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Virgile Thiévenaz1,2 , Thomas Séon1 and Christophe Josserand2

1 Sorbonne Universités, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert - F-75005 Paris, France
2 Laboratoire d’Hydrodynamique (LadHyX), UMR 7646, CNRS-École Polytechnique - 91128 Palaiseau CEDEX, France
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PACS 47.55.nd – Spreading films

Abstract – We experimentally investigate the effect of freezing on the spreading of a water drop.
Whenever a water drop impacts a cold surface, whose temperature is lower than 0 ◦C, a thin layer
of ice grows during the spreading. This freezing has a notable effect on the impact: at given
Reynolds and Weber numbers, we show that lowering the surface temperature reduces the drop
maximal extent. Using an analogy between this ice layer and the viscous boundary layer, which
also grows during the spreading, we are able to model the effect of freezing as an effective viscosity.
The scaling laws designed for viscous drop impact can therefore be applied to such a solidification
problem, avoiding the recourse to a full and complex modelling of the thermal dynamics.

Copyright c© 2020 EPLA

Introduction. – When a water drop impacts a cold
solid surface, it spreads under its own inertia and can
freeze simultaneously. The solidification eventually yields
a splat of ice, whose various possible shapes are set by
the competition between the flow and the freezing [1].
Freezing rain [2] and aircraft icing [3] are typical natural
instances of this phenomenon which have tremendous hu-
man and economic consequences. From an industrial point
of view, mastering the simultaneous dynamics of spread-
ing and solidification of an impacting drop enables precise
material deposition such as spray coating [4,5] and 3-D
printing [6].

The sole question of how does a liquid drop spread
on a solid surface has given rise to a wide literature [7].
Particularly, researchers have been interested in scaling
laws for the maximal spreading of the drop, depending on
whether the resisting force to spreading is viscosity [8] or
capillarity [9] and often both [10]. The coupling between
spreading and solidification has also been investigated, but
mainly in the context of low impact velocity, namely drop
deposition [11–14], and often focusing on molten metal
droplets [15,16] or hexadecane droplets [17,18]. Concern-
ing water drops, previous studies have mostly been con-
ducted on supercooled droplet impacts [19,20] and on
whether the frozen drop delaminates [14] or cracks [21].
But, in the general case, the maximum spreading of
the solidifying impacting drop remains a largely open
question.

In this letter, we investigate experimentally the spread-
ing and freezing of water drops impacting at room

temperature on a silicon wafer cooled down below 0 ◦C.
After a short description of the experimental apparatus
and of qualitative observations, we show that freezing dur-
ing the impact reduces the drop maximal spreading. Then,
by observing the similarities between viscous damping and
solidification, we are able to reduce this complex problem,
which couples flow and thermal diffusion, to the simple
case of an isothermal viscous drop impact by introducing
an effective viscosity. We thus obtain a way to express the
maximal spreading radius of the drop as a function of the
freezing rate and the liquid parameters.

Experimental methods. – We use a syringe pump
and a capillary tube to create a water drop of radius R0.
This drop falls down a certain height H and impacts a
silicon wafer set upon a steel thermostat, which is cooled
down using liquid nitrogen. The surface temperature of
the silicon wafer Ts is measured before each impact, and
ranges from 18 ◦C to −109 ◦C. By neglecting the effect
of the drag onto the drop fall, the drop impact velocity
can be estimated as U0 =

√
2gH, with g the gravitational

acceleration. In our experiments, U0 ranges from 2.6 to
8.0 m/s. The water drop is initially at 20 ◦C, contrary to
the aforementioned studies focusing on supercooled drop
impact [19,20]. The impact dynamic is recorded using a
high-speed camera and a macro lens, at a rate of 75000
frames per second which enables the precise measurement
of the liquid film radius vs. time. The drop radius R0

is measured on the video for each experiment, and has
an average value of 1.9 mm. In terms of dimensionless
numbers, the Reynolds number Re = 2ρR0U0/µ varies
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Fig. 1: Image sequence of a drop impacting at U0 = 3.1 m/s and spreading on a silicon wafer at −19 ◦C.

between 7860 and 33000 and the Weber number We =
2ρR0U2

0 /γ between 282 and 3638. The relevant physical
quantities are taken at 20 ◦C: µ = 10−3 mPa · s is the
dynamic viscosity of water, ρ = 103 kg/m3 its density and
γ = 73 mN/m its surface tension. ν = µ/ρ = 1 mm2/s is
water kinematic viscosity.

