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Abstract

Modeling and simulation of atomization is challenging due to the existence

of a wide range of length scales. This multiscale nature of atomization in-

troduces a fundamental challenge to numerical simulation. A pathway to

comprehensive modeling is still to be found. The present study proposes

a multiscale multiphase flow model for atomization simulations, where the

large-scale interfaces are resolved by the Volume-of-Fluid (VOF) method and

the small droplets by the Lagrangian Point-Particle (LPP) model. Particular

attention is focused on the momentum coupling between LPP and resolved

flow and the conversion between droplets represented by VOF and LPP. A

series of multiphase flow problems are considered to validate the model. The

results obtained by a number of simulations are compared against direct nu-

merical simulation (DNS) results and experimental data. In particular, the
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model is applied to simulate the gas-assisted atomization experiment, and

the numerical results are compared to the experimental measurements for a

quantitative validation.

Keywords: Multiphase flows, Atomization, Lagrangian point-particle,

Volume of fluid method, Multiscale modeling

1. Introduction

Atomization is an important fundamental multiphase flow problem. As

it is essential to many engineering applications, such as fuel injection in com-

bustion engines, many experimental and numerical studies on the topic have

been reported in the literature [31, 38, 16, 22, 49, 53, 39, 23]. Nevertheless,

the mechanisms that control spray formation and evolution are far from be-

ing understood. Numerical simulation has been shown to be a powerful tool

to investigate atomization, in particular in providing physical insight into

fundamental physics and aspects of the phenomenon that are difficult to be

examined experimentally. However, modeling and simulation of atomization

is challenging due to the existence of a wide range of length scales, as in an

atomizing liquid jet they can vary from the length of the jet (several cm)

to the size of the smallest droplets (submicrons). This multiscale nature of

atomization introduces a fundamental challenge to numerical simulation. A

pathway to comprehensive modeling is still to be found.

In the past decades, sophisticated numerical schemes have been devel-

oped to capture or track the interface evolution, such as the Volume-of-Fluid

(VOF) [28], Level-Set (LS) [52], and Front-Tracking methods [54]. With

these numerical schemes accurate direct numerical simulations (DNS) of mul-
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tiphase flows with complex interfaces can be conducted. [22, 27, 49, 23] In

particular, the VOF method has the advantage of conserving mass and is in a

good balance between accuracy and implementation complexity. In previous

studies of our group, VOF has been applied to a variety of multiphase flows

with complex interface topology change, like primary atomization, droplet

splash, rising bubble, yielding accurate simulation results [30, 22, 45, 23].

Direct numerical simulation with interface capturing/tracking schemes is

a very powerful tool to understand the fundamental physics of atomization.

However, the range of scales that can be covered by DNS with today’s com-

puting capability is still smaller than what would be needed for practical

applications or even comparison to experiments. Adaptive Mesh Refinement

(AMR) techniques have been developed and utilized in multiphase flow sim-

ulation to reduce the cost of computation [45, 1]. In AMR, a fine mesh is

used only in the regions that require a higher resolution, such as near the in-

terface and in shear layers. Nevertheless, even with AMR, DNS is still often

too expensive for many atomization problems. The most demanding mesh

requirement is usually introduced by the small droplets that are formed in

atomization. Typically, to obtain reasonable results of motion and interface

dynamics for a spherical droplet, at least eight to twelve grid points across

the droplet diameter are required. It is known from experiments that the di-

ameter of the atomizing liquid jet is about three orders of magnitude larger

than the smallest droplets. For such a wide range of length scales, the num-

ber of grid points that is required to resolve every scale, namely a true DNS,

is extremely expensive even with AMR.

An alternative approach to resolve this multiscale challenge in atomiza-
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tion simulation is to introduce subgrid models, although the two ideas could

be combined. The idea of subgrid modeling is very simple: only the physi-

cal scales larger than the cell size are resolved, while for the physical scales

that are smaller suitable models are introduced to represent the relevant

physics. A good example of subgrid modeling is the Large-Eddy Simulation

(LES) model for turbulence. [44] In LES, a low-pass filtering is applied and

only the large eddies are resolved. As a result, a coarser mesh compared to

DNS of turbulence can be used. However, to accurately capture the large-

scale physics, the small unresolved turbulent eddies and their interaction

with the large scales have to be represented by a subgrid model, such as the

Smagorinsky model [50]. For turbulent multiphase flows like atomization,

subgrid modeling is more challenging due to the complex multiphase dynam-

ics. If a spatial filter of a constant filtering length is applied to the whole

flow field, then the subgrid model would need to capture a variety of mul-

tiphase dynamics, such as the formation of sheets, ligaments, and droplets,

droplet dynamics, droplet impact on liquid interface, interface-turbulence in-

teraction, and droplet-turbulence interaction. Such comprehensive subgrid

models are exceedingly complex and the current knowledge of many of the

above phenomena still requires significant improvement for the development

of accurate models. Nevertheless, as the droplets formed in atomization are

usually very small, it is easier to only apply subgrid modeling for their motion,

and the Lagrangian point-particle (LPP) approach is a perfect candidate.

