
Stationary residual layers in buoyant Newtonian displacement flows
S. M. Taghavi,1 T. Séon,2,a! K. Wielage-Burchard,2 D. M. Martinez,1 and I. A. Frigaard2,3
1Department of Chemical and Biological Engineering, University of British Columbia,
2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
2Department of Mathematics, University of British Columbia, 1984 Mathematics Road,
Vancouver, British Columbia V6T 1Z2, Canada
3Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane,
Vancouver, British Columbia V6T 1Z4, Canada

!Received 28 June 2010; accepted 17 March 2011; published online 26 April 2011"

We study buoyant displacement flows with two miscible fluids of equal viscosity in ducts that are
inclined at angles close to horizontal !!#90°". As the imposed velocity !V̂0" is increased from zero,
we change from an exchange flow dominated regime to a regime in which the front velocity !V̂f"
increases linearly with V̂0. During this transition, we observed an interesting phenomenon in which
the layer of displaced fluid remained at the top of the pipe !diameter D̂" during the entire duration
of the experiment, apparently stationary for times t̂"103D̂ / V̂0 !the stationary residual layer". Our
investigation revealed that this flow marks the transition between flows with a back flow, counter to
the imposed flow, and those that displace instantaneously. The same phenomena are observed in
pipes !experiments" and in plane channels !two-dimensional numerical computations". A lubrication/
thin-film model of the flows also shows the transition from back flow to instantaneous displacement.
At long times, this model has a stationary residual layer solution of the type observed, which is
found at a unique ratio # of the axial viscous velocity to the imposed velocity. The prediction of the
stationary residual layer from the lubrication model is compared with the transition in observed
behavior in our pipe flow experiments and our 2D numerical displacements in the channel.
Reasonable agreement is found for the pipe and excellent agreement for the channel. Physically, in
either geometry at transition, the upper layer of the fluid is in a countercurrent motion with zero net
volumetric flux; the velocity at the interface is positive, but the velocity of the interface is zero. This
results from a delicate balance between buoyancy forces against the mean flow and viscous forces
in the direction of the mean flow. © 2011 American Institute of Physics.
$doi:10.1063/1.3581063%

I. INTRODUCTION

We consider displacement flows in near-horizontal ducts
!pipes and plane channels" with a heavier fluid displacing a
lighter fluid downwards, i.e., density unstable. We have al-
ready presented preliminary results of our experimental
work,1 in which we studied the effects of augmenting a den-
sity unstable pipe exchange flow with an increasingly strong
imposed mean flow. We were able to identify three distinct
regimes: !i" an exchange flow dominated regime, !ii" a lami-
narised viscous displacement regime, and !iii" a fully mixed
displacement regime. This paper presents an in-depth study
into the physics of the transition between the first two of
these regimes.

In the exchange flow context, the driving force is the
buoyancy and the physical mechanisms that limit the flow
are either inertia or viscosity, depending on the geometric
configuration and the type of fluids.2 Two characteristic ve-

locities can be defined. First, a viscous velocity scale V̂$

V̂$ =
AtĝD̂2

$̂
!1"

when buoyancy and viscous term are balanced. Second, an
inertial velocity scale V̂t

V̂t = &AtĝD̂ !2"

when buoyancy and inertia terms are balanced. Here, At is
the Atwood number, defined as the ratio of the difference of
densities of the two fluids by their sum, ĝ is the acceleration
due to gravity, D̂ is the diameter of the pipe, and $̂ is the
common kinematic viscosity of the fluids, defined with the
mean density.3 Exchange flows have been classified as either
inertial or viscous according to which effect is dominant in
balancing buoyancy forces.4 Inertial exchange flows are
found in pipes if

V̂$ cos !

V̂t

! 50, !3"

and viscous exchange flows otherwise. Here, ! measures the
inclination of the pipe from vertical. Taghavi et al.1 found
that at sufficiently low mean imposed velocity V̂0, the flow
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was close to an exchange flow, as expected. The measured
downstream !or leading" front velocities !V̂f" were consistent
with those of exchange flows in near-horizontal pipes.

At larger imposed V̂0, we find that the leading displace-
ment front propagates at speed V̂f that increases linearly with
V̂0 !with slope larger than 1". This intermediate regime in-
volves a laminarization of the flow, even when the underly-
ing exchange flow configuration is inertial, indicating the
dominance of viscous forces. A well defined interface is ob-
served even for relatively high Reynolds numbers. In this
viscous dominated regime, with the interface elongated
along the duct, a natural modeling approach is the
lubrication/thin-film approach, which we have developed for
the simpler plane channel geometry.5 Analysis of this model
reveals that after a short transient, stable displacement flows
of long aspect ratio are characterized by one or more steadily
moving fronts that stretch the interface between them. For
large buoyancy effects relative to the mean flow, one of the
fronts propagates backward at the top of the channel against
the mean flow. The frontal heights and speeds can be calcu-
lated straightforwardly for a wide range of different fluid
rheologies and density differences.

Considering the transition between regimes !i" and !ii"
!exchange flow and imposed flow dominated regimes", due
to the density difference we always expect a stratified inter-
face with heavier displacing fluid moving below the lighter
fluid as it displaces. Denoting the flow rates of heavy and
light fluids through a given cross-section by Q̂ and Q̂l, re-
spectively, we always have

%D̂2V̂0

4
= Q̂ + Q̂l. !4"

At V̂0=0, we have Q̂l=−Q̂&0 in the exchange flow. As V̂0 is
increased, the net buoyancy force available to resist motion
in the imposed flow direction remains constant, but the im-
posed flow creates viscous stresses that act on the lighter
fluid layer at the interface and drag the lighter fluid along the
duct. The viscous drag increases with V̂0 and eventually we
expect to attain a transition where Q̂l=0, and thereafter
Q̂l'0.

We believe the above to be an obvious feature of this
transition. Less obvious is that the flow structures remain
stationary at the transition; i.e., the layer thickness of the
lighter fluid that is found at the transition is one for which
the interface speed is zero. The flow apparently evolves to
select this interfacial position so that the flow structures ob-
served for V̂0 close to the transition persist over very long
timescales !as described in detail in Sec. II B". This unex-
pected feature occurs in both experimental !pipe" and com-
putational !plane channel" flows and is clearly of practical
consequence, particularly for industrial displacements. Our
paper fully explains this phenomenon and other aspects of
the transition.

Although unexpected, we have found two parallels to
this phenomenon in the literature. Huppert and Woods6 con-
sidered a range of porous media flows driven by density

difference, using a lubrication approximation. Part of their
study considers two-layer exchange flows between reservoirs
and among the solutions investigated there exist those for
which the flow in one layer is zero. There are many differ-
ences between porous media flows and those governed by
the Navier–Stokes equations. In the present context, we note
that the main differences are that in porous media flows of
Huppert and Woods,6 zero flow in one fluid layer means the
velocity is zero everywhere in that layer and the modified
pressure gradient is also zero. In the Navier–Stokes context
!our paper", there is a positive pressure gradient driving the
light fluid layer backward against the flow and the velocities
are nonzero within the stationary layer. In looking simply at
lubrication-type models with an imposed flow, those based
on underlying Hele–Shaw !or porous media" mechanics al-
low steady state interface propagation at the imposed
velocity,7 whereas those based on the Navier–Stokes systems
do not.5

The second parallel concerning stationary layers comes
from consideration of non-Newtonian fluid rheologies and,
in particular, fluids with a yield stress. In displacement flows
of such fluids, it is relatively common for there to remain
behind stationary layers attached to the wall.8 This occurs
also in the context of buoyancy dominated displacements.5

As with the porous media displacements, unyielded station-
ary layers also have zero velocity everywhere. However, in
contrast to porous media displacements !also to the Navier–
Stokes displacements we consider here", stationary layers are
found over a finite range of thicknesses and net pressure
gradients, whenever the fluid yield stress is strong enough to
resist motion.

