specificity of bubble bursting in champagne. This will
allow us to precise the outline of the experimental study.

2.1 Bubble bursting in champagne

2.1.1 Film drops

As introduced above, bursting bubble usually leads to drop production through two
different mechanisms: film drops through film retraction and jet drops when jet rup-
tures. Figure 3(a) shows a sequence of a bubble lying at the free surface of water,
after a few seconds the cap film punctures and retracts. During retraction the rim
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Fig. 3. Experimental time sequences of a bubble of radius Rb=1.7mm bursting in: (a) dem-
ineralized water, (b) champagne at 20◦C and (c) a water-ethanol solution with the same
properties. Liquid properties are the same as in Fig. 4. Space scale is on each sequence. The
time between each image is: (a) Δt =77 μs, (b) Δt=83 μs and (c) Δt=77μs.

suffers an inertial destabilization of a Rayleigh–Taylor type, which leads to the forma-
tion of ligaments. The ligaments are then stretched out by centrifugation, producing
disjointed droplets by a Plateau–Rayleigh destabilization [4]. These are the so-called
film drops that we observe on the two last pictures of the sequence (a). In water
and for the bubble radius considered here (Rb=1.7mm) film rupture should generate
thirty-four drops of average radius seventeen microns [4]. But this applies to water.
In particular, Figure 3(b) presents the same film retraction sequence in champagne,
and in this case we observe no film drops. The retraction velocity appears lower in
champagne suggesting that destabilization of the rim cannot develop before the film
has disappeared [27].
This unexpected result might have various causes as champagne is different from

water in many aspects. It is first more viscous (1.6mPa.s at room temperature) and
has a lower surface tension (48mN.m−1). Gradients of surface tension, inherent to
hydro-alcoholic solution [28], can lead to a film thickening through Marangoni effect
before it bursts. All these effects work toward the stabilization of the film retraction
and, therefore, the film drops removal, however we do not know which one prevails.
The exact reason of this disappearance of film drops definitively constitutes a fas-
cinating problem which needs be addressed. Anyway, it makes champagne aerosol
very different from sea spray and an interesting model aerosol only populated by
jet drops.

2.1.2 Jet drops

Figure 4(a) displays a sequence of a typical jetting event following a bubble bursting
at the free surface of a Champagne wine. The first image shows the static bubble,
then the film separating the bubble from the atmosphere drains and bursts leaving
an unstable open cavity. This (sub)millimetric cavity relaxes due to capillary forces
and gives rise to the high speed vertical jet shooting out above the free surface as
observed on the sequence. The jet then fragments into droplets, generating an aerosol
of a few jet drops, the only constituent of a champagne aerosol.
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Fig. 4. Experimental time sequences of the typical jetting events following a bubble bursting
at a free surface of (a) a Champagne wine at 20◦C (viscosity μ=1.6 mPa.s, surface tension
γ=48 mN.m−1 and density ρ=992 kg.m−3) and (b) a water-ethanol solution (resp. 89.5%
and 10.5% of total weight) with the same properties. Space scale is on each sequence and
times are shown on the snapshots. Bubble radius Rb is almost the same for the two sequences:
(a) Rb=817 μm and (b) Rb=830 μm.

2.1.3 Idealized Champagne wine

In the aim of establishing an idealized champagne for our study, the same burst-
ing bubble experiment has been realized in a simple water-ethanol solution (resp.
89.5% and 10.5% of total weight), allowing us to mimic the liquid properties of a
standard Champagne wine at 20 ◦C: viscosity μ = 1.6 mPa.s and surface tension
γ = 48 mN.m−1 [1]. Figures 4(b) and 3(c) respectively present the jetting event and
film retraction sequences following a bubble bursting in our hydro-alcoholic solution,
for a bubble of the same size as Figures 4(a) and 3(b). The sequences are very close
to each other. In particular no film drops are produced and the jet drops size and
dynamics look very similar. Therefore, both in terms of the rim retraction and the
jet dynamics, a champagne at room temperature is qualitatively perfectly mimicked
by a water-ethanol solution with the same properties. As a consequence, the role of
surfactants – always present in champagne – seems to be negligible in the bubble
bursting dynamics and the drop ejection. These surprising qualitative results will be
quantitatively confirmed in the following (Fig. 19).
Champagne is a complex hydro-alcoholic solution holding tens of aromatic com-

pounds, and a small amount of surface-active macromolecules with a concentration
of only a few milligrams per liter [29]. Such a small amount of surface-active mate-
rials in champagne was actually found to have only little effect on ascending bub-
ble dynamics [29]. It also has almost no effect on equilibrium surface tension as,
our hydro-alcoholic solution has the same surface tension as a real champagne (see
Table 1), with a very close relative amount of ethanol: 13% of total volume in our
solution (which corresponds to 10.5% in mass) and 12.5% in champagne. All these
arguments support the idea that surfactants do not affect the dynamics of bursting
bubbles in a real champagne. Consequently, we believe that it will be reasonable not
to take surfactants into account here, in the dynamics and the evaporation of jet
droplets above a champagne surface. Nevertheless, it makes no doubt that the fine
study of such influence should be carried out in further studies.
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Table 1. Characteristics of the three idealized champagne (i), (ii), (iii) and of champagne at
20◦C. μ, ρ and γ stand for viscosity (mPa.s), density (kg.m−3) and surface tension (mN.m−1).

(i) (ii) (iii) Champagne (20◦C)
Water (%) 89.5 66.6 55.3 –
Ethanol (%) 10.5 7.6 4.9 –
Glycérol (%) 0 25.8 39.8 –
μ (mPa.s) 1.6 2.6 3.6 1.6

γ (mN.m−1) 48 47 47.5 48

ρ (kg.m3) 983 1047 1082 992

Table 2. Characteristics of the solutions used in the following. Wat stands for Water and
Eth for ethanol.

Wat. S2 S3 S4 S5 S6 S7 S9 S12 Eth.
Water (%) 100 76 60 51 50 49 44 38 35 0
Glycérol (%) 0 24 40 49 50 51 56 62 65 0
μ (mPa.s) 1 2.1 3.3 4.4 5.2 6.2 7.4 9.7 12 1.2

γ (mN.m−1) 72 67 65 65 65 64 64 64 64 23.5

ρ (kg.m3) 1000 1058 1100 1120 1125 1137 1141 1157 1164 780

Furthermore, champagne is always served at a temperature lower than room
temperature, leading to an increase of the liquid viscosity. Glycerol, a water-soluble
viscous liquid, can therefore be added in the mixtures to tune their viscosity and
mimic this temperature effect. Consequently, three mixtures of water, ethanol and
glycerol – solutions (i)–(iii) – with γ=48 mN.m−1 and respectively μ=1.6, 2.6 and
3.6 m.Pa.s (see Table 1) will be used in order to reproduce the liquid properties of a
usual champagne at three different temperatures, namely 20, 12 and 4◦C [1]. These
will be our idealized champagne solutions. In addition, degassed champagne at room
temperature will also be used in order to compare the results with the water-ethanol
solution (i).

2.2 Experimental setup

2.2.1 Most of our liquids are not idealized champagne

In addition to the idealized champagne introduced in the previous section and used
in the particular cases of application to champagne (see Tab. 1), others solutions
with broader parameter ranges are used in order to characterize more generally the
different regimes of bubble bursting. These liquids include nine water-glycerol mix-
tures of viscosity in the range μ=1mPa.s–12mPa.s, surface tension γ=64mN.m−1–
72mN.m−1, and density ρ=1000 kg.m−3 – 1160 kg.m−3 and ethanol (μ=1.2mPa.s,
γ=23mN.m−1, ρ=780 kg.m−3) (see Tab. 2).

2.2.2 Experiments

Our experiment has been designed to be a model experiment of effervescence. It
consists in releasing a single air bubble from a needle submerged in a liquid and
recording the bubble bursting at the free surface and the ejected droplets. Bub-
bles are quasi-steadily formed using a syringe pump and detachment frequency is
weak enough to avoid successive bubbles interaction. Different needle diameters
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(5 <Φ (μm)< 1800) allow us to create bubbles with various radii (Rb) ranging from
300 μm to 3mm. This includes most of the range of bubble radii at the surface of a
champagne glass, namely 200 μm to 1.5mm [1]. The bubble collapse, drop velocity
and drop size are analyzed through extreme close-up and ultra-fast imagery (Photron
SA-5). Depending on the experiment, frame rate is varied from 1000 to 400 000 images
per second. Macro lenses and extension rings allow us to record with a definition reach-
ing 7 μm per pixel. The jet speed Vtip is measured when the tip of the jet reaches the
mean water level and the top drop speed Vd is measured when the first drop detaches
from the jet. The top drop height is measured using a second digital high-speed cam-
era (Phantom v7.11), triggered by the first camera when the bubble collapses. Its field
of view is large enabling to follow the drop all along its trajectory with 1000 frames
per second.

2.3 Dimensionless numbers

With the aim of establishing the role played by the relevant parameters in the gen-
eration of bubble bursting aerosol, we will use three main dimensionless numbers all
along this study:

• The Weber number
We =

ρV 2R

γ
, (1)

which compares the effect of inertia and capillarity.
• The Bond number

Bo=
ρgR2

γ
, (2)

which compares the effect of gravity and capillarity.
• The Morton number

Mo =
gμ4

ργ3
, (3)

which only depends on the fluid properties.

V will be either the jet velocity Vtip or the drop velocity Vd, R will be either the
bubble radius Rb or the drop radius Rd, g is the acceleration due to gravity and μ,
γ, ρ are respectively the liquid viscosity, surface tension and density.