The LPP model has been widely utilized in particle-laden flows and sprays

[2, 6]. In LPP, the particles (or droplets) are viewed as point masses and the

flow around individual particles is not resolved. To accurately track the par-
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ticles and the backward effect to the carrier flow, physical models are needed

to calculate the instantaneous force acting on the particles. Eventually, in

a so-called Eulerian-Lagrangian simulation, the macro-scale fluid flow is re-

solved in an Eulerian framework and the point-particles are evolved in a

Lagrangian framework. In atomization, the typical Weber number of the

droplets, Wep, is usually very small. (Precise definition of Wep will be given

in section 2.) As a result, the droplets remain close to a spherical shape,

and the LPP model is suitable to capture their motion and the backward

effect to the flow. From the filtering perspective, LPP can be viewed as a

local spatial filter with a variable filtering length scale [13]. Since it is dif-

ficult to filter the overall flow field, filtering is only applied at the particle

location with a filtering length scale which is related to the droplet size. In

this work, a multiscale simulation approach that couples the LPP model and

an interface-capturing scheme is proposed. In this approach, the goal is to

filter the scales on the order of a small number, say nc, of grid cells, and

to represent larger scales. Thus droplets of a diameter smaller than or of

the order of nc∆x are represented by the LPP model, while larger droplets

and fluid masses are represented by an interface tracking scheme. Thus part

of the flow is represented in a DNS-like manner while both the flow inside

the small droplets and the surrounding flow perturbed by these droplets are

filtered. Thus the motion of the small droplets and their backward effect to

the resolved flow are represented by the LPP force model. Moreover, care

is taken to work with Reynolds and Weber numbers sufficiently moderate to

minimize the energy present at such small scales.

In recent years, several pioneering efforts have been made to couple the
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LPP model with interface-capturing schemes, such as LS [27] and VOF [53].

The results are quite encouraging and show the great potential of this mul-

tiscale approach for accurate large-scale simulations of atomization. How-

ever, there still exist unresolved issues in the coupling of LPP with interface-

capturing schemes which require further investigation and validation. In

conventional simulations with the LPP model the grid cell is much larger

than the particle size, typically dp < ∆x/10, where dp and ∆x represent the

particle diameter and cell size, respectively, as shown in Fig. 1 (a). As a

result, a single computational cell may contain many particles. Sometimes,

the number of particles in a cell is so large that a super-particle technique is

utilized, in which one computational particle (or parcel) is used to represent

many physical particles. In contrast, for a fully resolved droplet (RD), typi-

cally about ten grid points per diameter are required, as in Fig. 1 (d). The

ratio dp/∆x has a significant jump of about two orders of magnitude between

these two limits. Even if AMR is considered, it is impossible to adapt the

mesh to such a spatial jump in a single time step when a resolved droplet is

converted to a Lagrangian particle or vice versa. In yet another numerical

setup, if the grid were stretched and the droplet moved from a high den-

sity grid to a coarse grid region, a transition region of poor resolution would

again be encountered. Thus in all cases the mesh has to be adapted gradu-

ally, covering regimes where the grid resolution of the droplet lies in between

the two extreme limits, as in Figs. 1 (b) and (c). For these two intermediate

conditions, dp is only a few times larger than ∆x, and with such a resolution

the flow inside and outside the droplet is not captured accurately by DNS. It

is therefore reasonable to convert these poorly-resolved droplets to LPP, but
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(d) dp ⇡ 10�x(c) dp ⇡ 4�x(b) dp ⇡ �x(a) dp ⇡ �x/10

Figure 1: Droplet representation at different grid resolutions: (a) dp ≈ ∆x/10, (b) dp ≈
∆x, (c) dp ≈ 4 ∆x, and (d) dp ≈ 10 ∆x.

because of the larger-than-grid-size droplets the required modeling is much

more challenging than in conventional case.