A more general motivation for our paper arises since
buoyancy driven flows of miscible Newtonian fluids over
near-horizontal surfaces occur frequently in the oceano-
graphic, meteorological, and geophysical contexts,9,10 i.e.,
gravity currents. Most frequently, these flows have been
studied in unconfined geometries.11–15 More recently, due to
the importance of these flows in the industrial world, con-
fined geometries such as a vertical16–19 or inclined
pipe2,4,20–22 have been considered.

On entering the industrial arena, it is natural to consider
the imposition of a mean flow. Indeed, in this context one
can regard the displacement of one fluid with another as the
archetypical flow, which is modified by density differences
between the fluids. The study of miscible laminar displace-
ment flows in ducts is less mature than that of gravity cur-
rents. Although dispersive regimes were first studied over 50
years ago,23,24 many practical processing situations involving
aqueous liquids in laminar duct flows are far from this re-
gime. In an industrial setting, probably the most relevant
laminar regime is the nondispersive high Péclet number re-
gime, where the ducts have long aspect ratios but still lie
well below the Taylor dispersion regime. This high Péclet
number regime has been studied analytically, computation-
ally, and experimentally25–28 in the case of isodense fluids.
These studies show that sharp interfaces persist over wide
ranges of parameters for dimensionless times !hence lengths"
smaller than the Péclet number. At longer times !lengths" the
dispersive limit is attained. For fixed lengths and increasing
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Péclet number !while remaining laminar", the flow is com-
parable to an immiscible displacement !with zero-surface
tension".

Industrial displacement flows often involve both density
differences between fluids and rheological differences
!which we do not consider here". With buoyancy, there are a
number of displacement studies in vertical ducts, both for
miscible and immiscible fluids,29–32 but here we focus exclu-
sively on near-horizontal inclinations, which are phenomeno-
logically different in that near-stratified viscous regimes are
more prevalent. Many different types of industrial displace-
ment flow arise. Turbulent displacing regimes are typically
more effective, but are not always possible due to process
constraints; here our flows are laminar. A second distinction
comes in the volume of displacing fluid that is used. In some
processes, an essentially continuous stream can be pumped
through the duct, e.g., water in turbomachinery, and there are
few time restrictions. In other processes, due to either dis-
posal issues or cost of the fluids, it is desirable to displace the
in situ fluid with more or less a single “duct volume” of
fluid; i.e., we are replacing the in situ fluid with another.

An example of the latter process is the primary cement-
ing of oil and gas wells,33 which motivated our study. This
process involves displacing one fluid with another or with a
sequence of different fluids. The geometries are typically
pipe, annular, or duct-like, all with long aspect ratios. Large
volumes are pumped so that fluids may be considered sepa-
rated; i.e., we have a two-fluid displacement, not an n-fluid
displacement. A very wide range of fluids are used. Signifi-
cant density differences can occur; shear-thinning and yield
stress rheological behaviors are widely found. The main aim
of the process is to fully replace the in situ drilling mud with
a cement slurry. Our study highlights a particular displace-
ment regime where this type of process objective may fail.

An outline of the paper follows. Section II presents the
results of our study in the pipe geometry. The experimental
setup is explained and observations presented, focusing par-
ticularly on the back flow region. This is followed by devel-
opment of a lubrication/thin-film model for the pipe geom-
etry. This model is used to make quantitative predictions that
are in reasonable agreement with our experimental data. In
the second part of the paper !Sec. III", we study the same
phenomenon, but in the simpler plane channel geometry.
Here, the lubrication model leads directly to analytic predic-
tions of the stationary layer. These predictions are compared
with results from fully two-dimensional !2D" computations
of the displacement flows in this regime. An excellent agree-
ment is found. The paper concludes with a discussion. In the
appendix, we outline a simple physical model based only on
a momentum balance that is able to give the same qualitative
behaviors.

II. PIPE DISPLACEMENTS

A. Experimental setup and procedure

The study was performed in a 4 m long 19.05 mm di-
ameter transparent pipe with a gate valve located 80 cm from
one end $Fig. 1!a"%. The pipe was mounted on a frame that
could be tilted at any chosen angle. Initially, the lower part of

the pipe was filled with water colored with a small amount of
ink and the upper part by a denser salt-water solution. The
pipe was fed by gravity from an elevated tank. The imposed
flowrate was controlled by a valve and measured by both a
rotameter and a magnetic flowmeter located downstream of
the pipe. Experiments were performed using water as the
common fluid, with salt !NaCl" added to one of the fluids in
order to increase its density. A large number of experiments
were conducted over the ranges of $V̂0, At, !%
! $0–80 mm·s−1, 10−3–10−2, 83°–87°%. Our imaging sys-
tem consisted of two digital cameras with images recorded at
a frame rate of 2–4 Hz. The pipe was back-lit, and after
opening the valve, images were obtained at regular time in-
tervals, which enabled us to create spatiotemporal diagrams
of the concentration profiles along the length of the pipe. The
displacement of the front was marked on these diagrams by a
sharp boundary between the gray shades corresponding to
the two fluids. The front velocity was obtained from the
slope of this boundary.

We also measured the velocity profile at 80 cm below
the gate valve, using an ultrasonic Doppler velocimeter
DOP2000 !model 2125, Signal Processing SA" with 8 MHz
0.5 cm !TR0805LS" transducers. It is based on the pulse-
echo technique and allows the measurement of the flow ve-
locity projection on the ultrasound beam in real time.34 We
used polyamid seeding particles with a mean particle diam-
eter of 50 (m. The probe was mounted at an angle 78°
relative to the axis of the pipe.

B. Experimental observations

Before giving a broad description of our general results,
we describe in detail the experimental observation that mo-
tivated our deeper investigation. In systematically increasing
the mean flow velocity V̂0 from zero, we came across flows
in which the downstream layer of in situ fluid remained ap-
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FIG. 1. !a" Schematic view of the experimental setup. The shape of the
interface is illustrative only. More realistic shapes are given in Fig. 3 where
the interface shape was found to evolve both spatially and temporally. The
arrows in the diagram represent the motion of the fronts. !b" Schematic
views of the distribution of the two fluids in two perpendicular vertical
planes of the pipe !diametrical and transversal". The notation is that used
later in our models.
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parently stationary and uniform at the top of the pipe, while
the displacing fluid traveled underneath.

Figure 2 displays an example of such a flow in the con-
figuration where a heavy fluid !transparent" is injected to
displace the lighter fluid !black", which is initially filling the
inclined pipe. The displacement is from left to right. The
leading front of the heavy fluid slumps underneath the light
fluid at the start of the displacement !first image". We ob-
serve that 25 s after the beginning of the process, the two
fluids are stratified along the length of the pipe. Since only
the transparent fluid is injected, it is obvious that the two
layers have different mean velocities and intuitively we
would not expect this configuration to remain stationary.
However, looking at the next two images !250 and 450 s" we
observe that the upper layer retains the same thickness. The
image at the bottom of Fig. 2 is a spatiotemporal diagram of
the light intensity across the pipe !averaged over the small
square marked on the fourth image". The horizontal scale is
time and the vertical scale is the pipe diameter. At t̂=0, the
image is all black because the pipe is full of black fluid. After
around 15 s, the heavy fluid arrives in this part of the pipe
and we observe on the spatiotemporal diagram the two layers
with the transparent fluid below the black fluid. The thick-
ness of the layers stays constant until the end of the experi-
ment, about 7 min.