3 Static bubble shape et film retraction

3.1 Shape of static floating bubbles before collapse

After nucleation, a bubble rises in the liquid because of Archimedes’ force until it
hits the liquid-air interface. After a few oscillations, the bubble adopts its equilibrium
shape at the free surface. This shape results from a balance between two opposing
effects: the buoyancy, whose pressure is order of ρgRb, which tends to make the bub-
ble emerge from the free surface and the capillarity, whose pressure is order of γ/Rb,
which tends to maintain the bubble below the surface. Comparing these two oppos-
ing effect comes down to compute the bubble Bond number, Bo= ρgR2b/γ, which
is equivalent to compare the bubble radius with the capillary length of the liquid
medium, lgc=

√
γ/ρg � 2mm. Champagne bubbles’ radii being always smaller than

the capillary length (Rb < 1.5mm), the Bond number is lower than 1 and gravity
is dominated by capillary effects. Consequently, like a tiny iceberg, a floating bubble
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Δ

Fig. 5. The snapshot is a view of the bubble monolayer composed of quite millimetric
bubbles organized in a hexagonal pattern, each bubble being surrounded by an arrangement
of six neighbors; the schematic represent a cross section of three aligned bubbles in touch in
the monolayer. Rb is the bubble radius, Rcap is the bubble cap radius of curvature and r is
the radius of the emerged part of the bubble.

only slightly emerges from the liquid surface, with most of its volume remaining below
the free surface.
In the following, the collective effect of bubbles at the surface of a glass of cham-

pagne will be not be considered. Typically, we will not take into account interactions
between adjoining bubbles (no dimple effects, for example). Let us denote, Rcap and
Rb, respectively the radii of curvature of the emerged bubble-cap and the submerged
bubble. The Laplace law indicates that there is a pressure jump at the interface be-
tween the atmosphere and inside the bubble cap: Pcap−Patm=2γ/Rcap, and another
one between the cap and the bubble: Pb−Pcap=2γ/Rcap (see schema of Fig. 5). This
leads finally to a pressure jump between the bubble and the atmosphere

ΔP = Pb − Patm =
4γ

Rcap
· (4)

Moreover, the pressure jump between the submerged part of the bubble and the liquid
bulk is ΔP = 2γ

Rb
. Equalling the 2 pressure jumps yields the following relation between

the 2 radius:
Rcap = 2Rb. (5)

The radius of curvature of the emerged bubble-cap is therefore approximately twice
that of the submerged bubble volume.
Obviously, the transition between these two zones of different curvature does not

appear so abruptly. In order to have a realistic description of the shape taken by a
bubble trapped at the air/liquid interface before it bursts, we need to integrate the
Laplace equation for each interface coupled with the hydrostatic in the liquid bulk
and in the meniscus. Figure 6 presents the desired profiles obtained by numerical
integration of the Laplace equation using Mathematica software. The equation and
the numerical method are described in various works [4,30–32]. The bubble size are
normalized in order to only compare the shape. We observe that the bubble shape
changes drastically on this range of size. In particular, the smaller the bubble the
more it is spherical and submerged. Note that the radius of a bubble at the surface
of a glass of champagne does not exceed Rb=1.5mm.
Figure 7(a) displays an experimental snapshot of a bubble before bursting and

the corresponding numerical profile is superimposed with green line. The agreement
is perfect meaning that our bubble is at rest before bursting. On the Figure 6 it is
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Fig. 6. Profiles of a static floating bubble at the free surface obtained by numerical inte-
gration of the Laplace equation using Mathematica software [4,30–32]. The smaller the
bubble the more it is spherical and submerged. The equivalent size Rb=(a

2b)1/3, defined on
the Figure 7, are indicated below each profile.

Fig. 7. (a) Picture of a static floating bubble at the free surface. Green profile is obtained
by numerical integration of the Young “Laplace equation using Mathematica software
[4,32]. The red dashed line is a semi-elliptic fit of the bottom part of the static bubble. a
and b identify respectively the semi-minor and semi-major axis of the ellipsoid. (b) Static

bubble eccentricity e=
√
1− (a/b)2 computed numerically as a function of the Bond number

(dashed line) showing asymptotic behaviors e ∝ Bo1/2 for small Bond number. The red circles
correspond to our experiments in water.

clear that the bubbles are not spherical, so we need to defined an equivalent radius.
The red dashed line on Figure 7(a) is a semi-elliptic fit of the bottom part of the
static bubble. It captures properly the inferior half of the bubble and consequently
allows us to define the bubble parameters: a, b and the corresponding bubble radius

Rb = (a
2b)1/3. (6)

a and b identify respectively the semi-minor and semi-major axis of the ellipsoid.
With the aim of quantifying the difference to sphericity, the eccentricity of the

static floating bubble, e=
√
1− (a/b)2, computed numerically is plotted versus the

Bond number with dashed line in Figure 7(b). The red circles correspond to the
eccentricity measured experimentally on bubbles in water. e is found to decrease with

the Bond number following e ∝ Bo1/2, demonstrating the non-sphericity of even small
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Fig. 8. Schematic representation, in a rupturing spherical bubble-cap with a radius of cur-
vature 2Rb, of the growing hole surrounded by a rim which collects the liquid and propagates
driven by surface tension forces.

bubbles. This result naturally suggests that, even for Bond numbers lower than 1,
gravity influences the initial bubble shape. We will see later that this might account
for the influence of gravity on the subsequent the jet dynamics.

3.2 Dynamics of a bubble-cap’s aperture

At the free surface, since bubbles’ radii are significantly smaller than the capillary
length, the liquid films of bubble-caps progressively get thinner due to capillary
drainage (capillary pressure dominates hydrostatic pressure). When the liquid film
of a bubble-cap reaches a critical thickness, a hole nucleates and the film ruptures,
see Lhuissier and Villermaux (2012) [4] for a complete description of the phenomena.
When the hole appears in the film it is surrounded by a rim which collects the

liquid and that propagates very quickly driven by surface tension forces. Balancing
inertia with surface tension, Culick proposed the following velocity for the growing
hole in a thin rupturing liquid sheet [33],

VCulick=

√
2γ

ρe
, (7)

where e is the thickness of the liquid film. The latter expression has already been
experimentally confirmed numerous times for the bursting of low viscous thin liquid
films [4,34,35].
In case of a spherical cap with a radius of curvature Rcap = 2Rb (see Eq. (5)),

rupturing from its axis of symmetry (the z-axis) as schematized in Fig. 8, the velocity
u of the propagating liquid rim (of mass M) is ruled by the following equation:

d(Mu)

dt
=2γ(2Rb) sin θdϕ. (8)

By replacing in the latter equation, the mass of the liquid rim by its expression,
M = ρe(2Rb)

2(1 − cos θ)dϕ, the velocity u by 2Rb(dθ/dt) and by developing, one
obtains the following differential equation:

ρe(2Rb)
2

(
d2θ

dt2
(1− cos θ) + sin θ

(
dθ

dt

)2)

= 2γ sin θ. (9)



Bubble Dynamics in Champagne and Sparkling Wines 127

Finally, by considering only the constant velocity solution d2θ/dt2 = 0, one obtains
the following expression u for the growing hole,

u=2Rb
dθ

dt
=

√
2γ

ρe
= VCulick (10)

which is the same as that derived by Culick. The thickness e of a millimetric cham-
pagne bubble-cap was already experimentally determined by the classical micro-
interferometric technique and found to be of order of 10−6 to 10−7 m [36]. As a
result, by replacing in equation (10) the values of γ, ρ and e, u is expected to be of
order of 10 m.s−1 for a rupturing champagne liquid film.
The radius of the emerged bubble-cap, r, as shown in Figure 5, can be estimated

by equaling the bubble buoyancy with the capillary pressure inside the thin film as:

ρg

(
4

3
πR3b

)
∼ γ
Rb
πr2 ⇒ r ∼

√
4

3

R2b√
γ/ρg

� 0.14 mm. (11)

With Rb taken equal to 0.5mm. Finally, the characteristic time scale τ of a millimetric
bubble-cap’s disintegration should be around:

τ ∼ r
u
∼ 1.4× 10

−4

10
∼ 10 μs. (12)

4 Cavity collapse and jet dynamics

At this point, we have presented the static bubble shape and the dynamics of
bubble-cap film retraction. The present section is now dedicated to the collapse
of the unstable open cavity and the subsequent jet dynamics. In order to have
an overview of the different jet dynamics regimes we will work here with control
parameters range broader than the parameters range in champagne. At the end
of this section the application in oceanography and in champagne context will be
discussed.
The last sixty years have witnessed a number of laboratory studies documenting

jet drops properties, such as the ejection speed, the maximum height or the size distri-
bution as a function of bubble volume [8,37–40]. Here we bring a new comprehensive
picture of the mechanisms at play in bubble bursting. In particular, the sequence of
violent events preluding jet formation [5,13] and the roles of liquid properties are
discussed. This section is extracted from Ghabache et al. (2014) [7].

4.1 Jet velocity dependance with bubble size in water

Figure 9 illustrates a typical jetting event following a bubble bursting at a free sur-
face in water. The top sequence shows the free surface view while the bottom one
displays the underwater dynamics. The top sequence takes place between the two
first images of the bottom one as indicated by the arrows. The first image of the top
sequence shows our static bubble from the top. Then the film separating the bubble
from the atmosphere drains and bursts leaving the unstable open cavity. This cavity
is millimeter-sized so the restoring force which tends to bring this hole back to a flat
equilibrium is capillary driven. Bottom sequence displays capillary waves propagat-
ing along this cavity and focusing at the bottom. These collapsing waves give rise
to the high speed vertical jet shooting out above the free surface as observed on the
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Fig. 9. Time sequence of a typical jetting event following a bubble bursting at a free surface
in water. The top sequence shows the bubble bursting event above the free surface, while the
bottom sequence displays the bubble under the free surface during the collapse giving birth
to the vertical upward jet. The bottom sequence takes place between the two first images of
the top one. The times are shown on the snapshots with the same origin.

top sequence. The jet then fragments into droplets due to end pinching mechanism
(described in Sect. 5) generating an aerosol of one to ten droplets [8].
In order to establish the role played by the relevant parameters in the jet dynam-

ics, we identify the five variables ruling the value of the jet tip velocity:

Vtip = Φ(Rb, ρ, γ, g, μ). (13)

Using dimensional arguments, this equation becomes a relation between three dimen-
sionless numbers fully describing the jet dynamics:

We=F (Bo,Mo), (14)

where, as introduced Section 2.3, the Weber number We = ρV 2tipRb/γ compares the

effect of inertia and capillarity on the jet dynamics, the Bond number Bo= ρgR2b/γ
compares the effect of gravity and capillarity on the initial bubble and the Mor-
ton number Mo= gμ4/ργ3 only depends on the fluid properties and is in particular
independent of the bubble radius Rb. Various scaling relations for the velocity are
reported in the literature, ranging from exponential fits of experimental data [40] (see

curved dashed line Fig. 10) to algebraic laws Vtip ∝ R−1/2b in numerical simulations
disregarding gravity [5]. This diversity certainly emphasizes the need for further ex-
perimental analysis.
We set out by investigating experimentally in Figure 10 the dependence of