Qualitative observation. – Figure 1 presents the
typical impact dynamics which occur within a few
milliseconds, for a drop impacting at U0 = 3.1 m/s a sil-
icon wafer at Ts = −19 ◦C. The drop impacts at t = 0
then starts spreading. It reaches its maximal radius Rmax

after 2.8 ms, corresponding to the last picture of the time-
line. During the spreading, the liquid is pushed outward
into a rim, which may destabilize and form corrugations,
and then relaxes into capillary waves. Simultaneously, a
flat layer of ice grows from the substrate upward, and af-
ter typically one second, the drop is completely frozen.
It forms a frozen splat of radius Rmax, according to the
mechanisms described in refs. [1,22].

Splashing, that is the detachment of droplets from the
main drop, can be observed in some cases, and seems in
fact to be dependent on the surface temperature. How-
ever, since the volume of liquid ejected remains negligible,
we choose to neglect its effect on the maximum radius, and
we postpone the detailed study of the splashing dynamics
to future works.

Maximum spreading. – In order to characterize the
dynamics of the spreading drop, we define the spreading
parameter ξ(t) as the ratio between the radius of the liquid
film at time t, R(t), and the initial radius of the drop R0.
ξmax is its maximal value, yielding

ξ(t) =
R(t)

R0

, ξmax =
Rmax

R0

. (1)

Figure 2(a) shows the evolution of the spreading param-
eter ξ vs. the non-dimensionalized time: τ = U0t/R0,
for two different experiments corresponding to two differ-
ent substrate temperatures with the same impact velocity

of 3.1 m/s. It appears clearly that at lower temperature
(blue curve, Ts = −84 ◦C), the drop spreads less far than
at room temperature (red curve, Ts = 18 ◦C). This obser-
vation is reinforced by fig. 2(b), which plots the maximal
spreading parameter ξmax vs. the substrate temperature,
for constant impact velocity and drop radius. Although
above 0 ◦C the value of ξmax does not show any signif-
icant trend, below 0 ◦C the maximal spreading parame-
ter decreases slowly: ξmax drops by about 40% over the
considered substrate temperature range. This change of
behaviour across 0 ◦C suggests solidification plays a more
important role in the damping of the drop impact than the
variation of water viscosity with temperature. We develop
this point in the discussion below.

Figures 2(a) and (b) concern a single value of U0. In or-
der to gather the whole range of impact velocities on the
same graph, the maximal spreading parameter is plotted
in fig. 2(c) vs. the Reynolds number, for each of our ex-
periments at different temperatures and impact velocities.
The data for substrate temperatures above the melting
temperature, that appear in red, gather all on the same
line of slope 1/5 in this logarithmic diagram. As expected,
data for negative substrate temperatures fall systemati-
cally below this line, and the colder the substrate, the
smaller the spreading radius. The following is dedicated
to propose a model to explain this discrepancy, in other
words to understand the influence of temperature on the
maximum spreading of a drop.

Viscous damping characterization. – The spread-
ing of a drop on a solid substrate has a long
history [5,8,9,23–25] that has reached a consensus only
recently [7,10,26]. The spreading dynamic is controlled
by the balance between the drop inertia on one hand, and
both capillarity and viscous forces on the other hand. The
difficulty lies in the correct estimate of the interplay be-
tween the viscous and the capillary damping mechanisms,
and the solution is in fact deduced by analysing their
asymptotic behaviours [25]. When viscous dissipation
can be neglected, the energy balance between inertia and
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Fig. 2: (a) Comparison of the non-dimensional spreading dynamic ξ = f(τ ) against the substrate temperature Ts. After a time
of the order of a few R0/U0, the drop reaches its maximal spreading ξmax. At −84 ◦C (blue) the drop spreads less far and slower
than at 18 ◦C (red). (b) Maximal spreading ξmax vs. the substrate temperature Ts, for a given U0 = 3.1 m/s. ξmax does not
vary much above 0 ◦C. However, below 0 ◦C ξmax slowly drops down. At −100 ◦C, it has dropped 40% of its room temperature
value (dashed line). (c) Maximal spreading vs. the Reynolds number for different substrate temperatures (colours, red for hot)
and for U0 varying between 2.6 and 8m/s (symbols). Experiments at Ts ≥ 0 ◦C (warm colours) show a good agreement with a
power law 1/5 (dashed line). However, this is not the case for experiments at Ts < 0 ◦C (cold colours) in which water freezes.
We chose not to display the error bars because they would be smaller than the markers, and therefore clutter up the plots.