The surprising feature of this observation was the lon-
gevity of the upper layer, outliving the duration of our ex-

periment. During the time of the experiment in Fig. 2, five
times the volume of the pipe have flowed through the pipe.
Alternatively, the layers are constant for '103 times the ad-
vective timescale D̂ / V̂0#0.5 s. Also unexpected, but found
only after our analysis, was that the interfacial velocity !i.e.,
wave speed of the interface" is zero so that the stationary
layer is not simply a consequence of the flow becoming near-
parallel.

We turn now to a more general description of our results.
On closer investigation it became evident that as V̂0 was
increased from zero, the most obvious changes in the flow
occurred above the gate valve with the trailing front, rather
than below with the leading front !which typically was
quickly advected out of the 4 m pipe". The trailing or up-
stream front !meaning upstream of the mean flow" exhibited
four different characteristic behaviors. Figure 3 illustrates
these four behaviors in a 1015 mm long section of the pipe,
tilted at !=85°, for a sequence of displacements at the same
density difference !At=10−2" but at different V̂0. In each im-
age, the heavier transparent fluid moves downward from left
to right; the black part at the right of each image is the gate
valve and in the middle is a bracket supporting the pipe.

In Fig. 3!a", the lighter fluid is moving upward against
the imposed flow and the front moves steadily upstream
without stopping. This picture was taken a few seconds after
the tip of the front reached the upper end of the experimental

(450s)

(25s)
(5s)

(250s)

T(s)0 450

D^

^

FIG. 2. Sequence of images showing the stationary upper layer. This sequence is obtained for 5, 25, 250, and 450 s after opening the gate valve. The field of
view is 1015)20 mm and taken right below the gate valve. For this experiment, the pipe is tilted at 85° from vertical. The normalized density contract is
At=10−2, the viscosity is (̂=10−3 Pa·s, and the mean flow velocity is V̂0=38 mm·s−1. The figure below the sequence is a spatiotemporal diagram of the
variation of the light intensity in the transverse dimension, averaged over 20 pixels along the pipe in the region marked on the pipe above, with a time step
of *t̂=0.5 s. It shows the variation of the layer height with time.

(b)
(a)

(d)
(c)

63 cm Gate valve 22 cm x
V0^
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FIG. 3. Four snapshots of video images taken at different mean flow rates and illustrating the different regimes. The heavy transparent fluid flows downward
under the combined effects of buoyancy !*+" and pressure gradient !V̂0". The light black fluid has different behaviors !flows upward or downward" depending
on the control parameters values. These images were obtained at !=85°, At=10−2, and (̂=10−3 Pa·s. The mean flow velocities were: !a" V̂0=29 mm·s−1, !b"
V̂0=38 mm·s−1, !c" V̂0=42 mm·s−1, and !d" V̂0=61 mm·s−1. The field of view is 1015)20 mm, and contains the gate valve !wide black stripe" and a pipe
support !thin black stripe". The images are taken at: !a" 150 s, !b" 290 s, !c" 365 s, and !d" 75 s after opening the valve.
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pipe. The low mean velocity !V̂0=29 mm·s−1" allows a
countercurrent flow similar to the exchange flow, except that
the back flow moves slower. We describe such flows as sus-
tained back flows; i.e., there is a sustained upstream flow that
advects the trailing front continually upstream against the
mean flow.

In Fig. 3!b", with an increased imposed flow !V̂0
=38 mm·s−1" we observe that the trailing front moves ini-
tially upstream against the flow, but then stops moving. This
picture was taken 60 s after the front stopped when it was
stationary !290 s after the beginning of the experiment". This
is the same experiment as in Fig. 2, for which the thickness
of the upper layer in the downstream part of the pipe remains
constant for a long time. We classify such flows as stationary
interface flows.

In the next image $Fig. 3!c"%, with a slightly higher mean
velocity !V̂0=42 mm·s−1" the trailing front moves upstream
and stops, but closer to the initial position. The front stays in
this position for a while but is eventually displaced down-
stream. We classify this behavior as a temporary back flow;
i.e., there is a flow backward against the mean flow that
initially advects the trailing front upstream but the back flow
is not sustained over long times. Finally, if the mean velocity
is further increased $Fig. 3!d"%, the trailing front between
clear and dark fluid is simply displaced downstream. We call
this high mean flow case an instantaneous displacement,
!V̂0=61 mm·s−1".

For a more in-depth look at the transition between the
stationary interface and the instantaneous displacement re-
gimes, we display spatiotemporal diagrams of the back flows
corresponding to Figs. 3!b" and 3!c" in Figs. 4!a" and 4!b",
respectively. These spatiotemporal diagrams are realized
along a line in the upper part of the pipe section, where the
back flow rises. The vertical scale depicts time !500 s in each
figure" and the horizontal scale denotes distance along the

pipe, from just above the gate valve. The instantaneous front
velocities are determined from the local slope of the bound-
aries separating the black regions of the diagram !back flow
zones" from the gray regions !transparent fluid". We observe
in Fig. 4!a" that the back flow starts with a constant velocity
and then slows down until it stops. It does not move signifi-
cantly until the end of the experiment !except for small lon-
gitudinal oscillations". As the interface of the upper layer is
stationary, this demonstrates that throughout this period we
have a balance between the pressure driven flow and the
buoyant flow. For a slightly increased imposed flow we ob-
serve in Fig. 4!b" the temporary back flow regime. The back
flow stops closer to the gate valve and starts to be displaced
downward before the end of the experiment. Longer times
are not shown on this figure but the back flow is displaced
until its original position !the gate valve" and beyond. These
behaviors will be interpreted in the next section. A closer
inspection of Fig. 4!a" at long times shows a small deviation
of the boundary from vertical, smaller but in the same direc-
tion as Fig. 4!b". This may indicate the slow onset of tempo-
rary back flow.

Figure 5 displays transverse profiles of the longitudinal
velocity !parallel to the pipe axis" averaged over time for
three regimes: sustained back flow $Fig. 5!a"%, stationary in-
terface $Fig. 5!b"%, and instantaneous displacement $Fig.
5!c"%. These are measured below the gate valve along a line
passing through the center of the pipe. The vertical scale
represents the distance from the upper wall and the horizon-
tal scale is the longitudinal velocity component, with positive
values measured in the flow direction. The horizontal dashed
line shows the position of the interface. Close to the lower
wall there are instrumental errors: an oblique dashed line has
been added to artificially complete the profile to the wall,
where the velocity is zero.

First of all, we observe that the three figures show a
downward global net flow due to the mean flow. By looking
specifically at each regime, we observe that in the back flow
regime $Fig. 5!a" corresponding to the experiment of Fig.
3!a"% the velocity at the interface is small. Almost the entire
upper layer moves upstream. In the stationary interface re-
gime $Fig. 5!b" corresponding to the experiment of Fig.
3!b"%, we observe that the fluid velocity at the interface is
positive, but that both positive and negative velocities are
found in the upper layer. Therefore, although the interface is
apparently stationary, the fluid in the upper layer is not mo-
tionless but moves in a countercurrent recirculatory motion.
The displacing fluid is observed to pass underneath the upper
layer and so we expect that the net flow rate through the
upper layer should be very close to zero. This measurement
is averaged along a transverse axis positioned centrally in the
pipe cross-section. Although plausibly close to zero, the
measurements are not precise enough to evaluate this zero
net flow condition. Additionally, there are variations in the
z-direction that would need estimating or measuring. Finally,
in the instantaneous displacement regime $Fig. 5!c"% the
lighter fluid has been mostly displaced, leaving only a very
thin residual layer.