Vtip with Rb in a log-log plot. Our experimental data (circles) rest along the line

Vtip ∝ R−1b , as indicated by the red dashed line fitting the experimental velocities.
Note that bubbles with Bo > 1 (radii greater than 3mm) are out of scope of this
study because they give rise to jets with a different dynamics and would constitute an
other study. On the same figure various data from the literature have been plotted:
the top drop velocity measured experimentally in fresh water [40] or in sea water [8],
and the maximum tip velocity of the jet computed numerically in fresh water [39].
Regardless of some slight differences they all follow the same trend Vtip ∝ R−1b . This
specifies the form of the equation (14) providing the variation with Bond number,
yielding:

We=Bo−1/2f(Mo). (15)

The R−1b behavior is the footprint of gravity effects. The introduction of a sec-

ond length scale, the gravity-capillary length 	gc=
√
γ/ρg, allows departures from
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Fig. 10. Jet velocity Vtip, measured when the jet passes the free surface level, as a function
of the bubble radius R in water from our experiments (red circle) and data from the litera-
ture: (square) top drop velocity [40] along with the exponential fit represented by the curved

dashed line V =10.72 e−1.27.10
3R measured experimentally in fresh water, (diamonds) max-

imum tip velocity computed numerically in fresh water [39] (triangle) top drop velocity [8].
The red dashed line is a fit of our experimental data exhibiting the common trend Vtip= ξR

−1

(ξ=2.95 10−3 m2.s−1). The curve dashed line is the exponential fit V =10.72e−1.27.10
3R

given by Spiel et al. [40].

capillaro-inertial predictions through length scales ratios [41]: We= (	gc/R)f(Mo).
Though the Bond number remains small in the experiments, the gravity plays a
genuine role in the collapse dynamics through the initial static bubble shape as de-
scribed in paragraph 3.1. Note that Froude number of the jet at the mean water level

is Fr=Vtip/
√
gRb =

√
We/Bo, and can be expressed here as Fr=Bo−3/4f(Mo)1/2.

In water, with the Bond values of Fig. 10 one obtains Fr ∈ [7 − 160] > 1, indicating
that gravity hardly affects the jet dynamics at least before eruption confirming the
role of the initial shape.

4.2 Drop velocity versus jet velocity

We chose here to work with the the jet velocity as we considered that it was better
defined than the drop velocity (same altitude, no drop detachment process). However,
it is the drop velocity which will be required for the quantification of aerosol evapora-
tion. In Figure 10 it is remarkable that our jet velocities match the top drop velocities
found in the literature (square [40] and triangle [8]). This is important as it makes
our results presented here quantitatively relevant for drop dynamics on a large range
in bubble radius. To go further in the comparison between drop and jet velocity we
present in Figure 11 the jet and the drop velocities resp. Vtip and Vd, as a function of
the bubble radius Rb in water. We recall that Vtip are Vd are respectively measured
when jet passes the free surface and when the drop detaches. We find again that the
two velocities are very close to each other for bubble radii up to ∼1.2mm. However,
for greater radii the drop velocity becomes lower than the jet velocity leaving the
R−1b regime as showed on the log-log plot in the top right inset. Anyway, as most of
the bubbles at the surface of a champagne glass are smaller than 1.2mm radius they
produce drops with the same velocity as their jet.

4.3 Jet velocity dependance with liquid properties

We now investigate how the jet eruption velocity Vtip depends on the liquid properties
and therefore on the Morton number. The Weber number is plotted as a function of
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Fig. 11. Jet and first drop velocity, resp. Vtip and Vd, as a function of the bursting bubble
radius Rb in water from our experiments. The line curve fits the experimental values of the
jet velocity while the dashed line curve is a fit of the first drop velocity. On the top right
inset the same graph is represented in a log-log plot. The line exhibits the common trend
for the jet velocity Vtip ∝ R−1b and the dashed line curve quits this trend for bubble radius
greater than ∼1.2mm.

the Bond number for various Morton number on Figure 12(a). To browse the Morton
range we mainly change the liquid viscosity (see table of Fig. 12). The first clear ob-
servation is that the jet dynamics depends on the viscosity although the jet Reynolds

number is greater than 1. Furthermore, the regime We ∝ Bo−1/2 is retained on around
four decades in Morton number, from 1mPa.s to around 7.5mPa.s, all plotted with
filled markers. This defines the boundary of our study considering that this viscous
regime characterized by μ � 9mPa.s and showed with empty markers is out of the
scope of this paper. Finally, for values of viscosity less than 6mPa.s we observe a
surprising increase of the Weber number with Morton number, meaning that for a
given bubble radius in this range, the jet is drastically faster as the liquid viscosity is
increased.
The non-dimensional jet velocity WeBo1/2 is plotted as a function of the Morton

number on Figure 12(b), therefore specifying f(Mo) (see Eq. (15)). A bell shaped
curve is clearly observed with a maximum for μ=5.2mPa.s. To illustrate this un-
expected behavior we display inside Figure 12 four snapshots of the jet at the same
dimensionless time (t/

√
ρR3/γ = 1/5), same Bond number (Bo � 0.14) but four

different Morton numbers. The jet morphology undergoes a neat qualitative change
as the liquid gets more viscous: the jet first becomes thinner, detaching more and
smaller droplets and then ends up fat and small for high Morton number.

4.4 Capillary wave dynamics and cavity collapse

In order to grasp the mechanisms leading to such a particular dynamics, we now
turn to the jet formation by focusing on the cavity collapse per se. Lower sequence
of Figure 9 displays a typical bubble collapse in water, where a train of capillary
waves propagates, converges to the nadir (bottom of the cavity), and gives rise to
the jet. Figure 13 shows a temporal zoom of the last microseconds before the cavity
collapses (t � t0) for three different Morton numbers and same Bond number. These
three sequences (a), (b) and (c) are the cavity collapse leading to the three jets (1),
(2) and (3) displayed on Figure 12. On the last image of each sequence the cavity is
reversed and the upward jet (not seen on the picture) is developing. These sequences
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Fig. 12. Table: value of the liquid viscosity and of the associated Morton number cor-
responding to each symbol. Eth. stands for Ethanol. (a) Weber number as a function
of the Bond number for various values of the Morton number. All the colored symbols
follow the same trend We ∝ Bo−1/2 as showed by the dashed lines. (b) WeBo1/2 as a func-
tion of the Morton number Mo. Four snapshots display the typical jet observed at the same
dimensionless time (t/

√
ρR3/γ = 1/5), same Bond number (Bo � 0.14) and four different

Morton numbers corresponding to red circle, green hexagon, purple star, empty triangle.
The black bar represents 500μm.

show that the cavity reversals are very similar between the 6.2 and 12mPa.s solutions
and drastically different from water. In particular the small capillary waves present
in the water collapse (a) have disappeared for higher viscosities (b) and (c). It has
been shown in numerical simulation [5] and in other experimental contexts [42,43]
that such collapse exhibits a self-similar dynamics that can lead in some cases to
very thin and rapid jets. In such a situation, the cavity collapses through a nonlinear
balance between capillary force and inertia, leading to a self-similar behavior where
the lengths scale like (γ(t0− t)2/ρ)1/3 (t0 corresponding to the instant of the singular
collapse) [44]. In the three cases presented here, the same self-similar collapse is
clearly at play, as shown on Figure 13(d,e) where the different cavity profiles plotted at
different times before t0 collapse when lengths are divided by (t0−t)2/3. So we observe
a capillary-inertia self-similar collapse for each case, even though the jets show clear
differences (see Fig. 12(1), (2) and (3)) and are not singular. Interestingly, shapes,
timescales and overall self-similar evolution for the collapsing cavity are identical
for the high viscosity cases (b) and (c) as shown in Figure 13(e). The fact that jet
velocity falls with increasing viscosity therefore does not depend on the details of the
cavity collapse, but more likely on the large viscous stresses developing in the highly
strained region at the jet root. However, these collapses are strongly different from
the collapse in water (a) which is perturbed by the presence of the small capillary
waves. These waves are always traveling on top of the interface and are inherent to the
complex dynamics. But we observe that increasing the viscosity leads to smoothing
the collapse. In particular the closest time to t0 in water, represented by the dashed
profile, does not coalesce properly, signifying that the dynamics is no more self-similar.
This results in a collapse leaving its self-similar regime sooner than in a more viscous
case, when the remnant ripples are damped. By defining Lmin as the width of the
small left cavity when the collapse just quitted it self-similar behavior, Figure 13(f)
shows the variation of this effective collapsing cavity giving rise to the jet and reveals
that it decreases with Morton number. This agrees with the idea of a self-similar
collapse getting closer to the singularity as viscosity is increased and justifies why the
jet velocity is increasing with Morton number.
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Fig. 13. Snapshots of the final stage of the cavity collapse before the jet develops. (a), (b)
and (c) correspond respectively to the jets (1), (2) and (3) of Fig. 12. t0 identifies the time
of the wave collapse giving rise to the jet. The cavity profiles corresponding to the three
sequences are plotted at different times on (d) (green for sequence (a), black for (b) and red
for (c)). (e) shows the collapse of these profiles according to the capillary-inertia self-similar
behavior where lengths scale with (t0 − t)2/3. (f) Lmin versus Morton number. Lmin defines
the width of the small left cavity when the collapse just quitted it self-similar behavior.
The size of this effective cavity giving rise to the jet eruption decreases with viscosity for
μ � 6 mPa.s.

This suggests an original mechanism to explain the role of the capillary waves for
small Morton numbers. We consider that these waves break the self-similar dynamics
when they are large enough (typically, when the wave amplitude is of the order of
the self-similar structure). Because the phase velocity of the capillary waves yields

c ∝
√
γk/ρ, the shorter the wave, the faster it converges to the nadir, suggesting

that the singular dynamics is destroyed by small waves first. This picture has now
to be corrected by the viscous damping of the capillary waves [45] which is also
increasing with the wave number (with damping rate ∝ μk2/ρ). Therefore, as the
viscosity increases, the interface is smoothed near the nadir and the instant where
the oscillations destroy the self-similar dynamics is delayed closer and closer to the
singularity.
Finally, two regimes of the jet dynamics as a function of the Morton number

have been pointed out: for Mo � 3.10−8 the viscosity promotes the jet velocity by
smoothing the collapsing cavity and for Mo � 3.10−8 the jet velocity decreases with
viscosity. At the frontier of these two regimes the jet is very thin and its velocity is
maximal.