The challenge mainly comes from the coupling between the LPP droplets

and the resolved fluid flow. The fluid-dynamic force acting on each individual

droplet is crucial to LPP models, since it determines both the droplet motion

and the backward effect to the fluid. Typically, the calculation of this force

requires the undisturbed fluid velocity at the droplet location. For the simple

case of a single droplet, the “undisturbed fluid velocity” can be considered

as the fluid velocity without the local perturbation induced by the droplet,

or the fluid velocity far away from the droplet location if a uniform flow is

imposed. For the case with many droplets, the undisturbed fluid velocity

“seen” by a LPP droplet can be considered as the fluid velocity when the

droplet of interest is absent but all the other droplets are present. [5] Because

the droplets and the fluid are two-way coupled, not only the fluid exerts a

fluid-dynamic force on the droplets, but this force is also exerted back to the

fluid with an opposite sign.

Conventionally, the droplet force is applied to the fluid as a point source

located at the center of mass of the droplet [13]. Strictly speaking, after
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the droplet force is added, the undisturbed fluid velocity is not available

anymore, since the fluid flow has been “perturbed”. However, for a droplet

that is much smaller than the computational cell the perturbation induced

by each individual droplet to the fluid within a cell is indeed small. As a

result, the fluid velocity stored in the cell is a good approximation of the

undisturbed fluid velocity. On the other hand, for droplets that are larger

than the cell size, if the force is also applied as a point source then the fluid

velocity of the cell, where the center of mass of the droplet is located, will be

influenced significantly and it cannot be considered equal to the undisturbed

fluid velocity. Furthermore, if the undisturbed fluid velocity is not computed

correctly, an error will be present in the droplet force and it will propagate

back to the resolved fluid flow, thus leading to serious computational errors.

It should be reminded that, even though the local perturbation of the

flow at the scale of the droplet size is ignored in the LPP model, the LPP

droplets and the resolved fluid flow are still two-way coupled. Since the force

exerted on each individual LPP droplet is subtracted from the resolved fluid

flow, the presence of LPP droplets will influence the resolved flow. However,

this influence is only at a spatial scale that is much larger than the droplet

size [5].

In the conversion from a resolved droplet to a LPP droplet (RD-to-LPP)

the phase-characteristic function χ in the region occupied by the droplet is

changed from the value χ = 1 of the liquid phase to χ = 0 of the gas, as in

Fig. 2. Moreover, the local perturbation induced by the droplet in the fluid

velocity field should be removed carefully, as depicted in Fig. 2, so that the

“undisturbed fluid velocity” is available to compute the fluid-dynamic force
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Figure 2: Schematic representation of a resolved droplet and a Lagrangian point-particle

droplet.

acting on the LPP droplet. The inverse conversion (LPP-to-RD) requires a

similar treatment.

In recent years, more sophisticated LPP models have been proposed

for larger-than-grid-size solid particles, such as the Force-Coupling method

(FCM) by Maxey and his colleagues [41, 40, 37, 36]. Instead of computing

the actual fluid-dynamic force exerted on the particle, a Gaussian distribu-

tion of external force monopoles and dipoles is applied to mimic the local

perturbation. In such a case, the undisturbed fluid velocity is not required

to model the interphase coupling. However, FCM is developed based on

the multipole expansion of Stokes flows. Extension to droplets with finite

Reynolds number is difficult. Even for droplets with small Reynolds number,

FCM typically requires four to six grid points per particle diameter [36]. It

is thus inapplicable in atomization simulations, since we need to deal with

droplet resolution dp/∆x going continuously from the very small to four grid

points.
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The goal of the present study is to propose a multiphase flow model for

atomization simulations, where the large-scale interfaces are resolved by the

VOF method and the small droplets by the LPP model. To focus on the de-

velopment and validation of the LPP model, in particular for droplets that

are larger than the grid size, we perform the study on a fixed grid. The

application of the LPP model in an octree AMR framework will be con-

sidered in future works. When an adaptive grid is used, the cell size can

be increased (gradually) by at least an order of magnitude, after the small

resolved droplets are converted to LPP droplets. In such a case, the to-

tal computational cost can be reduced significantly. For a fixed grid, even

though the reduction of computational time is not striking, there are several

other important advantages to represent small poorly resolved droplets by

the LPP model. First, the LPP model typically yields more accurate re-

sults on droplet dynamics than keeping the droplets resolved by VOF with

poor resolution (dp < 4∆x). Second, the poorly resolved droplets are usu-

ally removed in VOF simulations [49]. An unaccounted-for removal of the

small droplets formed makes the measurements of probability density func-

tion (PDF) of droplets impossible and also leads to a loss of physics. With

the LPP model, these droplets can be kept as LPP droplets. Third, the

poorly-resolved droplets sometimes cause numerical instability, (which is the

motivation to remove them), converting them to LPP improves the numerical

stability of the simulation and speeds up the convergence of Poisson solver

slightly.