capillarity gives a maximum spreading radius scaling like
ξmax ∼ We1/2. Oppositely, when capillary forces can be
neglected, the maximum spreading radius Rmax is reached
when the thickness of the spreading drop (∼R3

0/R2
max

using volume conservation) becomes comparable to the
thickness of the viscous boundary layer, which obeys the
usual diffusive growth law: δν =

√

νRmax/U0. This gives
the scaling [8,9,23]:

ξmax ∼ Re1/5 (2)

which has been verified experimentally [27]. These two
asymptotic regimes have suggested the following general
law [25]: ξmax = Re1/5f(P ), where P = WeRe−2/5 is the
impact parameter. The function f behaves as f(x) ∼ 1
when x → ∞ and f(x) ∼

√
x when x & 1, in agreement

with the asymptotic regimes. Using a Padé approximant
method, Laan et al. [10] have proposed the following ap-
proximation for f(x) = x/(A + x) leading to the formula
for the maximum spreading factor:

ξmax ∼ Re1/5 P 1/2

A + P 1/2
, (3)

where A is a fitting parameter of order one (found to be
A = 1.24 in [10]). This formula gathers most of the known
experimental and numerical results on a single curve and a
more refined version of it has been obtained later account-
ing for the substrate contact angle [26]. Remarkably, in
our experiments the impact factor P varies from 7.8 to
almost 57, indicating that we are in the large P regime
where the maximum spreading radius is controlled by the
viscous dissipation and follows a Re1/5 law as observed in
fig. 2(c) for the non-freezing case. This is justified by the
small values of the capillary number that compares the
capillary and viscous forces, Ca = µU0/γ, which in our
experiments ranges from 0.036 to 0.11. This is why we
plot for comparison the Re1/5 scaling law (dashed line) in
fig. 2 (c), with its prefactor fitted to the experiments with
Ts > 0 ◦C.

Ice layer characterization. – Experiments above
0 ◦C, in shades of orange in fig. 2(c), show a good agree-
ment with the scaling law. On the other hand, for Ts <
0 the spreading parameter is systematically below this
curve, showing that some additional damping is at work.
The physical idea behind our approach comes from the
classical analogy between thermal diffusion, which controls
the ice layer growth, and viscous diffusion, that damps the
spreading. When the substrate is at a temperature below
the freezing point, a layer of ice grows upward from the
substrate, and its thickness is controlled by thermal diffu-
sion. The growth of the ice layer δf is similar to that of
the viscous boundary layer, namely δf =

√
αt, where the

freezing rate α is a diffusion coefficient that depends on
the thermal properties of the ice and the substrate.

This diffusive mechanism is classic for one-dimensional
solidification of a liquid, a system known as the Stefan
problem [28]. In a previous article [22], we wrote a variant
of the Stefan problem to take heat transfers within the
substrate into account, and to compute α quantitatively.
We recall the main hypotheses: we consider the one-
dimensional three-phase problem where a layer of ice lies
between a semi-infinite solid substrate and semi-infinite
water. The temperature of water is assumed constant,
equal to 0 ◦C. In the substrate and the ice, the tempera-
ture obeys the 1-D heat equation. By writing the conti-
nuity of temperature and heat fluxes at the ice-substrate
interface, and the discontinuity of heat fluxes due to la-
tent heat at the ice-water interface, we obtain an implicit
relation between the freezing rate α, the substrate tem-
perature Ts, and the thermal parameters of the ice and
substrate. This equation can be solved numerically to ob-
tain α. α increases when the substrate temperature de-
creases below 0 ◦C. For more details on this model and its
conclusions, see ref. [22].