4.5 Conclusion and applications: From oceanography to champagne

As a conclusion and to sum up the influence of the fluid properties on the drop prop-
erties, Figure 14 illustrates a typical jetting event following a bubble bursting at a
free surface in water and in a six times more viscous solution. In each case, the bub-
ble has the same radius and the top sequence shows the view above the free surface
while the bottom one, that takes place between the two first images of the top one,
displays the underwater dynamics. We observe that the jets are drastically different
in the two different solutions. In the viscous solution the jet is much thinner, detaches
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Fig. 14. Experimental time sequences of two typical jetting events following a bubble burst-
ing at a free surface in (a) water (b) glycerol water mixture six times more viscous than water.
In each case, the top sequence shows the bubble bursting event above the free surface, while
the bottom sequence displays the bubble under the free surface during the collapse giving
birth to the vertical upward jet. The bottom sequence takes place between the two first
images of the top one. Space scale is on each sequence and times are shown on the snapshots
with the same origin. Bubble radius are: (a) Rb=884μm (b) Rb=915μm.

smaller droplets and is faster than in water. This means that by changing the vis-
cosity, or more generally the Morton number, we can produce very different bubble
bursting aerosol. The mechanism leading to such a counter-intuitive dynamics comes
from the underwater collapsing cavity. Indeed, we observe that the small capillary
waves present in the water collapse have been damped in more viscous liquids. Con-
sequently, the viscous cavity collapse, cleared of capillary ripples, can thus be more
intense by getting closer to its singularity, enabling the generation of a faster and
thinner jet.
These differences on the aerosol production are quantitatively shown on the bell

shaped curve of Figure 12. This curves presents a maximum for Mo=2.10−8mPa.s,
and on the left of this maximum corresponds the range of liquid properties where
the drop velocity increases with the Morton number, Mo= gμ4/ργ3. This curve has



134 The European Physical Journal Special Topics

Fig. 15. Non-dimensional jet velocity WeBo1/2 as a function of the Morton number Mo
for various values of the morton number, namely for various liquid properties. The gray
points correspond to the liquid used in the previous study [7] while the colored points
are those presented in the present work, especially the yellow, the green and the blue ones
which corresponds to the hydro-alcoholic solutions mimicking the champagne at three dif-
ferent temperature from 20 ◦C (yellow) to 4 ◦C (blue). The red points correspond to bubbles
bursting in water.

been reproduced in gray on Figure 15. On top of this gray curve, the red points cor-
respond to bubbles bursting in water and the yellow, the green and the blue ones
correspond to the hydro-alcoholic solutions mimicking the champagne at three dif-
ferent temperature from 20◦C (yellow) to 4◦C (blue). More generally, the blue zone
corresponds to the Morton range existing in oceanography and the yellow zone the
range of Champagne wine. The marine aerosols are then in the flat region of the
jet velocity dependance on Mo, meaning that hydrodynamical properties of ocean,
notably changing with temperature, barely affects the droplet ejection velocity. How-
ever, it is then extremely interesting to see that the champagne lies on the zone of the
curve where a slight change of liquid properties leads to a drastic change of the drop
velocity/size and consequently on the subsequent aerosol characteristics. These re-
sults are then crucial in the context of champagne industry. Indeed, they suggest that
the characteristics of bursting bubble aerosols in champagne could be tuned through
the champagne properties. The question we want to eventually address is, can we find
liquid properties that would enable to optimize the aerosol evaporation? With this
aim, and in order to improve our understanding of the whole effervescence process,
the next step is to study the drops detachment as a function of bubble radius and
liquid properties.

5 End pinching and top drop size

As we saw before, no film drops are produced above a glass of champagne and dy-
namics of jet drops is strongly modified by liquid parameters. Furthermore, as we
will see later, the top jet drops, which bound the edge of the aerosol cloud, domi-
nate the evaporation process as they are faster and usually bigger than the others or
with a comparable size. Therefore, in this section, the size of the top jet drop pro-
duced by bubble bursting is investigated as a function of the mother bubble size [9]
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and the liquid properties (see Figure 16). Scaling laws for the drop diameter along
with their regime of existence will be determined, discussed and the mechanisms will
be interpreted. As in the previous section, we will work here with control parame-
ters range broader than the parameters range of Champagne wine in order to gain
an complete view of the different regimes. This section is extracted from Ghabache
et al. (2016) [10].

5.1 The end-pinching mechanism

An infinite cylinder of liquid at rest, subjected to the influence of surface tension, will
break up into a number of individual droplets through the so-called Rayleigh-Plateau
instability. The bubble bursting jets, depicted in Figure 16, are finite and do not break
as a consequence of Rayleigh-Plateau instability. Instead, the breakup takes place at
the jet tip and detaches one drop at a time. This mechanism, called end-pinching,
consists of a competition between the capillary retraction of the jet tip, shaping a
blob [46], and a pressure-driven flow from the cylindrical jet toward the bulbous end.
This leads to the development of a neck, where the jet joins the blob, and thus to
the drop detachment via a capillary pinch off process. This mechanism has been first
described in the context of a strongly deformed viscous drop [47] and later for a
free liquid filament of arbitrary viscosity [48]. This end-pinching capillary breakup of
liquid jets is important in several industrial contexts, especially because of the broad
range of applications of inkjet printing technology. Indeed, it enables accurate drop
deposition of liquids, and includes production of organic thin-film transistors, Liquid
Crystal Displays (LCD), fuel or solar cells, Printed Circuit Boards (PCB), dispensing
of DNA and protein substances, or even fabrication of living tissue [49]. Recently, the
end-pinching of a stretched inertially driven jet shooting up after a cavity collapse
has been described theoretically and numerically [50]. These stretched jets are found
in many situations [41,51], in particular bubble bursting, and they all have similar
properties.

5.2 Top jet drop size variation

Figure 16 presents the jet and released drop shape following bubble bursting. In the
cases where no drop detaches the jets are displayed at their maximum height. On the
x and y-axis the jets and drops shape is represented, respectively, for six different liq-
uid viscosities and three different mother bubble radii. It is clear on this diagram that,
independently of the viscosity, the bigger the bubble the bigger the top drop. This in-
tuitive result has been observed in water in various previous studies [9]. Although the
variation with viscosity has been qualitatively seen in the previous section (see snap-
shots of Fig. 12(b)), it is still quite unexpected. Indeed, irrespectively of the bubble
radius in the range considered here, the top drop shrinks as viscosity is increased, and
seems to reach a minimum for a liquid viscosity around 6–7 mPa.s here. For higher
viscosities, no drop is detached, in accordance with previous study [52]. This decrease
of the drop radius with viscosity is surprising, in particular because the Ohnesorge
number based on the drop radius, namely Oh=μ/

√
ρRdγ, which compares the effect

of viscosity and capillarity, is included between 10−1 and 10−3 and is consequently
always lower than 1. This therefore suggests that viscous effects should be neglected
in the description of jet breakup, as done in similar cases [50]. We will see further
down why, in this particular case of bubble bursting jet, the liquid viscosity has such
a strong influence.
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Fig. 16. Snapshot of a typical jetting event following a bubble bursting at a free surface.
The jets and drops shape is displayed for three mother bubble radii, reported on the y-axis,
bursting in water and five water-glycerol mixtures of viscosity indicated on the x-axis. For
those six solutions, the surface tension is almost constant (ranging from 64 to 72 mN.m−1)
so that one mainly observes in this figure the effect of changing viscosity. top drop size
decreases with bubble radius and increasing liquid viscosity. The biggest drop, on the top
left corner of this diagram, is about 400 μm radius and the smallest (Rb=0.7 mm and
μ= 7.4mPa.s) reached 20 μm. The scale bar is showed on the top left corner of each bubble
radius and is the same the whole row.

5.3 Top jet drop radius and bubble bursting

We now plot, in Figure 17(a), the variation of the top drop radius Rd as a function
of the mother bubble radius Rb for different values of the liquid parameters (μ, γ
and ρ) indicated in the table above. This quantifies our previous observation of drop
shrinking with decreasing bubble radius and increasing liquid viscosity, from 400 μm
to 20 μm for the solutions plotted here. We also observe that the same drop shrinking
occurs when surface tension is decreased. Moreover, it appears that, regardless of the
liquid parameters considered in this graph, the drop size increases with bubble radius

following roughly the same variation for all the curves: Rd ∝ R6/5b , shown with dashed
lines on the graph. Note that the historical law, proposed for the top jet drop radius
produced by bubble bursting in water, that predicts a drop radius being the tenth of
the bubble radius (Rd = Rb/10) [53], is only valid for bubble radii smaller than five
hundred micrometers. More accurate laws have been written ever since. In particular,
when Rb ≥ 0.1 mm, the relationship Rd=0.075R1.3b has been proposed, with radii
expressed in millimeters [54]. This variation is very closed to the one we find.
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Fig. 17. (a) Top drop radius as a function of the mother bubble radius for bubble bursting in
liquids with different surface tension and viscosity. The parameters of these liquids associated
to the corresponding symboles are summarized in the table above the graph. In the inset,
the Bond number built on the drop radius is plotted as a function of the Bond number built

on the bubble radius for the same liquids. The dashed lines represent Rd ∝ R6/5b in the

graph and Bod ∝ Bo6/5b in the inset. (b) Bod/Bo
6/5
b as a function of the Morton number.

The dashed line fits the experimental data plotted with closed symbols, up to Mo ∼ 10−8,
following the trend Bod/Bo

6/5
b ∝ Mo−1/3. The error bar on the exponent is 1/20, and the

two bounds H(Mo) ∝ Mo−1/3±1/20 are plotted on the graph with dotted line.