The above constitutes a description of the distinct flow

Gate valve

500s

63 cm 63 cm
x x

t
^ ^

Pipe support(a) (b) Gate valvePipe support

FIG. 4. Spatiotemporal diagrams of the variation of the light intensity along
a line parallel to the pipe axis in the upper section of the pipe. The vertical
scale is time !*t̂=0.5 s and 500 s for both" and the horizontal scale is the
distance along the pipe above the gate valve !see Fig. 3". The orientation of
the x axis is the same as in Fig. 3: downward. These diagrams correspond to
the experiments: !a" Fig. 3!b" !V̂0=38 mm·s−1" and !b" Fig. 3!c"
!V̂0=42 mm·s−1".
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regimes observed in our experiments, as V̂0 is varied. One
could say that we have essentially three regimes, with the
stationary layer apparently representing a transition state be-
tween flows with sustained back flow and those that displace.
Below in Sec. II C, we derive a simple model that predicts
similar flow regimes and transitions. In Sec. II D, we present
the comparison between the predictions of this model and the
classification of our experiments.

C. Lubrication model

Our experimental observations suggest that !after the ini-
tial few seconds of our displacements and away from the tips
of the leading/trailing fronts" most of the flow occurs within
regions where the fluids are separated by interfaces that are
aligned approximately with the pipe axis. It is therefore very
natural to develop a thin-film/lubrication style model for the
pipe displacement flow. The procedure is more or less stan-
dard and we follow largely that of our previous work.5 At
each axial position x̂, the flow is assumed stratified with the
interface denoted as ŷ= ĥ!x̂ , t̂"; see the geometry illustrated
schematically in Fig. 1!b". The leading order equations are
the momentum balances

0 = −
# p̂

# ẑ
, !5"

0 = −
# p̂

# ŷ
− +̂kĝ sin !̂ , !6"

0 = −
# p̂

# x̂
+ (̂( #2ŵ

# ẑ2 +
#2ŵ

# ŷ2 ) + +̂kĝ cos !̂ ,

!7"
!ẑ, ŷ" ! ,kk = H,L

and the incompressibility condition, $ · û=0. At the walls,
û=0 and both velocity and traction vectors are continuous at
the interface. For the flows considered, a mean flow V̂0 is
imposed by pumping in the positive x̂-direction. Thus, the
additional constraint

%D̂2V̂0

4
= *

,H!,L

wdẑdŷ , !8"

is satisfied by the solution. We eliminate p̂ and derive the
evolution equation for ĥ

#

# t̂
Â!ĥ" +

#

# x̂
Q̂ = 0, !9"

where Â!ĥ" is the area occupied by the heavier fluid, Â!ĥ"
= +,H+, and

Q̂ = *
,H

ŵdẑdŷ . !10"

The flux consists of a superposition of Poiseuille and ex-
change flow components
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ŷ
(m
m
)

b)

−40 −20 0 20 40 60 80 100 120

0

2

4

6

8

10

12

14

16

18
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FIG. 5. Ultrasonic Doppler velocimeters profiles for the same series of
experiments as Fig. 3: !a" V̂0=29 mm·s−1 $see Fig. 3!a"% sustained back
flow regime, profiles averaged between 60 and 120 s; !b" V̂0=38 mm·s−1

$see Fig. 3!b"% stationary interface regime, profiles averaged between 240
and 300 s; and !c" V̂0=74 mm·s−1 instantaneous displacement regime, pro-
files averaged between 120 and 240 s. The vertical scale represents the
distance from the upper wall !ŷ measuring distance from the lower one" and
the horizontal scale the corresponding value of the longitudinal flow veloc-
ity. The horizontal dashed line shows the position of the interface. The
vertical dashed line shows the zero velocity. The oblique dashed line close
to the lower wall has been added to guide the eye where the profiles are
distorted by instrumental error.
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Q̂ = Q̂!ĥ, ĥx̂"

= 2V̂0*
Â!ĥ"

,1 − 4
ẑ2 + ŷ2

D̂2 -dẑdŷ

+
%D̂2

8
F0V̂$,1 − 4

!D̂/2 − ĥ"2

D̂2
-7/2,cos ! − sin !

# ĥ

# x̂
- ,

where V̂$=At · ĝ · D̂2 / $̂ and F0 is given2 as F0=0.0118. The
exchange flow component has been estimated2 by extrapolat-
ing from the value at ĥ= D̂ /2 and from asymptotic expres-
sions for ĥ'0 and ĥ' D̂.

Taghavi et al.5 defined dimensionless parameters - and #
via

- =
(̂V̂0

$+̂H − +̂L%ĝ sin !̂D̂2
=

V̂0

2V̂$ sin !
,

!11"

# =
cot !

-
=

2V̂$ cos !

V̂0

,

and scaled the system using a length-scale L̂= D̂ /- in the
x̂-direction, with L̂ / V̂0 as timescale. Here we adopt the same
scalings and also scale Â!ĥ" with %D̂2 /4, Q̂ with %D̂2V̂0 /4,
and !ĥ , ŷ , ẑ" with D̂. The resulting dimensionless equations
are

#

#T
.!h" +

#

#/
q!h,h/" = 0, !12"

where h! $0,1% is now dimensionless, .!h"=4Â!ĥ" /%D̂2 is
the area fraction occupied by the heavy fluid

.!h" =
1
%

cos−1!1 − 2h" −
2
%

!1 − 2h"&h − h2,

q!h,h/" =
32
%
*

.!h"
,1

4
− x2 − y2-dxdy

+
F0$# − h/%

4
$1 − !1 − 2h"2%7/2,

T and / are the dimensionless time and length variables,
respectively. This is the equivalent dimensionless equation to
!2.23" in Ref. 5.

Although the algebraic form of Eq. !12" differs from that
analyzed for the plane channel, we expect a similar behavior.
Let us first consider the downstream behavior. At long times
the interface is expected to elongate,5 which negates the ef-
fect of the slope of the interface in all regions except local to
the advancing frontal region. The behavior is approximated
by the hyperbolic part of Eq. !12", i.e., setting q=q!h ,0". We
have observed !Fig. 3" that the interface remains stationary
for the duration of the experiment, with constant flow rate of
displacing heavy fluid. In the context of Eq. !12", considered
at long times, this implies that the interfacial speed is zero
and the flux, q!h ,0"=1. The interfacial speed Vi is simply the
characteristic speed

Vi =
#q

#.
!h,0" =

#q

#h
!h,0"(d.

dh
!h")−1

,

and since . is monotone with respect to h, the condition Vi
=0 implies that #q /#h!h ,0"=0. Note that q!h ,0" depends on
the single parameter #. In Fig. 6, we plot contours of q!h ,0"
and the contour #q /#h!h ,0"=0, against !h ,#". The intercept
of q!h ,0"=1 and #q /#h!h ,0"=0 occurs at a critical #=#c
=116.32... and for h=0.72..., indicating that there is a unique
interface height and value of # for which stationary inter-
faces may occur.