The multiphase flow models, corresponding equations and numerical meth-

ods are presented in Section 2. A series of multiphase flow problems are
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considered to validate the approach, and the results obtained by a number

of simulations are compared against DNS results and experimental data in

Section 3. In particular, the model is applied to simulate the gas-assisted

atomization experiment by Descamps et al.[16]. This experiment is of par-

ticular interest because the drop trajectories and drop flying angle statistics

are measured. The numerical results are compared to the experimental

measurements for a quantitative validation. Finally, we summarize the con-

clusions of the present study in Section 4.

2. Modeling and numerical methods

Our numerical approach is made up of two main components. The first

one for the resolved flow contains a VOF method similar to that implemented

in several open-source codes such as SURFER, Gerris, and Basilisk. The

other one is the Lagrangian point-particle (LPP) method, which is the main

topic of this paper. The combined approach has been implemented in the

more recent free code PARIS-Simulator [3].

The LPP model can be viewed as a local spatial filtering on top of the

small droplets with a variable filtering length scale. The LPP droplets are

those with a diameter smaller than the cut-off droplet size in the flow field.

The cut-off droplet size is generally a function of the grid resolution, say

dcut ≈ (4–6) ∆x, since droplets with a diameter smaller than dcut are poorly

resolved. Furthermore, droplets should also satisfy the physical requirement

of an associated small Weber number, Wep, so that they remain almost

spherical. The filtered flow contains both phases and is governed by the

incompressible, variable-density, Navier-Stokes equations, with the interface
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Figure 3: Flow chart of the combined VOF-LPP algorithm.

evolution described by the VOF method. However, the LPP model and the

coupling techniques here presented can be applied to other interface methods,

such as Level-Set and Front-Tracking. The fluid flow around and inside the

droplets is not resolved, and the LPP force model is used both to calculate

the droplet motion and as a closure model to account for the effects of the

droplet dynamics on the resolved or filtered flow field.

The flowchart of the combined algorithm is shown in Fig. 3. For the

resolved flow, the Navier-Stokes (NS) equations and the color function ad-

vection equation are first advanced in time. Then the separated liquid struc-
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tures are identified and tagged by examining the volume fraction C field.

The resolved droplets that are qualified for LPP are then submitted to the

RD-to-LPP conversion routine. On the other side, the equation of motion

for each LPP droplet is solved to update its velocity and position. The LPP

droplets are then examined to check if they are still qualified to remain par-

ticles, if not they are converted back to resolved droplets. While the resolved

flow properties are needed to integrate the LPP equation of motion, the force

exerted by the flow on the LPP droplets should be subtracted from the flow

momentum equation. Thus the NS and LPP solvers are two-way coupled.

A description of the various solvers and routines is given in the following

sections.

2.1. Governing equations and numerical methods for the resolved flow

2.1.1. Governing equations

The one-fluid approach is employed to compute the resolved two-phase

flow, where the liquid and gas phases are treated as one fluid with material

properties that change abruptly across the interface. The incompressible,

variable-density, Navier-Stokes equations with surface tension are

ρ(∂tu + u · ∇u) = −∇p+∇ · (2µD) + σκδsn− f p , (1)

∇ · u = 0 , (2)

where ρ and µ are the fluid density and viscosity, u and p the velocity and

pressure fields, and D the deformation tensor with components Dij = (∂iuj+

∂jui)/2.

The volume fraction C is introduced to distinguish the different phases,

in particular C = 1 in the computational cells with only the liquid phase,
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and its time evolution satisfies the advection equation

∂tC + u · ∇C = 0 . (3)

The fluid density and viscosity are then defined by

ρ = Cρl + (1− C)ρg , (4)

µ−1 = Cµ−1
l + (1− C)µ−1

g or µ = Cµl + (1− C)µg . (5)

The arithmetic mean is used for density, while the arithmetic or harmonic

means are used for viscosity according to the physical problem [8, 56].