For the considered temperature range, α varies from 0
(for Ts ≥ Tm) to 1.04 mm2/s (for Ts = −109 ◦C),
of the same order as the kinematic viscosity of water,
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ν = 1 mm2/s. Thus, the ice and the viscous layers can
be considered as boundary layers to the inviscid, ice-free
flow. In other words, it means that the Péclet number
defined as Pe = 2U0R0/α is very large when the Reynolds
number is as well. To get a more quantitative insight, we
now consider the derivation developed in refs. [24,25] and
add up the ice layer dynamics.

Ice-viscous boundary layer. – We start with the
r-component of the axisymmetric Navier-Stokes equation
for incompressible flows with the boundary condition vr =
0 for z =

√
αt, indicating that the ice layer grows homoge-

neously from the substrate. Using the classical argument
of Prandtl’s boundary layer theory [29], we can show that
the Navier-Stokes equation reduces to

∂tvr + vr∂rvr + vz∂zvr = ν∂2
zvr, (4)

and it is more convenient to use the stream-function ψ to
satisfy the boundary condition, yielding

vr = −
∂zψ

r
, vz =

∂rψ

r
. (5)

In the inviscid case, we have ψ = −r2z/t and since both
the viscous boundary layer δν and the ice layer thickness
δf follow the same

√
t scaling, it suggests the ansatz:

ψ =
√

ν
r2

√
t
f

(

z −
√

αt
√

νt

)

. (6)

For α = 0 and f(ζ) = −ζ, taking ζ = z√
νt

as the self-

similar variable, the inviscid result is recovered. Insert-
ing (6) into the boundary layer equation (4), we find

f ′ +

(

η +

√

α

ν

)

f ′′/2 + f ′2 − 2ff ′′ = −f ′′′, (7)

with the boundary conditions imposing zero velocity at
the ice-water interface, and the inviscid horizontal velocity
field far from the plate:

f ′(∞) = −1, f(0) = 0, f ′(0) = 0. (8)

This self-similar equation shows that the structure of the
boundary layer in the fluid is influenced by the growth of
the ice layer through the single additional term

√

α/νf ′′/2
which obviously vanishes when the ice layer is absent
(α = 0). Equation (7) can be solved numerically using
a shooting method [25], and the main plot of fig. 3 shows
the variations of the solution’s derivative (−f ′) as the ra-
tio α/ν varies from 0 (non-freezing case) to 1 (about the
maximum value of the ratio in our experiments). Since
vr = −rf ′(ζ)/t, this derivative provides a good descrip-
tion of the velocity field in the boundary layer. Indeed,
in the boundary layer the horizontal velocity starts from
zero at the ice-water interface (no-slip), and reaches the
inviscid flow behaviour when −f ′(ζ) ∼ 1. Figure 3 reveals
little change in the boundary layer as α/ν varies between

Fig. 3: The derivative −f ′(ζ) of the solution of self-similar
equation (7), for values of the ratio α/ν increasing from 0 to
1 (curves from right to left, red to blue). The boundary layer
thickness is defined using the slope of this curve at the ori-
gin, and the inset shows the evolution of this slope (−f ′′(0),
actually) as the ratio α/ν increases.

0 and 1. Finally, the boundary layer thickness δν can be
defined directly from this solution, estimating the length
needed for the horizontal velocity to approach the inviscid
behavior, yielding

δν =

√
νt

−f ′′(0)
. (9)

The inset of fig. 3 plots −f ′′(0) vs. the ratio α/ν, and re-
veals that the boundary layer prefactor −1/f ′′(0) increases
at most 25% over our experimental range. Therefore, a
first approximation of the viscous boundary layer can be
taken as δν =

√
νt. In conclusion, this result shows that

the viscous boundary layer grows on top of the freezing
layer, with a negligible coupling between them. This con-
figuration can be globally considered as a mixed boundary
layer of size δ = δν + δf.