Considering now the trailing front, for the plane channel
displacement5 large values of # resulted in a second front
propagating upstream against the flow, i.e., a back flow.
Large # corresponds to a weak imposed flow relative to the
buoyancy driven exchange flow component. For the pipe
flow, assuming again that the long time behavior is domi-
nated by the hyperbolic part of Eq. !12", the equations deter-
mining the back flow front speed Vf &0 and front height hf,
are simply

$1 − .!hf"%Vf = $1 − q!hf,0"% , !13"

Vf =
#q

#h
!hf,0"(d.

dh
!hf")−1

. !14"

For sufficiently large # this expression has solutions Vf &0.
We now observe that if we take the limit Vf →0 we also
enforce q!hf ,0"=1. It follows that the conditions for the sta-
tionary interface are identical with those determining
whether or not Eq. !12" has a sustained back flow: for #'#c
we have sustained back flow and for #&#c there is no sus-
tained back flow. Strictly speaking, both statements relate to
longtime behavior of Eq. !12".

In Fig. 7, we plot h!/ ,T" for the critical #=#c, obtained
by solving Eq. !12" numerically using the same method as in
our previous work for the plane channel.5 The trailing front
at the top of the pipe is stationary as expected, while the
leading front moves down the pipe. Although over long
times the interface is stretched out between the stationary
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FIG. 6. !Color online" Contours of q!h ,0" and the contour #q /#h!h ,0"=0
!bold black line". The intercept of q!h ,0"=1 and #q /#h!h ,0"=0 occurs at
#=116.32... and h=0.72... .
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trailing front and the advancing leading front, the fronts are
not shocks. By solving for each h! !hf ,1" the nonlinear
equation

q!h,h/" = 0,

we may find the steady interface slope, h/!h". This can be
integrated to find the shape of the steady profile for h'hf. In
this frontal region, buoyancy driven by the slope of the in-
terface !acting to smooth the interface" is in balance with the
buoyancy force driving fluid back up the inclined pipe. The
frontal profile is illustrated in the inset of Fig. 7. The numeri-
cal integration has been stopped when h is within 1% of hf.

D. Experimental and theoretical comparison

The analysis of the previous section suggests that sta-
tionary interfaces can occur for each inclination angle ! only
at a critical balance

V̂$ cos ! # 58.16V̂0 !15"

!recall #=2V̂$ cos ! / V̂0". In the lubrication model context,
sustained back flows are only found upstream for smaller
values of V̂0 than in Eq. !15", whereas downstream the inter-
face speed becomes positive for larger V̂0 than in Eq. !15"
and instantaneous displacement ensues. Temporary back
flows are not strictly covered by the long time analysis of the
lubrication model.

Our experiments have been performed over the ranges

V̂0 ! 0 – 80 mm · s−1, At ! $10−3 – 10−2% ,

! ! $83 ° – 87°% .

To give an overall perspective of the different flow regimes
and where they occur, Fig. 8 presents the classification of our
flows for the full range of experiments. We observe that the
sustained back flow regime is clearly separated from the in-
stantaneous displacement regime. Between these two re-
gimes we find stationary layers and temporary back flows.
We must acknowledge potential errors in making the classi-
fications depicted in Fig. 8. For example, sustained back flow

experiments are terminated when the back flow exits the up-
per end of the pipe !due to ensuing mixing" but in a longer
pipe could reverse and become temporary. Equally, the sta-
tionary interface case is clearly a marginal transition between
sustained and temporary back flows. With a finite duration
experiment !with other restrictions and errors", it is difficult
to definitively classify a displacement as stationary. The bold
line illustrates the analytical prediction Eq. !15". Given the
potential uncertainty in classifying experiments and in the
approximation of the exchange flow component of q, the
prediction offered by this linear relation Eq. !15" is surpris-
ingly good. We also note that in those experiments that we
have classified as stationary interface flows, the stationary
layer occupies '30% of the pipe at the top, which corre-
sponds well with the theoretical stationary h=0.72... at
#=#c.

It is worth commenting that we have plotted our results
in dimensionless velocity coordinates, with both V̂0 and
V̂$ cos ! scaled with the inertial scale V̂t. This of course does
not affect the relation between V̂0 and V̂$ cos ! that is exem-
plified in Fig. 8, but may appear strange for phenomena that
are essentially viscous. This choice can be understood better
in the context of previous work. The vertical axis shows the
competition between viscous and inertial forces in balancing
buoyancy, in the absence of any imposed flow. As discussed
in Sec. I, pure exchange flow studies4 have suggested that for
V̂$ cos !!50V̂t, the exchange flow is governed by an inertia-
buoyancy balance !and viscous-buoyancy below this value".
Our experiments cover this range and clearly the viscous
prediction from Eq. !15" is still apparently relevant in what
might be thought of as the inertial regime. The explanation
for this comes from our previous work,1 in which we have
shown that the imposition of a mean flow results in the
streamlines becoming progressively aligned with the pipe
axis, even in this inertial regime. The consequent stabiliza-
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FIG. 7. Profiles of h!/ ,T" for T=0,1 , ... ,9 ,10, with #=#c. The broken line
shows the theoretical stationary h=0.72... at #=#c. The inset shows the
extension of the stationary frontal region.
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FIG. 8. !Color online" The experimental results in a pipe over the entire
range of control parameters !V̂0 is in the range of 0–80 mm·s−1, At is in the
range of 10−3–10−2, and ! is in the range of 83°–87°". The heavy line
represents the prediction of the lubrication model for the stationary inter-
face: 58.16 V̂0= V̂$ cos !.
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tion as the flow rate !Reynolds number" is increased is some-
what counterintuitive. We can view Eq. !15" as being derived
from the instantaneous displacement configuration in the re-
gime V̂$ cos !!50V̂t, and provided that V̂0 is large enough,
the flows are sufficiently laminar and noninertial for the va-
lidity of the model.

III. PLANE CHANNEL GEOMETRY „2D…
In the preceding section, we have considered the pipe

geometry, which is well suited to the experiment. Our at-
tempts to quantify the stationary layer phenomenon via Eq.
!15" are reasonable given experimental errors and the degree
of approximation necessary for semianalytical theories. To
confirm our explanation more fully, we could turn to compu-
tational simulation, but in the pipe geometry this investiga-
tion would require fully three-dimensional !3D" computa-
tions, which are exceedingly expensive computationally in
pipes of long aspect ratio. Instead, therefore, we turn to a 2D
plane channel geometry in order to confirm our understand-
ing of the stationary layer. This geometry allows for faster
computations and more precise asymptotic approximations.
The channel has height D̂ and is oriented similarly to the
pipe, close to horizontal. Again, a heavy fluid displaces a
lighter fluid in the downwards direction.

A. Lubrication model

The lubrication/thin-film approach is analogous to that
developed for the pipe, leading to a dimensionless evolution
equation for the interface height, y=h!/ ,T"

#h

#T
+

#

#/
q!h,h/" = 0. !16"

This has been derived and extensively studied by Taghavi et
al.5 for a wide range of fluid types. We focus only on the
analysis relevant to the current situation. In parallel with the
earlier analysis of Eq. !12", we may compute a critical value
of # and h for which the entire flux passes through the lower
layer and for which the interface speed is zero. Contours of
q!h ,0" and the contour #q /#h!h ,0"=0 are plotted in
!h ,#"-space in Fig. 9, from which we find #c=69.94 for the
plane channel at an interface height h=0.707. Note here that
h! $0,1% as we have scaled with the height D̂ of the channel.
The relation #=#c again provides a predictor of the station-
ary interface, which we now test against 2D computational
solutions.