The third term on the right hand side of Eq. (1) is a singular term, with

a Dirac distribution function δs localized on the interface, and it represents

the surface tension force. The surface tension coefficient is σ, and κ and n

are the local curvature and unit normal of the interface.

Finally, the last term of Eq. (1), f p, is the closure term that accounts for

the backward effect of the LPP droplets on the resolved flow.

2.1.2. Numerical methods

Navier-Stokes solver. The Navier-Stokes equations, Eqs. (1) and (2), are

solved by the projection method [10]. The time integration is conducted by

a second-order predictor-corrector method [55]. The finite-volume approach

on a regular, cubic staggered grid is utilized for spatial discretization. The

advection term is discretized by the third-order QUICK scheme [33]. The

viscous term is treated explicitly with the standard second-order centered

difference scheme. In the projection step, an elliptic equation for the pres-

sure is solved by a red-black successive overrelaxation (SOR) Gauss-Seidel

iteration method, which is found to be competitive with a more complex

multigrid solver, probably because of the small time step constraint.
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Volume-of-Fluid method. The piecewise-linear geometrical Volume-of-Fluid

method is used to solve the color function advection equation Eq. (3) [48].

The overall VOF method proceeds in two steps: interface reconstruction

and then its advection. The interface reconstruction is performed using a

piecewise-planar interface representation in each cell. The interface nor-

mal is computed by the Mixed-Youngs-Centered (MYC) method [4]. After

the reconstruction, direction-split geometrical fluxes are computed to advect

the interface. [15, 47] The VOF method has been shown to preserve sharp

interfaces and be close to second-order accuracy for practical applications

[4, 45, 9].

Curvature and balanced-force surface tension calculation. The height-function

(HF) method is employed to calculate the local interface curvature, in a man-

ner similar but not identical to the method implemented in Gerris [45]. We

compute height function values whenever a 1D block of cells exists with a full

cell on one side and an empty one on the other side. The block should be at

most of length NH = 9 cells. We then progress with a hierarchical sequence

of steps: i) when all the height values in a 3 × 3 stencil that includes the

cell under examination are present, the curvature is computed by a finite

difference calculation [45]; ii) when only 7 or 8 heights are found, the result-

ing interface points are fitted by an elliptic paraboloid that approximates

the shape of the local interface. However, the height values must be of the

same kind, which means no mixing of the heights along the z direction, with

widths or depths along x and y. The derivatives of the height function are

then given in terms of the coefficients of the paraboloid; iii) when less than

7 or 8 heights are found, we use a mixture of heights, widths and depths to
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get a set of at least 7 points. This set is trimmed to eliminate points that

are too close to each other: when two points are less than half a cell size

apart, only one of the two points is kept. Unlike [45], the coordinate system

is not rotated and the points are directly fitted to an elliptic paraboloid with

the axis along the direction with the largest normal component; iv) when the

previous option fails, all heights, widths and depths are discarded and we use

the centroid of the interface fragments reconstructed with the VOF method

to create a set of points, which are then fitted to an elliptic paraboloid.

As in several other works [46] [21] [45], a balanced-force surface tension

discretization is employed. We have checked that the method produces accu-

rate curvatures in 2D and 3D test cases and well–behaved droplet oscillations

in air–water systems.

2.2. Lagrangian point-particle model for the unresolved small droplets

The Lagrangian point-particle approach has been widely used in turbulent

dispersed multiphase flows [5, 6]. The key idea of the LPP model is to

approximate the dispersed phase, made up of small solid particles, droplets or

bubbles, as point masses. As a result, the flow at the scale of these particles

is not resolved. To accurately track the LPP droplets in the Lagrangian

framework, the force exerted on each individual droplet is calculated in terms

of the undisturbed flow field properties. The closure is typically given by the

force model or the so–called equation of motion (EOM) [14, 42, 25]

dup
dt

=
ũ− up
τp

φ+
ρ

ρp

Dũ

Dt
+
Cmρ

ρp

(
Dũ

Dt
− dup

dt

)
+ g , (6)

where up is the particle velocity, ũ the local undisturbed flow velocity, τp, ρp,

and Cm the response time, density, and added-mass coefficient of the LPP
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droplet. The modified gravity acceleration is denoted by g = (1 − ρ/ρp)g′,
where g′ is the gravity acceleration.