Effective viscosity. – Within this framework, fig. 4
shows a schematic cross-section of the drop spreading and
freezing. As the liquid spreads, the viscous boundary layer
of thickness δν =

√
νt grows from the solid surface up-

wards, and concentrates the viscous dissipation. At the
same time, the ice layer δf =

√
αt grows with a similar√

t dynamic. When the liquid freezes, it stops moving,
which constitutes a loss of kinetic energy. Hence, viscous
dissipation and freezing both reduce the drop inertia. The
dynamics of the two phenomena are associated and damp-
ing operates across the thickness of the mixed boundary
layer δ:

δ =
√

νt +
√

αt. (10)

If we now assume that the spreading stops when the mixed
boundary layer δ reaches the free surface, we obtain a
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Fig. 4: Schematic of a drop spreading and freezing on a cold
substrate. Viscous damping occurs across the viscous bound-
ary layer δν =

√
νt, whereas the growing ice layer has thickness

δf =
√

αt. As a result, the spreading is damped across a total
thickness δ = δν + δf.

similar result as that of the non-freezing case (eq. (2)), by
defining the effective viscosity νeff such as δ =

√
νefft:

νeff = ν

(

1 +

√

α

ν

)2

. (11)

Using νeff , we can define the effective Reynolds number
Reeff :

Reeff =
Re

(1 +
√

α
ν )2

. (12)

Therefore, we can replace Re by Reeff in eq. (2), and in
the viscosity-dominated regime considered in this paper,
we expect the following spreading law:

ξmax ∼ Re1/5

eff
(13)

In fact, eq. (2) uses the drop volume conservation and
a correction should be added because of the 10% volume
expansion of the ice by comparison with water. However,
we neglect this correction concerning only the solid part
of the drop, leading at most to a 2% correction for ξmax

that is below the typical error of our measurements.
Above 0 ◦C, α = 0 and thus Reeff = Re, which re-

turns the viscous scaling ξmax = Re1/5. Below 0 ◦C, the
colder the temperature the higher the freezing rate α, the
smaller the effective Reynolds number.

With the aim of confronting this model against our ex-
perimental data, fig. 5 plots the maximal spreading param-
eter vs. the effective Reynolds number. As in fig. 2(c),

the dashed line represents the power law ξmax ∼ Re1/5

eff

fitted with the experiments above 0 ◦C, which remains
unchanged. Only the data representing the experiments
below 0 ◦C have shifted to the left towards the small
Reynolds numbers. There is now a good agreement be-
tween all data and the power law, for the whole range of
temperature. This proves that the freezing of the spread-
ing drop can be appropriately modelled through an effec-
tive viscosity, whose magnitude is set by the freezing rate.

Discussion. – A notable point of fig. 5 is that all ex-
periments collapse well not only on a line of slope 1/5
as expected, but on the same line as the experiments
above 0 ◦C, without requiring any additional fitting pa-
rameter. This is probably due to our good estimation of
the freezing rate α [22]. Moreover, the good agreement of

experiments with the scaling law ξmax = Re1/5

eff
suggests

Fig. 5: Maximal spreading vs. the effective Reynolds number
(eq. (12)). The new definition of the Reynolds number shifts
the experiments where freezing occurs (blue) to the left, and
yields a good agreement with the power law 1/5. The dashed
line has a slope 1/5 and its prefactor is fitted to the experiments
above 0 ◦C only.

that the freezing and the spreading of the drop follow dis-
tinct dynamics. Since the model we used to derive the
freezing rate assumes the liquid remains still while freez-
ing, we infer that the thermal diffusion which controls the
freezing rate is apparently not affected by the flow. Also,
the proposed model completely ignores what happens at
the contact line and only considers bulk viscous dissipa-
tion. The good agreement between this theory and the
experiments shows that the mechanism which stops the
spreading may not reside at the contact line, as previously
thought [11,13,17].