B. Numerical method and overview

We have carried out a number of numerical simulations
of 2D displacements in an inclined plane channel. The ge-
ometry and notation are as represented in Fig. 1!b" !neglect-
ing the cross-sectional plane". Our computations are fully
inertial, solving the full 2D Navier–Stokes equations. The
phase change is modeled via a scalar concentration, c, which
is advected with the flow; i.e., molecular diffusion is ne-
glected. This neglect is due to the large Péclet numbers that
correspond to our experimental flows, for which we typically
have a well defined interface. The Navier–Stokes equations

are made dimensionless using the channel height D̂ as
lengthscale and V̂0 as velocity scale. The model equations are

$1 + 0At%$ut + u · $u% = − $p +
1

Re
$2u +

0

Fr2eg, !17"

$ · u = 0, !18"

ct + u · $c = 0. !19"

Here, eg= !cos ! ,−sin !" and the function 0=0!c" interpo-
lates linearly between 11 and +1 for c! $0,1%. The two
additional dimensionless parameters appearing above are the
Reynolds number, Re, and the !densimetric" Froude number,
Fr, defined as follows:

Re .
V̂0D̂

$̂
, Fr .

V̂0

&AtĝD̂
. !20"

Here, $̂ is defined using the mean density +̂= !+̂H+ +̂L" /2, and
the mean static pressure gradient has been subtracted from
the pressure before scaling. We see that for small At the flow
is essentially governed by the three parameters !, Re, and
Fr. For t'0, no slip boundary conditions are satisfied at the
solid walls !zero flux for c" and outflow conditions imposed
at the channel exit. At the inflow, the heavy fluid concentra-
tion is imposed !c=0", and the velocity u is represented by a
fully established Poiseuille profile. The initial interface posi-
tion is some way down the channel and our initial velocity
field is stationary: u=0 at t=0.

The model Eqs. !17"–!19" have been discretized using a
mixed finite element/finite volume method. The Navier–
Stokes equations are solved using the Galerkin finite element
method, where the divergence-free condition is enforced by
an augmented Lagrangian technique.35 The computations are
carried out on a structured rectangular mesh, with linear el-
ements !Q1" for the velocity and constant elements !P0" for
the pressure discretization. The concentration Eq. !19" uses a
finite volume method. The advective terms are dealt with via
a MUSCL scheme. On each timestep, a splitting method is
used to advance the concentration equation over a number of
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smaller subtimesteps. The present numerical algorithm is
implemented in C22 as an application of PELICANS36

!available at https://gforge.irsn.fr/gf/project/pelicans/".
Various simple test problems have been implemented.

The code has also been benchmarked against that used by
Sahu et al.,32 which produces very similar results in our flow
setup. After running each simulation, front velocities can be
calculated from the spatiotemporal plot of c. Mesh refine-
ment was carried out until successively calculated front ve-
locities on meshes differed by 1%–4% !over the range of
physical parameters explored". The meshes used for the com-
putations presented below have 28 cells across the channel,
refined slightly toward the walls, and 400 cells along the
length of the channel. We acknowledge that the meshes used
are relatively coarse, but note that the principle information
being extracted from the simulations is bulk information,
e.g., spatiotemporal plots and front speeds, which are less
sensitive to refinement. There is numerical diffusion present
in solution of Eqs. !17"–!19". Implementing molecular diffu-
sion within Eq. !19" was also tested, i.e., by adding
!1 / Pe"$2c to the right-hand side. However, for the mesh
sizes we have used it was found that for Pe3105 there was
no discernible difference in results; i.e., numerical diffusion
is dominant. This range of Pe easily includes the experimen-
tal range.

Approximately 100 numerical simulations have been
carried out in this low V̂0 range. We have selected a range of
parameters that resembles that of our pipe flow experiments.
Thus, we will describe the simulations in the following sec-
tion with reference to V̂0, V̂$, and V̂t, as these are more natu-
ral from the experimental perspective. The mapping between
parameters is simply

Re .
V̂0V̂$

V̂t
2

, Fr .
V̂0

V̂t

. !21"

When considering the lubrication model predictions,

# =
2 cos !V̂$

V̂0

=
2 Re cos !

Fr2 . !22"

Unlike the pipe flow, we have limited our computational
study to parameters for which the pure exchange flow !V̂0
=0" is in the viscous regime. The reason for this restriction is
that in general the stabilizing effect of the imposed flow1

does not affect the channel exchange flow in the same way as
it affects a pipe exchange flow. For the pure exchange flow,
Hallez and Magnaudet37 reported key differences in the flow
structure for pipe and plane channel geometries when in the
inertial regime.

C. Numerical results

Figure 10 gives an example of a displacement that is
typical of those found close to the stationary interface re-
gime, $parameters !=87°, $̂=2)10−6 m2·s−1, At=3.5
)10−3, and V̂0=9.5 mm·s−1 !Re=90, Fr=0.37"%. The upper
image in Fig. 10 depicts the initial condition for the concen-
tration field at t̂=0 !s". The subsequent images !from top to

down" show the evolution of the concentration field at t̂
=25, 50, 100, 200, and 300 s. Although we observe that for
t̂'0 the trailing front initially moves backward against the
mean flow, for t3100 the front appears stationary with the
top of the interface seemingly pinned to the upper wall. We
observe that downstream the height of the interface is h
#0.7, which is in good agreement with the analytical pre-
diction from the lubrication model. Note that although nu-
merical diffusion is well limited by the MUSCL scheme,
dispersion due to !physical" secondary flows is not restricted.
This accounts for the gray regions in Fig. 10.

To have a better understanding of the different regimes
in typical stationary flows in a channel, Fig. 11 displays the
spatiotemporal diagram of the average concentration along
the channel for the same parameters as used in Fig. 10. In
this diagram, the contrast has been slightly increased for il-
lustrative purposes. We observe three characteristic behav-
iors. The slope of dashed line !1" represents the velocity of
the leading front traveling toward downstream. The velocity
of the trailing front !traveling upstream" is not constant with
time. Initially, the trailing front flows backward with constant
velocity shown by the slope of dashed line !2". As the front
elongates, the velocity starts to decrease. We infer that iner-
tial effects control the initial back flow velocity. The corre-
sponding initial viscous velocity, which is proportional to the
slope of the interface, would be too large !infinite at t̂'0".
During the first acceleration when the interface between the
two motionless fluids starts to move, the back flow is accel-
erated by buoyancy up until it attains approximately the in-
ertial velocity. At this point inertia prevents the fluid from
accelerating faster. When the trailing front stretches beyond a
characteristic length, the viscous velocity becomes lower
than the inertial velocity. At this point the back flow can
dissipate its energy in the bulk by viscosity. Thereafter the
back flow velocity starts to decrease and after a transient
phase $between the lines !2" and !3" in Fig. 11%, it reaches its
limiting/final velocity. The dashed line !3" is almost vertical,
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0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

x̂/D̂

FIG. 10. Sequence of concentration field evolution obtained for !=87°, $̂

=2)10−6 m2·s−1, At=3.5)10−3, and V̂0=9.5 mm·s−1 $Re=90, Fr=0.37%.
The images are shown for t̂=0, 25, 50, 100, 200, and 300 s !from top to
bottom".

044105-10 Taghavi et al. Phys. Fluids 23, 044105 "2011!

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

https://gforge.irsn.fr/gf/project/pelicans/


which implies that the back flow velocity remains close to
zero. The flow is in the stationary regime. Note that this is
essentially the same picture that we have observed experi-
mentally.

Figure 12 shows the velocity profiles corresponding to
Fig. 10 at t̂=0, 25, 50, 100, 200, and 300 s. The figure shows
the region between 20& x̂ / D̂&38. The initial interface is
located at x̂ / D̂=25. As expected, for t̂&100 we see a coun-
tercurrent flow in the longitudinal direction, with net flow
equal to the imposed flow rate. In this time frame we transi-
tion from an initially inertially limited flow to a viscously
limited flow.