Thanks to our experimental relationships between Rd and Rb, we are now able
to write a more universal scaling law, taking into account the liquid parameters.
It is clear that top drop size depends on bubble radius Rb, liquid viscosity μ and
we assume that surface tension γ, density ρ and gravity g might also influence its
selection, yielding:

Rd = Π(Rb, ρ, μ, γ, g). (16)

Using dimensional arguments, this equation becomes a relation between three dimen-
sionless numbers fully describing the top drop size selection:

Bod=F (Bob,Mo) (17)

where the Bond numbers Bod= ρgR
2
d/γ and Bob= ρgR

2
b/γ compare the effect of

gravity and capillarity on the top drop and the initial bubble respectively, and the
Morton number Mo= gμ4/ργ3 only depends on the fluid properties. On the inset
of Figure 17(a) the variation of the top drop Bond number is plotted as a function
of the mother bubble Bond number for the same solutions as in Figure 17(a). The

variation Bod ∝ Bo6/5b is also plotted with dashed lines. This power law, independent
of the liquid parameters, still works reasonably well, allowing us to write the following
scaling law:

Bod=Bo
6/5
b H(Mo). (18)

With the aim of estimating the dependance of the drop size with the liquid prop-

erties, namely H(Mo), Bod/Bo
6/5
b is plotted as a function of the Morton number on

Figure 17(b). We observe that the data with closed symbols gather along a line, up to
Mo � 10−8, corresponding to a viscosity μ=5.2 mPa.s for a water-glycerol mixture.
This line is properly fitted by H(Mo)=A Mo−1/3 with A=1.1 10−5. As the results
are slightly scattered we estimate the error bar by fitting the lower and upper bounds
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and we find H(Mo) ∝ Mo−1/3±1/20, these two bounds are plotted on the graph with
dotted line. Therefore, in this regime, ranging on around three decades in Morton
number, and including the champagne range, we established a scaling law for the top
drop size as a function of the bubble radius and liquid parameters, in the context of
bubble bursting:

Bod=ABo6/5b Mo
−1/3. (19)

This result is essential because the bubble radius and the liquid parameters are the
natural experimental parameters for bursting bubble aerosol measurement. In par-
ticular, the size distribution of bubbles is known in ocean [55,56] and can even be
controlled in a glass of champagne [57].
However, under this form, equation (19) is delicate to interpret, in particular, the

confusing role of viscosity, that is expected to be negligible (Oh	 1). In addition, this
scaling law contains substantial experimental data scattering due to an accumulation
of variability, when the jet is created and when the drop is detached. In the following,
we wish therefore, to express the drop radius as a function of only jet parameters,
typically by disposing of the bubble radius.

5.4 Top jet drop radius and jet dynamics

When a bubble collapses, a jet is formed with a given shape, tip velocity, local strain
rate etc. In this regime, where Mo � 10−8, the decrease of the drop size with Morton
number comes along with a thinning down of the whole jet and an increase of the jet
velocity. This has been largely discussed in section 4 and the corresponding scaling
law, for the jet velocity as a function of the bubble radius and liquid parameters, has

been proposed: Web=Bo
−1/2
b f(Mo) with the Weber number Web = ρV

2
tipRb/γ and

Vtip the jet tip velocity as the jet passes the free surface level. Therefore, with the aim
of decoupling the effects of bubble collapse and jet dynamics on the drop detachment,

Web=Bo
−1/2
b f(Mo) is combined with equation (19) in order to eliminate the bubble

radius. This eventually yields the following scaling law relating the drop radius, the
jet velocity and the liquid parameters:

Bod= (FrdWed)
−3/5

G(Mo) (20)

where Frd=V
2
tip/gRd, leading to FrdWed= ρV

4
tip/γg which compares the effect of iner-

tia upon capillarity and gravity on the jet dynamics, and is, in particular, independent
of bubble radius and viscosity.
In order to estimate G(Mo)=H(Mo)f(Mo)6/5, f(Mo) needs to be known. On the

inset of Figure 18(a), WebBo
1/2
b is plotted as a function of Mo, as in Figure 12(b), but

in a log-log plot, allowing us to determine f(Mo) by fitting the data in the same regime

(10−11 � Mo � 10−8). The power law f(Mo) = BMo2/7, with B=3.9 104, fits rea-
sonably well the experimental data. Consequently, G(Mo)=AMo−1/3(BMo2/7)6/5 =
CMo1/105 ∼ C, with C=AB6/5 = 3.55. This signifies that viscosity is removed from
the scaling law relating the drop radius, the jet velocity and the liquid parameters,
leading to, for Mo � 10−8:

Bod= C (FrdWed)−3/5 . (21)

On the Figure 18(a) the drop Bond number Bod is, therefore, plotted as a func-
tion of FrdWed and we observe an excellent collapse of all the experimental data
represented with closed symbols, confirming equation (21). Figure 18(b) presents
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Fig. 18. (a) Drop Bond number as a function of the product of Froud and Weber
number FrdWed= ρV

4
tip/γg for various values of the Morton number. For Mo � 10−8,

all the data, plotted with closed symbols, collapse on a single curve following the trend
Bod= C (FrdWed)−3/5 as shown by the dashed line. In the inset, the Figure 3(b) of Ghabache
et al. [7] is plotted in a log-log plot, f(Mo)=BMo2/7 fits reasonably well the data for
Mo ∈ [10−11, 10−8] as shown by the dashed line. (b) Bod/ (FrdWed)−3/5 as a function of
Morton number. The dashed line fitting the data on the same range is a constant equals
to C. Data corresponding to Mo ∈ [10−8, 10−7] plotted with open symbols leave the inviscid
regime. Above Mo � 10−7 no more drop can detach.

Bod/ (FrdWed)
−3/5

as a function of Morton number and confirms that the drop Bond
number is independent of viscosity for the closed symbols. This inviscid behaviour
stops at Mo � 10−8, viscosity playing a role for open symbols, between 10−8 and
10−7 (corresponding to μ ∼ 5 and 7mPa.s for water glycerol mixtures). Above Mo
� 10−7 no more drop can detach.
Equation (21), valid for Mo � 10−8, is therefore more robust, with less scattering

than equation (19). Furthermore, it demonstrates that viscosity does not participate
to the drop detachment process. This result was predictable as the Ohnesorge num-
ber is always lower than one. However, we may now wonder why the drop radius was
dependent on the liquid viscosity in Figures 9, 17 and equation (19). Actually, this
influence of viscosity on drop size was only through the jet’s formation as a mem-
ory of the bubble collapse. Indeed, as we discussed in paragraph 4.4, when a bubble
collapses, capillary waves focus at the bottom of the cavity giving birth to the jet.
Increasing the liquid viscosity changes the wave focusing, producing a thinner jet
and therefore smaller droplets. In equation (21), this shaping effect is then entirely
contained through Vtip and viscosity can disappear, shedding light on the inviscid
behavior of the drop detachment mechanism. Finally, the Bond number of the drop
seems to be only selected by a competition between the given inertia, which makes
the jet rising and stretching, and the duet gravity-capillarity which pulls on the jet
tip so as to form a blob, initiating an end-pinching mechanism and consequently re-
leasing a drop. While the influence of capillarity is obvious in this blob formation, the
one of gravity can be more surprising. However, at the height the drop is detached,
the gravity can already play a role. Indeed, the Froude number built on the drop
detachment height hdet, Frhdet=V

2
tip/ghdet, equals to O(1) for top drops projected

by the largest bubbles.

5.5 Conclusion and applications

Here we have provided experimentally two different scaling laws giving the top jet
drop radius ejected after a bubble burst as a function of the liquid parameters and
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the mother bubble radius in equation (19) or the jet velocity in equation (21). These
results induce various outcomes. The size distribution of the top jet drop aerosol can
now easily be computed as long as we know the bubble size distribution, which is the
case in ocean for example [55,56]. These results also apply to slightly viscous liquids
(up to Mo ∼ 10−8) like champagne or sparkling wine obviously [30].
Furthermore, these two scaling laws enable to untangle the intricate role of vis-

cosity in the end pinching mechanism by defining exactly at which step of the bubble
bursting process it influences the drop size selection. Indeed, viscosity appears in
equation (19) and not in equation (21), namely when the drop size is expressed as a
function of the bubble radius and not when it is expressed as a function of the jet
velocity. Moreover, we saw that, when a bubble collapses, it generates a jet whose
velocity is selected by various ingredient including viscosity (see Sect. 4). Therefore,
viscosity appears in equation (19) because of its role on the jet velocity selection and,
once the jet is rising, viscosity does not play an active role anymore, in particular
in the drop detachment, and stays hidden in the jet velocity in the equation (21).
This implies that, once the jet velocity and shape are given, inviscid considerations
would properly describe the drop detachment. Finally, contrary to the liquid viscosity
which does not participate to the drop detachment process itself (Mo � 10−8), the
duet gravity-capillarity seems to initiate the drop detachment by balancing the jet
inertia and pulling on the jet tip.

6 Evaporation of droplets in a Champagne wine aerosol

In the two last sections, we have characterized in details, and in a general context,
the effervescence mechanism from the bubble lying at the free surface up to the drop
detachment. In particular, we have showed that champagne aerosol is in a zone of
control parameters where a slight change of liquid properties leads to a drastic change
of the drop velocity and size produced by bubble bursting. In the present section, we
will focus on champagne properties and, driven by the knowledge we have gained in
the study of jet and drop detachment dynamics, we now aim at estimating droplet
evaporation and finding if liquid properties would enable to optimize the aerosol
evaporation. This section is extracted from Ghabache et al. (2016) [58].