Gielen et al. [16] recently conducted an analogous study
with molten tin drops impacting a sapphire substrate, and
observed a similar reduce in the maximal spreading while
decreasing the substrate temperature. Their explanation
is based on the sole growing solid layer, without taking
into account the viscous boundary layer. In the present
framework, it amounts to neglect the kinematic viscosity
ν compared to the freezing rate α. The model of Gielen
et al. is consistent with their experiments, but did not
match ours, because in our case the freezing rate α is com-
parable to the kinematic viscosity ν, although it remains
smaller. On the other hand, tin has a latent heat more
than five times lesser than water which makes it easier to
freeze, and its liquid phase is four times less viscous, ex-
plaining why the effect of viscosity in the impact of molten
tin drops can be neglected.

Rather than an effect of solidification, the decrease of
ξmax with temperature could be due to the increase of vis-
cosity of water depending on the temperature. Indeed,
between 20 ◦C and 0 ◦C, the viscosity of water almost
doubles, from 1 mPa · s to 1.79 mPa · s [30]. For the flow
viscosity to increase further below 0 ◦C, one would need
have supercooled water, otherwise it would just be solid.
The viscosity of supercooled water does indeed increase
at lower temperatures: at −20 ◦C it is 4.33 mPa · s, more
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than twice its value at 0 ◦C [31]. However, it is unlikely
that the temperature dependence of viscosity be the main
cause for the damping for two reasons: firstly, we do not
observe any decrease in the maximal spreading above 0 ◦C,
which could be attributed to the increase in the viscosity
of water. Secondly, supercooled water does not exist be-
low −40 ◦C. This is contradictory with our observations
which are consistent over the whole range of temperature
from 18 ◦C to −109 ◦C.

Although neglecting the increase in water viscosity due
the decrease in temperature apparently conflicts with the
study of viscous damping, it is easily justified by looking
at the volume of water which it concerns. This volume of
water which is cold, thus more viscous than at room tem-
perature, yet remains liquid, corresponds to the thermal
boundary layer which grows on top of the ice. Its thick-
ness grows roughly like

√
Dwt, with Dw = 0.14 mm2/s

being water heat diffusivity. Since the freezing rate α is
most of the time greater than Dw, it means this cold liq-
uid layer freezes as soon as it cools down, so its volume
remains negligible at all times. Therefore, viscous dissi-
pation therein is negligible compared to dissipation in the
bulk at 20 ◦C.

We notably dismissed the nucleation of ice and whether
water supercooling occurs in the process of freezing the
spreading drop [18]. During our study, we did not observe
the typical evidences of supercooling, such as dendrites or
patches of ice growing from different parts of the water-
silicon interface. Supercooling would typically happen if
the substrate temperature and the initial drop tempera-
ture were closer to the melting point. Studies focusing
on that matter (such as ref. [18]) consider the vicinity of
the melting point and materials with a lower heat capac-
ity (hexadecane), which is not in the range of our study.
Furthermore, our observations are well explained under
the assumption of a flat ice-water interface, which only
makes sense in the absence of supercooling. This is co-
herent with our previous work [1,22], in which predictions
assuming water was not supercooled were quantitatively
verified. For those reasons, we chose to neglect water su-
percooling throughout our study.

Finally, although our results are limited to the visco-
inertial regime (P ( 1), they suggest that the spreading
law given by equation (3) could be expanded to any freez-
ing drop impact by redefining the effective impact param-

eter P = WeRe−2/5

eff
, leading to

ξmax ∼ Re1/5

eff

P 1/2

A + P 1/2
. (14)

In the present regime, this expression does not provide a

better fit to our data than the purely viscous Re1/5

eff
law.

Its validation would require new experiments, and deserves
a dedicated study.

Conclusion. – When a water drop impacts a sur-
face colder than its melting temperature, it freezes
as it spreads. Compared to the isothermal case the

solidification reduces the maximal extent of the drop, as
much as 40% for a temperature of −100 ◦C. Since the ice
layer beneath the liquid film grows similarly to the viscous
boundary layer, we showed that this effect could be mod-
elled as an effective viscosity, which is a function of the
ratio between the freezing rate α and the liquid kinematic
viscosity ν. This approach matches our experiments well,
and is consistent with the existing literature on the sub-
ject. Therefore, this concept of freezing-induced effective
viscosity offers an interesting tool for the study of other
complex systems involving flows and phase transitions.
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