The droplet Reynolds and Weber numbers can then be defined as

Rep =
ρ dp |ũ− up|

µ
, (7)

Wep =
ρ dp |ũ− up|2

σ
. (8)

The position xp of a LPP particle is then updated by integrating

dxp
dt

= up . (9)

In the present study the LPP model is used to represent liquid droplets,

therefore physical properties denoted by the subscript p correspond to those

of the liquid phase, for example ρp = ρl. The variables without subscript

refer to the resolved flow.

The force terms on the right hand side of Eq. (6) represent the quasi-

steady force, the pressure-gradient force, the added-mass force, and the

gravity force, respectively, while the Basset-history force has been ignored

for simplicity [42, 35]. The relative importance in turbulent flows of the un-

steady forces compared to the quasi-steady force is investigated by a scaling

argument in [35]. The unsteady forces are necessary to accurately capture

the LPP droplet motion when the LPP droplet size becomes comparable to

the Kolmogorov scale and the density ratio ρg/ρp is significantly large. In the

present study, we consider droplets with a rather small ratio ρg/ρp, therefore

it is expected the contribution of the unsteady forces to be small. Neverthe-

less, the pressure-gradient and added-mass forces are retained to capture the

leading order effect of the unsteady mechanisms.
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The quasi-steady force in Eq. (6) is written as the Stokes drag multiplied

by a correction function φ, which takes into account the effect of finite Rep. In

the case of liquid droplets, for which µl � µg, the standard drag correlation

for solid particle can be employed [11]

φ(Rep) = 1 + 0.15Re0.687
p + 0.0175Rep

(
1 +

42500

Re1.16
p

)−1

. (10)

The response time τp of the LPP droplet is expressed as [12]

τp =
ρp d

2
p

18µ
. (11)

In atomization, the small droplets are generally dispersed downstream of

the jet. As a result, their total volume fraction is low and the inter-droplet

interaction (the four-way coupling effect) can be ignored.

A second-order predictor-corrector method is used for the time integration

of the particle velocity and position, Eqs.(6–9), which is consistent with the

algorithms used for the resolved flow.

2.3. Momentum coupling between LPP and resolved flow

The force exerted by the resolved flow on the LPP droplets is referred

to as forward coupling and its computation is based on the resolved flow

properties, Eq. (6). Due to Newton’s third law, the force exerted on the LPP

droplets needs to be subtracted from the resolved flow and is referred to as

backward coupling. This forcing term is represented by f p in the resolved

flow momentum equation, Eq. (1).

In the conventional LPP model, the computational cell is usually much

larger than the LPP droplet size and many droplets are contained in each
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cell. The forcing term f p is then computed by a volume average over the

LPP droplets

f p =
1

Vc

Np,c∑
i=1

F fp,i , (12)

where Vc and Np,c are the cell volume and the number of droplets in that

cell. Note that only the force due to fluid-LPP-droplet interaction needs to

be subtracted from the momentum equation

F fp,i = mp,i

(
dup,i
dt
− g

)
. (13)

Although there exist issues of coupling LPP back to the resolved flow due to

the number density fluctuation [51, 34], the handling of two-way coupling is

relatively easy. Since the fluid velocity corresponds to an average value over

the cell, and the cell contains a large number of LPP droplets, then their

influence is automatically filtered out (but the effects of the ambient flow

and other LPP droplets outside the cell are retained). As a result, the stored

fluid velocity can be used directly as the undisturbed fluid velocity in Eq.

(6).

However, in the present LPP model the droplets are bigger than the cell

size, the two-way coupling becomes more complicated and in particular Eq.

(12) is not valid any more. What’s even worse is the fact that if the force F fp,i

is applied to the cell where the mass center of the LPP droplet is located, or

is distributed to all the cells occupied by the LPP droplet, the resolved flow

will be affected significantly.

For this reason, we retain Eq. (6) and, as suggested by Maxey et al.[41],

write the resolved velocity u as the sum of two contributions, u = ũ + û.

The first term ũ represents the undisturbed fluid velocity, the second one û
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is the velocity disturbance induced by the droplet under examination, a term

which is filtered out in the conventional LPP model.

When there are only a few LPP droplets in the flow field, their contribu-

tion to the momentum equation of the resolved flow is small, and a simple

solution is to neglect the coupling force term f p in Eq. (1). This is the one-

way coupling approximation for which û = 0 and ũ = u. It has been found

in previous works that the effect of the coupling force on changing the fluid

momentum is related to the mass fraction of dispersed phase, [14, 35], hence

in the one-way coupling assumption the error in ũ increases with the mass

fraction of the LPP droplets. [18]

In order to obtain a better estimate of ũ, we propose to calculate f p as

f p =

Np∑
i=1

F fp,iG(x− xp,i) , (14)

whereNp is now the total number of LPP droplets in the flow field. The Gaus-

sian function G(x − xp,i) is a numerical representation of the LPP droplet

coupling force [41]

G(x) = (2πL2)−3/2 exp(−|x|2/2L2) , (15)

where L controls the size of the region where the force should be distributed.