6.1 Top drop velocity and size

For the sake of clarity we keep restricting our attention on the droplets that bound
the edge of the aerosol cloud. Indeed, we will see in paragraph 6.6 that they dominate
the evaporation process as they are faster and with a size at least comparable if it is
not bigger than the others (see Fig. 4 or 14 for instance). In particular, we will see
that our conclusions based on the highest drops would not be modified by taking into
account the other drops.
We set out by plotting in Figure 19(a) the dependence of the top drop velocity

Vd on mother bubble radius Rb in water, champagne and the three hydro-alcoholic
solutions (i)–(iii) presented in Table 1. We recall that Vd is measured when the
drop detaches and the three solutions (i)–(iii) have the same properties as a typical
champagne at three different temperatures, respectively 20, 12 and 4◦C. Figure 19(b)
presents the top drop radius as a function of the bubble radius Rb from our experi-
ments in our five different liquids. The four snapshots display the jet and jet drops for
each solution. As we showed in the previous sections, the drop velocity is greater and
the top drop is shrinking as the bubble radius is smaller and the liquid is more viscous.
In the two graphs, the dashed lines are the best fit of the experimental drop velocity
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Fig. 19. (a) Top drop velocity Vd as a function of the bubble radius Rb in water, champagne
at 20◦C and in the three hydro-alcoholic solutions (i)–(iii). The dashed line curves are the
best fits of the experimental values of the drop velocity. (b) Top drop radius as a function of
bubble radius in water, champagne and in the three hydro-alcoholic solutions (i)–(iii). The
dashed lines are the best fits of the four series of data. The four snapshots display the jet
and jet drops for each solution.

Fig. 20. Top drop maximum height as a function of bubble radius in water and for the
three hydro-alcoholic solutions (i)–(iii). The dashed line curves are computed numerically
by integrating the Newton’s second law applied to the flying drop using drag coefficient
CD =

24
Re(t)

(
1 + 0.15 Re(t)0.687

)
, experimental drop radius Rd(Rb) and initial drop velocity

Vd(Rb) as initial condition.

and radius as a function of the bubble radius. They will be used later on as initial
drop radius and velocity in the drop dynamics differential equations. Finally, the su-
perposition of the highest jet drop velocity in champagne and in the water-ethanol
solution (i) is excellent (see diamonds), confirming that those solutions perfect ide-
alized champagne and confirming that surfactants can be neglected in the jet drop
dynamics.

6.2 Maximum drop height

The top drop maximum height is plotted on Figure 20 as a function of the bubble
radius from our experiments in distilled water and for the three solutions (i)–(iii).
The points in water are in good agreement with the literature [37,59]. All these
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experimental data adopt a bell shape curve with a maximum height reached for
bubble radius around one millimeter. The maximum height decreases and is slightly
shifted toward larger radius as viscosity is increased. This diminution of the maximum
height with viscosity is surprising as we saw that increasing viscosity leads to faster
drop ejection velocity. However, because this increase in drop velocity is accompanied
by a size shrinking, the effect of drop inertia (which scales with the drop volume),
should be compared with drag force FD (roughly speaking scaling as a surface).
When drop size decreases, surface effects become dominant over volume effects and
consequently, small drop inertia becomes negligible compared to the drag force. The
maximum height a drop can reach with a given initial velocity can thus be captured
by integrating the following differential equation:

4

3
ρπR3d

d2z

dt2
= −1
2
ρairπR

2
d

(
dz

dt

)2
CD −

4

3
ρπR3dg (22)

with z the drop height and CD the drop drag coefficient. Here CD is taken as the
drag coefficient on a solid sphere in steady motion. As the drop Reynolds number
Re(t) = 2 ρair

μair
dz
dt
Rd ranges from ten to a hundred, classical Stokes’ drag 24/Re is

not adequate and inertial terms need to be added. Many empirical or semiempirical
equations have been proposed [60] to approximate CD as a function of the Reynolds
number on a given Reynolds range. Here CD =

24
Re(t)

(
1 + 0.15 Re(t)0.687

)
valid for

Re < 800 [61], has been taken. On Figure 20 we plot with a colored dashed line the top
drop height as a function of the bubble radius computed with this model without any
fitting parameters. We observe an excellent agreement between these curves and the
experimental points. The drop maximum height is perfectly captured by this simple
model containing the experimental drop radius Rd(Rb) and the initial drop velocity
Vd(Rb) as initial condition. It also confirms the validity of the strong hypotheses of
steady drag and drop sphere shape.

6.3 Simple model for drop evaporation

In this system, drop evaporation is crucial to understand the aroma diffusion by
champagne aerosol. We have all the informations needed to build a simple predic-
tive model, and to highlight the relevant features playing a role in the evaporation
dynamics. Hence, a single droplet with radius Rd(t), velocity

dz
dt and temperature T

(between 4 and 20◦C) is moving into an environment with temperature T∞=20◦C
and mass fraction of the vapor of the droplet material Y∞vap =

ρ∞vap
ρair
. The evaporation

process of the droplet depends a priori on these parameters. The considered model
implies that quasi-steady conditions prevail. Under these conditions, and considering
the thermophysical properties as constant, the analysis of mass transfer processes into
the gas phase near the droplet surface allows the determination of the regression rate
of the droplet radius:

dR2d(t)

dt
= −2j0

(
1 + 0.3Sc

1
3Re(t)

1
2

)
(23)

where Sc, the Schmidt number, is defined as the ratio of momentum diffusivity in
air (νair) and mass diffusivity of vapor in air (D), and j0 the evaporation parame-
ter [62,63]. In our case, where the gas temperature is low, evaporation process is
only controlled by diffusion, which leads to j0 =

ρair
ρliq
D(Y surfvap − Y∞vap) [64] – the Ste-

fan flow being negligible [63]. For the calculation of the vapor mass fraction of each
substance at the surface of the droplet Y surfvap , the heat transfer equation and the
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Clausius-Clapeyron equation are considered. Because the vapor pressure of the glyc-
erol is about six orders of magnitude lower than this of water or ethanol, evaporation
of glycerol has been neglected. With the intrinsic difference of volatility between wa-
ter and ethanol, and an ambient partial pressure taken to 50% of vapor pressure
for water (relative humidity) and 0% for ethanol, we obtain an evaporation parame-
ter (j0) for ethanol around five times greater than evaporation parameter for water.
Expectedly, ethanol evaporates easier than water. More details on this analysis are
given in the ”Methods” section. Equation (23) is the product of two terms: the well
known d2-law for evaporation of an unmoving droplet which follows from equation
dR2d(t)
dt = −2j0 [65,66]. And, the drop motion which is taken into account using the
standard Ranz and Marshall empirical mass transfer correlations for moving sphere

1 + 0.3Sc
1
3Re(t)

1
2 [67]. This correction comes from the assumption that the mass ex-

change between the droplet surface and the gas may be modeled as occurring within

a spherical diffusion film of constant thickness Rd(t)/(0.3Sc
1
3Re(t)

1
2 ) – this behavior

goes by the names of Prandlt-Blasius-Pohlhausen (1921) [68].

6.4 Drop evaporation from trajectory

Now, the system of differential equations (Eqs. (22) & (23)) can be solved, with the
variable Rd(t) instead of the constant Rd in equation (22). The initial conditions
ż(0) and Rd(0) are given by the experimental measurement of the initial drop veloc-
ity and radius, resp. Vd and Rd (Figure 19). On the Figure 21(a) the experimental
height of the first jet drop ejected after a bubble burst is plotted as a function of
time with grey circles in the case of a small drop. As expected, the curve is typical
of a trajectory where drag forces prevail over inertia. On the same graph, the theo-
retical trajectories, without evaporation (Eq. (22)), and with evaporation (Eqs. (22)
& (23)) are plotted respectively with dashed black and plain red curves. Because
the determination of the initial radius Rd is not very accurate (Rd=24 ± 3 μm),
the error bar needs to be included in the model. In this case, the hatched gray zone
and the red zone represent the error bar in the numerical resolution induced by
the experimental error on the initial drop size measurement. Despite the errors and
approximations, the experimental trajectory is very well captured by our evapora-
tion model and could not be captured with just a constant radius trajectory model
(Eq. (22)). Our evaporation model is therefore well adapted to this system and will
be used in the following in order to estimate the evaporated liquid mass during the
drop time of flight. The discrepancy at the end of the trajectory may be due to an
experimental gradient of humidity getting closer to 100% as z gets to 0 (close to the
free surface).
Figure 21(c) presents the radius variation (δRd/Rd(0)) of the same drop as in

Figure 21(a) on its time of flight. We observe an almost constant radius shrinking
rate during the drop free fall, reaching a final value of about 20% before landing
again. Obviously, small droplets trajectory are more prone to being affected by evap-
oration. This is why, on Figure 21(b), the experimental trajectory of a drop among our
biggest (Rd=307 μm), collapses with the two theoretical trajectories. Evaporation
does not modify its trajectory. Indeed, in this case δRd/Rd(0) reaches less than 0.06%
as shown on Figure (d). Note that, the “plateau” observed on the drop shrinking rate,
corresponds to the time when the drop stopped at its maximum height, showing the
influence of the drop motion on its evaporation. Finally, on Figure 21(b) the purely
ballistic trajectory without drag has been added with a grey dotted line. We observe
that, as the drop size increases, the influence of the drag becomes less significant and
the trajectory approximates to a parabola.
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Fig. 21. (a) Drop height z as a function of time for a typical small droplet: Rd=24 μm
and Vd=8.30 m.s

−1. The gray circles correspond to the experimental trajectory, the dashed
black curve corresponds to the trajectory obtained by solving numerically equation (22) (no
evaporation, Rd constant) and the plain red curve corresponds to the trajectory obtained
by solving numerically equations (22) & (23) (with evaporation, Rd(t) non constant). The
hatched gray and red zones represent the error in the numerical resolution of the respective
models (22) and (22) & (23) induced by the experimental error on the initial drop size
measurement: Rd=24 ± 3 μm (experimental error on the initial velocity is negligible). (b)
Drop height z as a function of time for a typical big drop: Rd=307 μm and Vd=1.16 m.s

−1.
In this case the experimental trajectory (gray circles) and the numerical trajectory with
evaporation (plain red) and without evaporation (dashed black) all collapse. The dotted
curve corresponds to the ballistic trajectory z(t)=Vdt − 1

2
gt2. (c) Drop radius variation

rate (δRd(t)/Rd(0), with δRd=Rd(0) − Rd(t)) for the drop corresponding to Figure (a)
(Rd(0)= 24 μm), on its time of flight. Here δRd(t)/Rd(0) reaches a final value of about 20%
before landing again. (d) Drop radius variation rate for the drop corresponding to Figure (b)
(Rd(0)= 307 μm), on its time of flight. Here δRd(t)/Rd(0) reaches a final value less than
0.06% before landing again.