Figure 13 illustrates a single velocity profile at t̂
=300 s at an axial position close to the pinned point, where
the interface meets the upper wall. The local interface height
!h#0.775" is shown by the dashed line, which is higher than
the interface height downstream !h#0.7". We can observe
the countercurrent flow inside the stationary upper layer.

Figure 14 displays the four archetypical regimes for dif-
ferent imposed flows. In Fig. 14!a", we see that for low im-
posed flow the velocity of the downstream front is constant
at all times. The upstream front initially has a constant !in-
ertially limited" velocity, which gradually decreases and fi-
nally reaches a constant buoyant velocity, allowing the
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FIG. 11. Spatiotemporal diagram of the average concentration variations
!white and black colors represent heavy and lighter fluids, respectively"
along the channel for !=87°, $̂=2)10−6 m2·s−1, At=3.5)10−3, and V̂0
=9.5 mm·s−1 $Re=90, Fr=0.37%. Vertical scale: time; horizontal scale: dis-
tance along the channel. Dashed lines have slopes equal to velocities esti-
mated for the front and back flows. The stationary slope !1" shows that the
front velocity is constant. Dashed line !2" is the initial inertial velocity for
the back flow, which is followed by a decreasing viscous velocity. Dashed
line !3" is vertical, which implies that the lighter fluid velocity is zero
!near-stationary".

20 22 24 26 28 30 32 34 36 38

20 22 24 26 28 30 32 34 36 38

20 22 24 26 28 30 32 34 36 38

20 22 24 26 28 30 32 34 36 38

20 22 24 26 28 30 32 34 36 38

20 22 24 26 28 30 32 34 36 38

x̂/D̂
FIG. 12. The velocity profiles corresponding to Fig. 10 for a channel flow at t̂=0, 25, 50, 100, 200, and 300 s !from top to bottom".
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lighter fluid to keep rising !sustained back flow". Figure
14!b", at larger imposed flow velocity, is the stationary inter-
face regime we have already examined in detail. A further
increase in the imposed flow $Fig. 14!c"% leads to an up-
stream front, which advances, stops, and then recedes down
the pipe. This corresponds to the temporary back flow re-
gime. Finally, for a strong enough imposed flow $Fig. 14!d"%,
there is no back flow from the beginning of the displacement
process. An instantaneous displacement is achieved.

Figure 15 shows the collected results of our simulations:
V̂0 is in the range of 2–30 mm·s−1, At is in the range of
10−3–10−2, $̂ is in the range of 10−6−2)10−6 m2·s−1, and !
is in the range of 85°–89°. Each simulation has been classi-
fied from the spatiotemporal plot as exhibiting one of the

four characteristic behaviors. The bold line in Fig. 15 illus-
trates the analytical prediction of the stationary interface, for
which V̂$ cos !#34.97V̂0 !i.e., #=#c=69.94". We observe
that there is good agreement between the lubrication model
prediction and the stationary interfaces obtained by numeri-
cal simulation. This suggests that the two-layer model con-
sidered in the lubrication approximation is useful for predict-
ing the long time behavior of buoyant channel
displacements. In addition, the simulations representing the
temporary back flows are clearly separated from those rep-
resenting the instantaneous displacement flows. The transi-
tion between temporary back flows and the instantaneous
displacement flows seems to be governed by a balance be-
tween the imposed pressure gradient !roughly speaking, V̂0"
and the characteristic inertial velocity !V̂t". For viscous flow
in a channel, this transition !V̂0 / V̂t=4" lies somewhere in the
range of 4=0.6–0.8, probably with minor dependency on the
inclination angle !.

For flows in a more inclined channel, where the flow
becomes inertial, we anticipate that there could be an in-
crease in the value of 4. Experimental observations for an
exchange flow in a pipe reveal that this increase can be up to
40% with respect to the horizontal.2 Although the precise
value of 4 is of interest, it should be noted that this does not
affect the long time behavior of the flow/interface. Indeed,
whether or not the back flow is temporary or the displace-
ment is instantaneous, the displacing fluid eventually washes
out the displaced fluid as long as V̂0 / V̂$ cos ! is large
enough.

IV. CONCLUSIONS

We have observed an interesting displacement phenom-
enon in which a buoyant displacement flow retains a station-
ary upper layer of displaced fluid for the duration of our
experiment. Unlike other stationary layers that have been
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FIG. 13. The velocity profile close to the pinned point !with the axial posi-
tion x̂ / D̂=26.25" corresponding to Figs. 10 and 12 for a channel flow at t̂
=300 s: illustrating the countercurrent inside the stationary !lighter/black"
fluid. Dashed line represents the local height of the interface.
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FIG. 14. Four possible conditions for a viscous buoyant channel flow in the
presence of an imposed flow for !=89°, $̂=10−6 m2·s−1, and At=10−2: !a"
V̂0=16.8 mm·s−1 $Re=323, Fr=0.39%; !b" 18.9 mm·s−1 $Re=363,
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observed,5,6,8 the fluid is fully mobile in the stationary layer.
The net flux in the stationary layer is zero and the velocity of
the interface !i.e., wavespeed" is also zero.

Our study reveals that this phenomenon marks the tran-
sition between flow parameters that displace fully and those
that do not. Observations of the upstream region above the
gate valve allow us to categorize the displacements as one of
four different states: sustained back flow, stationary inter-
face, temporary back flow, and instantaneous displacement.
The stationary residual layers observed downstream coincide
with the stationary interface regime observed for the
upstream/trailing front. The same four states observed ex-
perimentally in the pipe are observed computationally in 2D
computational simulations of plane channel displacements.

Instantaneous displacements and sustained back flow re-
gimes can also be found at long times in thin-film/lubrication
style models of these flows. The transition between states is
the stationary layer, which is predicted by the lubrication
model, at critical conditions

58.16V̂0 = V̂$ cos ! !23"

for the pipe geometry and

34.97V̂0 = V̂$ cos ! !24"

for a plane channel geometry. In the context of our previous
study1 where we have studied flow rate effects on the down-
stream front velocity, the stationary layer flows studied mark
the boundary between the exchange flow dominated regime
and the regime where the downstream front velocity !V̂f"
increases linearly with V̂0, for which the imposed flow be-
comes increasingly dominant. The transition between tempo-
rary back flows and instantaneous displacements appears to
be characterized by a condition V̂0=4V̂t, with 4=0.6–0.8,
for the plane channel geometry. This estimate has been made
using only flow parameters for which the pure exchange flow
would be viscous in the plane channel.

It is interesting to reflect that although we have classified
four different states, in our experiments and in each of the
models we have used we are only definitively able to identify
three states. For the experimental results, we simply classify
observed flows within the practical limits of our experiments.
Thus, if the back flow exceeds the end of the pipe !above the
gate valve", we classify it as a sustained back flow !although
given a longer pipe some of these might be temporary", the
stationary back flow is identified by there still remaining a
stationary residual layer at the end of the experiment. The 2D
plane channel computations are limited in much the same
way as the experiments, in that computational times limit the
range of feasible mesh sizes, computational domains, and
time intervals to be investigated. The lubrication models
have only been analyzed in the long time limit. In this limit
the model exhibits in fact only three states: sustained back
flow, stationary back flow, and instantaneous displacement.
Although at short times !and distances" the model of Taghavi
et al.5 always has a fast initial phase where temporary back
flows may exist, they are not present at long times. At short
times the lubrication model assumptions are not immediately
valid. This underlines the value of adopting a range of dif-

ferent techniques to understand the dynamics of complex
flows: each technique gives different insights.