Equation (14) is similar to that given by Maxey et al.[41], but the interpre-

tation is different. In the present model, L is viewed as the length scale of

a spatial filter of the coupling force at the LPP droplet location. The pa-

rameter L is chosen to be larger than the actual droplet size. Depending on

the volume fraction of the LPP droplets, L is picked between 5 and 10 dp.

Therefore, the coupling force F fp,i corresponding to the ith LPP droplet is
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smoothly distributed within a region larger than the droplet size, rather than

concentrated at the droplet location. At every LPP droplet location, the con-

tribution of the force from the present droplet to the local resolved flow is

small, so that u computed from Eq. (1) can be used as an approximation of

ũ in Eq. (6).

There are several advantages for treating the coupling force in the above

way. First, the undisturbed fluid velocity is directly given by the resolved flow

momentum equation to calculate the droplet force. Second, the integration

of Eq. (14) over the whole domain yields the total force exerted on all the

LPP droplets and the total momentum of the combined RF-LPP system

is conserved. Third, since L is determined by the droplet diameter and

not by the cell size, the coupling between RF and LPP droplets does not

depend on the grid. This feature is quite important if the LPP model is

coupled with AMR, because the calculation of the force on the LPP droplets

and the backward effect on the resolved flow will not be affected when the

mesh adapts itself from the well–resolved droplet regime, ∆x < 0.1dp, to the

conventional LPP model, ∆x > 10dp.

The present treatment of the coupling force will only capture the back-

ward effect of the LPP droplets on the resolved flow on length scales larger

than L. The dynamics due to fluid-droplet interaction on scales smaller than

L, such as the shear layer near the droplet interface, the wake of the droplet

and the interaction with the resolved flow, will be missed.

Finally, since the LPP droplets do not in general coincide with the loca-

tions at which the fluid velocity is stored, interpolation is required to compute

u at the LPP droplet location. [24, 34] A tri-linear interpolation is used in
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the present study. When the spatial variation of the resolved flows is signif-

icant over the LPP droplet size, then picking the fluid velocity at the LPP

droplet center is not sufficient and the Faxén correction is often used to gen-

eralize the force models. [19] Furthermore, if the LPP droplet moves in a

shear flow, then the shear lift force will be induced. [32] Nevertheless, the

LPP model is only applied to small droplets in the present study, the effect of

inhomogeneous ambient flows on the droplet force is expected to be generally

small and thus the Faxén and lift forces are neglected.

2.4. Two-way conversion between LPP and resolved droplet

The flow chart of the combined algorithm in Fig. 3, shows the tight cou-

pling between the two solvers for the resolved flow and the LPP droplets. In

atomization simulations that consider the jet formation as well, the initial

flow is completely resolved with the VOF method, since small droplets are

not yet formed. Once the liquid jet starts to atomize, the droplets away from

the interface are converted to LPP droplets. Some of the LPP droplets may

follow trajectories that bring them back toward the interface. These droplets

may be converted back to resolved droplets. The conversion algorithm is

summarized in Fig. 4.

2.4.1. Conversion Criteria

The criteria to determine whether a droplet should be represented by the

LPP model or remain resolved depend on its shape and position.

The present LPP force model assumes the droplet to be spherical. When

the droplet Weber and Reynolds are large, or when the droplet Capillary

number Cap = Wep/Rep becomes large the droplet may deform significantly
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Tagging

for icell =1,Ncell do 
    Identify separated droplets and generate RD array
    Perform droplet calculation (droplet volume, etc)
end for

RD-to-LPP 
Conversion

for iRD =1,NRD do 
    Check conversion criteria
    if Droplet iRD qualified for LPP
        Change non-zero color function to zero
        Replace perturbed flow field by undisturbed flow field 
        Add droplet iRD into LPP array and store droplet position and 
velocity
    end if
end for

LPP-to-RD 
Conversion

for iLPP =1,NLPP do 
    Check conversion criteria
    if Droplet iLPP not qualified for LPP
        Reconstruct color function for the droplet
        Change velocity within the droplet 
        Remove droplet iLPP from LPP array
    end if
end for

Figure 4: Algorithm for conversation between resolved droplets (RD) and Lagrangian

Point-Particle (LPP) droplets.