6.5 Discussion on the top drop evaporation

Figure 22 presents the bubble radius dependence of the total mass evaporated on the
top drop trajectory. Namely, δM = 4

3πρliq(R
3
d(0)−R3d(Tfly)) with Tfly the drop time

of flight. The only differences in the calculation of the three curves (i)–(iii) are the
initial conditions ż(0)=Vd(Rb) and Rd(0) = Rd(Rb) that change because of viscosity
(see Fig. 19). The first interesting result is the absolute value of these curves, around
0.1 μg per drop. Considering that approximately between 300 and 500 bubbles burst
per second at the surface of a champagne glass [1], one obtains an approximative value

of the top drops evaporation rate: Ṁ =40 μg.s−1. This value needs to be compared to
the evaporation rate from the flat surface (Sl) of a glass filled with the same solution.
In this aim, the evaporation flux from the surface is taken as purely diffusive and
integrated on the length scale of the vapor concentration gradient L∞ [69]. This gives
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Fig. 22. The plain lines present the total evaporated mass δM from the top drop during
its time of flight Tfly, computed numerically with equations (22) and (23), as a function of
the bubble radius Rb in the three solutions (i)–(iii). For the calculation, ambient relative
humidity above the tank has been taken to 50%. The dashed lines present the approximated
evaporated mass equation (24) in the case where Rd(t) � Rd(0) (initial drop radius) with a
parabolic trajectory. The approximation is satisfactory for a high part of the range of bubble
radius.

the evaporation rate from the surface: ṁ = −DSlρairL∞ (Y surfvap − Y∞vap). In this context
L∞ is typically the height between the liquid surface and the top of the glass. In a
flute the interfacial area Sl is a disc of approximate radius two centimeters and L∞
is taken equal to the flute diameter: four centimeters. The other values are the same

as for the drop evaporation. In this case, Ṁ
ṁ
� 10, which means that the aerosol con-

stituted by the top drops evaporate ten times more than the still liquid surface. This
key result confirms, for the first time, the universal feeling that the characteristic fizz
of a sparkling wine is of a paramount importance in the flavor release. Now, let us
look whether evaporation of this aerosol can be optimized.
On Figure 22 each curve has a bell shape, which means that there is a bubble

radius optimizing the top drop evaporation. The liquid viscosity also plays a role,
the evaporation of the top drop is more efficient if the bubble bursting takes place
in a weakly viscous liquid. One observes that, the maximums occur roughly for the
same bubble radius. Note that this latter does not correspond either to the maximum
drop height, the maximum drop velocity (smallest bubbles) or the maximum drop
radius (largest bubbles). However, these particular bubbles (with Rb ∼ 1.7–1.8mm)
which would optimize the aroma diffusion in the context of champagne tasting, are
quite large. In the popular mind, it is nevertheless often said that the smaller the
bubbles, the better the champagne; our results undermine this popular belief, at least
in terms of sense of smell. Especially considering that, both the size of bubbles and
their nucleation rate are mainly driven by the level of dissolved CO2 [70]. Indeed,
this means that champagnes poor in dissolved CO2 (typically old ones) will com-
bine small bubbles and low nucleation rate inducing systematically less numerous
bubbles. On the other hand, champagne rich in dissolved CO2, combining large bub-
bles and high bubble nucleation rates will show a much better efficiency in terms of
flavor release.
In order to interpret these curves we need to identify the relevant ingredients that

influence the evaporation of these jet droplets. To this end, let us consider the limit
case where the drop is big enough to allow the trajectory to be approximated by
a parabola: z(t) = Vdt − 1

2gt
2 and Vd = gTfly/2. In this case, evaporation does not

significantly affect the drop radius: Rd(t) � Rd(0) (inset of Fig. 21). Equation (23)
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can easily be integrated and the total evaporated mass can be approximated by:

δM = 2πρliqj0RdTfly

(

1 + 0.3Sc
1
3

(
4g

9νair

) 1
2

(RdTfly)
1
2

)

· (24)

This approximated development of the evaporated mass is plotted on Figure 22 with
dashed line. For the smaller drops, equation (24) slightly overestimates the evaporated
mass, because in this case the drop trajectory is far from being parabolic and a drop
can significantly shrink during its time of flight. However, the agreement is perfect
for the bigger drops, including the maximum, particularly well captured. In first
approximation, the trajectory of a drop ejected by a bursting bubble is thus relatively
well approximated by a parabola. This allows us to identify the product RdTfly as the
relevant quantity for drop evaporation in this system. The first term comes from the
evaporation of an unmoving drop of radius Rd in air during the time Tfly. The second
term comes from the drop motion. The two terms have the same order of magnitude.
Rd and Tfly contain all the ingredients needed to estimate the first jet drop evaporated
mass.

6.6 Evaporation of the second drop

Here we have focused on the evaporation of the first drop detached from the bubble
bursting jet. We can now evaluate the evaporation of the second drop to look at
its influence on the total evaporation of a bubble bursting aerosol. We solve the
equations (22) and (23) with, as initial conditions, the second drop radius and velocity
measured experimentally. Here, we still consider that the drop is isolated and that its
evaporation is not influenced by the top drops. Typically we take the same ambient
relative humidity (50%) and concentration of vapor of ethanol (0%) as for the first
drop. Consequently, we probably slightly overestimate the evaporation of the second
drop.
On Figure 23, the evaporated mass δM from the top drop (plain line), the second

drop (small dashed line) and the sum of both (long dashed line) is plotted as a function
of the bubble radius Rb in the three solutions (i)–(iii). The evaporation of the first
drop clearly prevails over the evaporation of the second drop, especially considering
that here the evaporation of the second drop might be overestimated. Typically, the
evaporation of the second drop does not modify the bubble radius that optimizes
the first drop evaporation. Therefore, our conclusions based on the first drop are not
fundamentally modified by taking into account the second drop, and most probably
the third drop, etc. This can be explained by the fact hat the first drop is faster and
usually bigger than the others or with a comparable size. Obviously, if this first work
is aimed at giving tendencies, it does not pretend to be accurate and further studies
need to be realized in order to know the amount of liquid evaporated above a glass
of champagne in tasting conditions.

7 Conclusion

Finally, even though our work is based on a model experiment, it presents unique con-
tributions on the bursting bubble dynamics, from the bubble lying at the free surface
to the evaporation of the produced droplets. The outcomes are important both from
a fundamental point of view and in the application to champagne aroma diffusion.
In the general context of the physics of effervescence, we provided a comprehen-

sive picture of the entire process: bubble collapse, jet dynamics, top drop detachment
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Fig. 23. Total evaporated mass δM from the top drop (plain line) and second drop (small
dashed line) during their time of flight, computed numerically with equations (22) and (23),
is plotted as a function of the bubble radius Rb in the three solutions (i)–(iii). The sum of
evaporated mass of top and second drops are plotted with the long dashed line. For each
case the contribution of the second drop is small compared to the contribution of the top
drop. In a bubble bursting aerosol the evaporation of the top drops is dominant.

and trajectories. In all cases, we interpreted the physical mechanisms at play and
we provided scaling laws based on experimental results. In particular, the top drop
velocity and size are given as a function of bubble size and liquid properties on very
large ranges of the relevant non-dimensional numbers.
Afterward, we showed that the range of liquid parameters of Champagne wines

takes place in the most appealing zone of the space phase, where a slight change of
liquid properties leads to a drastic change of the drop velocity and size produced
by bubble bursting. Furthermore, we proved experimentally that the aerosol above
hydro-alcoholic solutions like champagne or any sparkling wine is only constituted by
jet drops, no film drops populate such aerosol. It is therefore very different from sea
spray where film drops are crucial and represents a genuine academic aerosol.
Based on this observation, we proved that hydro-alcoholic solutions perfectly

mimic champagne in terms of aerosol production and can be used as a model cham-
pagne. The role of the surfactants present in champagne is thus negligible in the drop
dynamics. Finally, we demonstrated that this aerosol plays a critical role in the aroma
diffusion. Indeed, compared to a still wine, it drastically improves the transfer of liquid
into the surrounding air, even though it is only populated by jet drops. We exhib-
ited conditions on bubble bursting that optimize aerosol evaporation: large bubbles
and weakly viscous liquids. We identified a large bubble radius (∼1.7 mm), broadly
common to the whole range of champagne viscosity, that makes liquid transfer more
efficient. This could be easily achievable as laser-etching on champagne glasses allows
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the creation of monodisperse bubbles reaching the surface at a chosen radius [57].
This result is also remarkable as it undermines the popular belief that the smaller
the bubbles, the better the champagne. Small bubbles being the worst in terms of
aroma release. We also showed that decreasing champagne viscosity would improve
drop evaporation. In this aim, additives that would change wine viscosity without
changing the taste might be used. These results pave therefore the way towards the
fine tuning of champagne aroma diffusion, a major issue for the sparkling wine indus-
try, and should encourage further research on this subject. In particular, around the
collective effects of bubble raft on the aerosol production, last major step toward a
truly quantitative relevancy of academic results for applications to champagne aroma
diffusion in tasting condition.

8 Bubbles raft and collective effects

As introduced just above, most of our results have been obtained with a single bubble
bursting at a calm surface. However, as we all know, bubbles rising after a wave breaks
in the ocean or in a glass of a sparkling beverage are numerous. In this section we
present the existing results, mostly qualitative, on the collective effects of bubbles
bursting at the free surface in the presence of neighbor bubbles.