Among the four different states classified, the stationary
interface is a transition state, only marking the flow that ex-
ists at the boundary between sustained and temporary back
flow regimes. This means that it would be near impossible to
find exactly the correct parameters to capture this state ex-
actly. In all likelihood, any such state would finally evolve
anyway into a temporary back flow via downstream pro-
cesses such as fluid entrainment, thinning the layer below the
critical thickness.

Thus, it is relevant that in our study we have observed
!and classified as stationary" states that are probably only
close to the transition state, but nevertheless persist for the
duration of our experiments !physical or numerical". It is the
existence of these near-stationary states, persisting over ti-
mescales of many thousand D̂ / V̂0, that have practical impor-
tance. Certainly such longevity could prove problematic for
processes such as the primary cementing of near-horizontal
oil and gas wells.
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APPENDIX A: SIMPLE PHYSICAL MODEL

We close by showing that many qualitative features of
our experiments can be predicted by a simplified conceptual
model, along the lines of that presented by Séon et al.2 for
pure exchange flows. The objective is to describe the speed
of propagation of the trailing front !V̂f

bf" and its position !X̂f
bf"

as they move backward against the imposed flow.
First of all, it is clear that the only driving mechanism to

push the lighter fluid up the channel is buoyancy. Except at
early times, the flows above the gate valve appear quasipar-
allel $e.g., Figs. 3!b" and 3!c"%, which suggests that the driv-
ing buoyancy force is balanced by viscosity. An appropriate
velocity scale that reflects this balance is V̂$. Buoyancy acts
both axially along the pipe !5 cos !" and perpendicular to
the pipe axis !5 sin !". The latter transverse component acts
only when the interface between the fluids is tilted with re-
spect to the pipe axis !i.e., if #ĥ /#x̂%0" and is then propor-
tional to −sin !# ĥ /#x̂. The second force affecting the back
flow comes from the imposed flow, which determines a net
pressure gradient pushing fluids downwards, along the pipe.
Since the fluids are Newtonian we may assume that this
force scales approximately linearly with V̂0. Therefore, on
summing the different driving forces we might postulate that
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V̂f
bf = V̂$ cos !,Ka − Kt

# ĥ

# x̂
tan !- − KmV̂0, !A1"

where the coefficients Ka, Kt, and Km reflect the relative in-
fluences of axial buoyancy, transverse buoyancy, and the
mean flow, respectively. For the case V̂0=0 !exchange flow",
this is the model of Séon et al.,2 who estimated Ka and Kt
from their experiments.

We see that the second term in Eq. !A1" decreases in size
as the trailing front propagates, reducing the slope of the
interface. Therefore, V̂f

bf decreases with distance !and time"
as is shown schematically in the viscous regime indicated in
Fig. 16!a". Equation !A1" can be turned into a crude differ-

ential equation for X̂f
bf by approximating the interface slope

with #ĥ /#x̂#−D̂ / X̂f
bf, which leads to

dX̂f
bf

dt̂
= V̂f

bf = V̂$ cos !,Ka + Kt
D̂

X̂f
bf

tan !- − KmV̂0. !A2"

At short times !and distances" the model Eq. !A2" would
predict an infinite front velocity, which is not physically pos-
sible. In practice, in this early period of the flow V̂f

bf will be
limited by inertial effects rather than viscous effects. We may
expect this balance to persist until the viscous front velocity,
determined from Eq. !A2", falls below a value that is related
to the inertial velocity scale, V̂t. We see for example that in
Fig. 4 the front velocity is indeed initially constant before it
decreases. This cut-off behavior is illustrated schematically
in Fig. 16!a". Consequently, we may modify Eq. !A2" as
follows:

dX̂f
bf

dt̂
= min/4V̂t,V̂$ cos !,Ka + Kt

D̂

X̂f
bf

tan !-0 − KmV̂0,

!A3"

where 4 is a further coefficient to be determined.
Although simplistic, we believe that Eq. !A3" contains

the essential elements of the trailing front dynamics. Evi-
dently V̂f

bf decreases with time as the front propagates, in all
cases. Let us consider some different possible behaviors.
First, let us suppose that the imposed flow is weak, so that
KmV̂0&KaV̂$ cos !. The flow has a transient phase during
which the interface slope decreases and the speed also, but
the buoyancy force is strong enough to maintain a sustained
back flow: V̂f

bf →KaV̂$ cos !−KmV̂0 and the front advances
steadily up the pipe. Second, suppose that the imposed flow
is stronger, so that KmV̂0'KaV̂$ cos !, but that KmV̂0&4V̂t
$case represented in Fig. 16!a"%. The transient phase of the
back flow elongates the interface so that the slope decreases
until there is a perfect balance

V̂$ cos !,Ka + Kt
D̂

X̂f
bf

tan !- = KmV̂0, !A4"

corresponding to the stationary regime. Rearranging this
shows that the stopping lengths Xf satisfy

V̂0

V̂$ cos !
=

1
Km
,Ka + Kt

D̂

X̂f
bf

tan !- . !A5"

Note that at larger V̂0 the transient phase of the back flow
will be reduced, as will the stopping length. We might also
expect that this delicate balance will be affected over longer
times by changes in the interface profile below the gate
valve, allowing the trailing front to recede down the pipe
!which is not taken into account in our model". This is the
temporary back flow regime. In this simple conceptual
model, the stationary interface regime and the temporary
back flow regime are both characterized by a stopping
length, determined from Eq. !A5", which is the maximum
height attained. The fully stationary layer is simply a mar-
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FIG. 16. !Color online" !a" Schematic variation of the velocity V̂f
bf +KmV̂0 as

a function of distance X̂f
bf from the gate valve !continuous line" in a viscous

regime and for !%90°. The short dashed line represents the final viscous
velocity V̂f

bf +KmV̂0=KaV̂$ cos !. The dotted line marks the boundary be-
tween the transient inertial regime and the viscous regime. We also represent
the case 4V̂t'KmV̂0'KaV̂$ cos !, using the long dashed line, to underline
the stopping length condition. The arrows on the curve show the trend of the
evolution of the velocity with time. !b" V̂0 / !V̂$ cos !" is plotted vs
!D̂ / X̂f

bf"tan ! for two series of experiments at different angles !: 83° !!"
and 85° !"", and same density contrast and viscosity !At=10−2, (̂
=10−3 Pa·s". The experiments plotted here are either in the temporary back
flow regime or in the stationary interface regime, and X̂f

bf represents the
position where the front stops !maximal X̂f

bf". The dashed line is a guide for
the eye to show the common linear curve.
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ginal state that is theoretically present, but not easily observ-
able. Finally, for still larger V̂0, say KmV̂0'4V̂t, we expect
no back flow and the instantaneous displacement regime is
entered.

In Fig. 16!b", we have plotted V̂0 / !V$ cos !" against
!D̂ / X̂f

bf"tan ! for two series of experiments at different
angles. Only those experiments are plotted that were charac-
terized as a temporary back flow or stationary interface and
X̂f

bf is taken as the maximal measured front distance above
the gate valve. We observe that the two series collapse ap-
proximately onto the same linear curve, as predicted by Eq.
!A5". This supports the assumptions made regarding the
driving forces of the buoyant back flow in the presence of a
mean flow. In principle, this also allows us to determine di-
rectly the !-independent coefficients Ka /Km and Kt /Km, via
linear regression, and to use the model in Eq. !A5" predic-
tively. However, to be more confident in determining Ka /Km
and Kt /Km we would need to conduct more experiments for
a wider range of At, $̂, and D̂. The purpose of the model is
instead to show that the types of behavior observed qualita-
tively can be attributed to a fairly simple force balance.
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