8.1 When champagne bubbles dress up like flowers

A few seconds after pouring, and after the collapse of the foamy head, the surface of
a champagne flute is covered with a layer of mono-disperse bubbles – a kind of bubble
raft, or 2D foam, where each bubble is generally surrounded by six neighboring bub-
bles (see Fig. 24). Bubbles arrange themselves in an approximate hexagonal pattern.
In this configuration, when the bubble-cap of a bubble ruptures and leaves an

open cavity at the free surface, adjacent bubble-caps are sucked towards this empty
cavity and create unexpected and short-lived flower-shaped structures, unfortunately
invisible to the naked-eye (see top images of Fig. 25) [29,71]. Shear stresses under-
gone by bubbles trapped in the close vicinity of a collapsing one are clearly visualized
on the bottom image of Figure 25, where the bubble raft is not complete. Adjacent
bubble-caps are sucked and not blown-up by bursting bubbles, contrary to what could
have been expected at first glance.
Actually, after the disintegration of a bubble-cap, the hexagonal symmetry around

adjoining bubbles is suddenly locally broken. Therefore, the symmetry in the field of
capillary pressure around adjoining bubbles is also locally broken. Capillary pressure
gradients all around the now empty cavity. Indeed, the pressure in the bubble-cap
Pcap can be expressed as Pcap = Patm + 2γ/Rcap = Patm + γ/Rb (see Fig. 26) with
Rcap = 2Rb (see Eq. (5)). On the other hand, pressure under the open cavity Pc is
simply Pc=Patm − 2γ/Rb. Consequently, the capillary pressure gradient in the thin
liquid film of adjoining bubble-caps can be estimated as:

grad P ∼ Pc − Pcap
Rb

= − 3γ
R2b
· (25)

This capillary pressure gradient in the bubble-caps adjacent to an empty cavity is
supposed to be the main driving force of the violent sucking process experienced
by a bubble-cap in touch with a bursting bubble. More recently, those flower-shaped
structures have been observed during the coarsening of bi-dimensional aqueous foams,
obtained by mixing a surfactant, sodium dodecyl sulphate (SDS), with pure water [73].
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Fig. 24. A few seconds after pouring, and after the collapse of the foamy head, the surface
of a flute is covered with a layer of quite mono disperse millimetric bubbles, where bubbles
arrange themselves in an approximate hexagonal pattern, strikingly resembling those in
beeswax (photograph by Gérard Liger-Belair).

During this sudden stretching process, adjacent bubble-caps areas significantly
increase. A systematic image analysis of numerous sequences similar to that displayed
in Figure 27 demonstrated an average increase ΔA around 15%, of bubble-caps areas
adjacent to a central collapsing bubble. The free energy of such a system will be
supposed to be mainly stored as surface free energy. Consequently, the density of free
energy per unit of volume in the liquid film of a distorted bubble-cap (one petal of
the flower-shaped structure) can be evaluated as follows [71],

(
ΔE

V

)

bubble-cap

∼ 2γ
e

ΔA

A
∼ 0.15× 2γ

e
� 104 − 105J.m−3 = 104 − 105N.m−2 (26)

where ΔE is the corresponding surface free energy in excess during the stretching
process, V is the volume of the thin liquid film of the emerging bubble-cap, A is the
emerging bubble-cap area, and e is the thickness of the thin liquid film of the bubble-
cap (of order of 10−6–10−7 m). Therefore, the liquid flows induced by the capillary
pressure gradients are responsible for a density of energy per unit of volume dimen-
sionally equivalent to shear stresses of order of 104–105 N.m−2 (depending on the
film thickness). By comparison, in previous studies, numerical models conducted to
stresses of order of (only) 103 N.m−2 in the boundary layer around single millimetric
collapsing bubbles [31,39]. Therefore, stresses in the bubble-caps of bubbles adjacent
to collapsing cavities appear to be, at least, one order of magnitude higher than those
observed around single collapsing cavities. Intuitively, this is finally not so surprising.
Actually, after a bubble-cap’s aperture, the now empty cavity has to collapse to re-
cover the horizontality of the liquid surface. The potential energy of such an unstable
situation the difference of surface free energy between an hemispherical open cavity
of radius R and a flat circular surface of radius R (of order of γπR2). Now, it should
be noted that the same driving potential energy is responsible for the single cavity
collapse and for the collapse of the cavity surrounded by neighboring bubble-caps.
But, the volume of liquid displaced in the thin film of adjoining bubble-caps being
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Fig. 25. Top images: flower-shaped structure, as frozen through high-speed photography,
found during the collapse of bubbles in the bubble raft at the free surface of a flute poured
with champagne. Bottom image: shear stresses experienced by bubbles adjacent to a col-
lapsing one at the free surface of a flute poured with champagne. In both cases bar= 1 mm
(photographs by Gérard Liger-Belair).

much less than that of the boundary layer drawn, it logically induces higher energy
dissipation rates per unit of volume and therefore higher strains in the “petals” of the
flower-shaped structure. Finally, while absorbing the energy released during a bubble
collapse, as so many tiny air-bags would do, adjoining bubble-caps store this energy
into the thin liquid film of emerging bubble-caps, leading finally to stresses much
higher than those observed in the boundary layer around single millimetric collapsing
bubbles.
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Fig. 26. Schematic transversal representation of the situation, as frozen after the disinte-
gration of the central bubble-cap.

In addition to purely physicochemical reasons, biological reasons are also readily
found for the investigation of such flower-shaped structures around bubbles collaps-
ing in a bubble raft. Actually, in the biological industry, animal cells cultivated in
bio-reactors were shown to be seriously damaged or even killed by the bursting of
gas bubbles used to aerate the culture medium [74,75]. It has even been suggested
that structural deformations of adjacent tissues are induced by bubble collapse dur-
ing laser-induced angioplasty [76,77]. Kunas and Papoutsakis evaluated the critical
shear stresses needed to cause irreversible damages to classical animal cells [75]. They
found critical lethal stresses in the range between 103 and 104 N.m−2. Therefore,
by developing stresses of order of 104–105 N.m−2, bubbles bursting in a bubble raft
should be potentially even more dangerous for micro-organisms or biological tissues
trapped in the thin film of these “fast-stretched bubble-caps”.

8.2 Avalanches of bursting events in the bubble raft?

Actually, avalanches of popping bubbles were put in evidence during the coarsening
of bi-dimensional and three dimensional aqueous foams [73,78]. How does the bub-
ble raft behave at the surface of a flute poured with champagne? Does a bursting
bubble produce a perturbation which extends to the neighboring bubbles and induce
avalanches of bursting events which finally destroy the whole bubble raft? In case of
champagne wines, a few time sequences of bubbles bursting in the bubble raft have
been captured with a high-speed video camera. One of them is displayed in Figure 27.
Between frame (a) and frame (b), the bubble pointed with the dashed arrow has

disappeared. In frame (b), neighboring bubbles are literally sucked toward this now
bubble-free area. Then, neighboring bubbles oscillate during a few milliseconds and
progressively recover their initial hemispherical shape. In conclusion, in case of bub-
bles adjacent to collapsing ones, despite high shear stresses produced by a violent
sucking process, bubbles adjacent to collapsing ones were never found to rupture
and collapse in turn, thus causing a chain reaction. At the free surface of a flute
poured with champagne, bursting events appear to be spatially and temporally non
correlated. The absence of avalanches of bursting events seems to be linked to the
champagne viscosity, which is about 50% higher than that of pure water [73]. It can
also be noted that a tiny daughter bubble, approximately ten times smaller than the
initial central bubble, has been entrapped during the collapsing process of the central
cavity (as clearly seen in frames (c) and (d) of Fig. 27). Bubble entrapment during the
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Fig. 27. Time sequence showing the dynamics of adjoining bubbles in touch with a collapsing
one at the free surface of flute poured with champagne; the whole process was filmed at
1500 frames/s; from frame (d), in the center of the empty cavity left by the collapsing
bubble, a tiny air-bubble entrapment is observed (bar=1 mm).

collapsing process was already experimentally and numerically observed with single
millimetric collapsing bubbles [31,79], including champagne bubbles [26]. This bubble
entrapment process can also be observed as drops impact on liquid surfaces [80–84].

8.3 And finally what about the bubble bursting jet?

Intuitively, differences between the dynamics of the jet from a single bubble and from
a bubble bursting in a raft could be expected. Actually, the bulk shape of bubbles
adjacent to the empty cavity left by the central collapsing bubble strongly changes
the geometry of the system beneath the free surface. Such a situation could there-
fore modify the converging liquid flows all around the empty cavity, thus probably
modifying in turn the overall dynamics of the upward liquid jet. Even if the liquid
jets shooting out from single collapsing bubbles are not always vertical, we expect
bubble bursting jet from a bubble in a raft to be commonly tilted. One example has
been captured in the sequence of Figure 28. How horizontal momentum is gained in
these jets is still an unsettled question. We observe that this jet typically originates
from bubbles located at the edge of a bubble raft. In this case, we expect that hor-
izontal momentum lies in the initial shape of the collapsing bubble. Indeed, when
isolated, the bubble is completely axisymmetric and so are the capillary waves riding
on the bubble surface. The resulting jet preserves this axisymmetry and is vertical.
Now when the bubble is located on the edge of the raft, there is a complete symmetry
breaking in the initial shape. This strong asymmetry reflects in turn in the developing
capillary waves, and eventually in the resulting tilted jet. More generally, we expect
more asymmetry in raft bubble than in single bubble leading to more tilted jet. Such
asymmetry-induced momentum is typical of, e.g. strong liquid jets produced during
the collapse of cavitation bubble cloud and responsible for cavitation damage [82].
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Fig. 28. Top images: time sequence, filmed at 5000 frames per second showing formation
of largely tilted jet as neighboring bubbles’ symmetry is broken around collapsing bubble.
Bottom image: close-up on tilted jet as neighboring bubbles’ symmetry is broken around
collapsing one.

The bottom image of Figure 28 presents another example of tilted jet from a bub-
ble at the edge of a raft [85]. indeed, on the right side of this picture, the collapsing
bubble is bordered by three neighboring bubbles, whereas on the left side, there are
no adjoining bubbles. The hexagonal symmetry is broken. The jet is tilted toward the
“bubble-free” area. These are one example of the collective effects of bubble bursting
in a raft but we expect others. For example, after the bubble rupture, a capillary wave
is emitted and rides radially outwards. As the wave reaches distant bubbles, their
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rupture might occur on the wave, inducing most probably a tilted jet. The wave-
induced horizontal momentum source is another form of asymmetry, and is remi-
niscent of the forward source of momentum of “walking droplets”, rebounding on a
vibrating liquid bath [86].
Finally, the consequence of these collective effects on the drop size, velocity and

in fine evaporation is not clear at all. Further experimental observations, combined
with numerical simulations, are soon to be conducted in order to better understand
the role of neighboring bubbles on the dynamics of the jet formation and its breakup
into droplets.
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17, 791 (2001)

24. N. Péron, J. Meunier, A. Cagna, M. Valade, R. Douillard, J. Micro. 214, 89 (2004)
25. G. Liger-Belair, C. Cilindre, R.D. Gougeon, M. Lucio, I. Gebefügi, P. Jeandet,
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