23



and the LPP model will introduce an error in its motion. However, if the

droplet diameter is less than four to six grid spacings, then the shape and

the dynamics of the droplet are not accurately represented even by the VOF

method. Therefore, droplets with moderate Weber and Reynolds numbers

should also be converted to LPP droplets. In previous atomization simu-

lations these poorly resolved droplets, with dp ≤ 4 ∆x, were removed to

improve the stability of the solver. [49] Here, instead of simply removing

them, we convert them to LPP droplets, with a positive effect on the numer-

ical stability and on the mass conservation, and with better droplet statistics

during the atomization process.

For convenience of the calculation, the droplet volume Vp is used instead

of its diameter dp to define the droplet size. The aspect ratio γ is also

estimated in order to avoid converting to LPP droplets thin ligaments and

sheets. Therefore, only when Vp is smaller than a critical value, say Vcrit '
(43–63)Vcell, and γ is close to one, then the droplet is qualified for the LPP

model.

Furthermore, a location criterion is used to check if the droplet is away

from the liquid jet interface. Since the current LPP model does not include

either the formation of a droplet or a droplet impact on the interface, only

droplets that are at a certain distance away from the liquid jet interface can

be converted. The distance is typically chosen to be the droplet diameter dp.

The overall conversion criteria can be expressed as

{LPP Qualified} = {Vp < Vcut} && {|γp − 1| < εγ} && {xp ∈ Rai} , (16)

where εγ is the tolerance for the aspect ratio, and Rai is the region away from

the interface.
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Figure 5: Conversion between a resolved droplet (RD) and a Lagrangian point-particle

(LPP) droplet. The fluid flow field for the LPP droplet is slightly perturbed due to the

coupling force.

2.4.2. RD-to-LPP conversion

For the conversion from resolved droplets to LPP droplets, the separated

liquid structures must be first identified by tagging the color function field.

The tagging approach of [27] is employed here, and cells that are attached to

each other, with respect to the liquid phase, will have the same tag number.

During the tagging process, calculations of the droplet properties, including

its volume, aspect ratio, location and velocity of the center of mass, are also

performed.
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A schematic representation of the conversion from RD to LPP is shown

in Fig. 5(a). In the conversion, the droplet volume Vp and velocity up are

first computed by an integration over the region Ω occupied by the droplet

(grey area of Fig. 5(a)), namely Vp =
∫

Ω
χdV and Vp up =

∫
Ω
uχdV , the

phase-characteristic function χ is then changed from the value 1 to 0.

Moreover, the perturbed flow field in the same region should be replaced

by the undisturbed flow, so that the LPP droplet sees the proper undisturbed

fluid velocity. This is done by interpolating each component of the fluid

velocity along the corresponding coordinate from the surface into the interior

of a cubic region centered at the particle location. The edge length of the

cubic region is about two times the droplet diameter (blue area of Fig. 5(a)).

For example, for the velocity component u along the x-direction, a linear

interpolation is performed between the two values u(i1−1, j, k) and u(i2, j, k),

where i1 and i2 are the indexes of the left and right boundary cells of the

cubic region. The reconstructed velocity field is globally divergence-free if the

velocity on the surface of the interpolation region is divergence-free. The field

is also divergence-free locally if the divergence components ∂u/∂x, ∂v/∂y,

and ∂w/∂z are constant within the region. Unless the particle Reynolds

number is very small, a cubic region with an edge size twice the droplet

diameter is sufficient to reconstruct the undisturbed flow field in a satisfactory

way. The reconstruction of the undisturbed flow field is necessary even for

the simple approach of removing the small poorly-resolved droplets from the

simulation, since which minimizes the influence of the removal of droplets

to the resolved flows. It has been observed in the previous work that if

the small liquid structures are replaced by gas with the same velocity, the
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interface instability in the resolved flow is modified. [49]

Since in the RD-to-LPP conversion, the region originally occupied by the

liquid will be filled with the gas phase, it might seem that additional gas is

added to the system and mass conservation is violated. As a matter of fact,

the added gas is actually considered as a “ghost fluid” and is used only for

the droplet force calculation. When a LPP droplet is converted back to a

resolved droplet, the ghost fluid will be taken out from the system. Therefore,

the ghost fluid should always be excluded from the calculation of the total

mass of the system.

Furthermore, the LPP droplet represents not only the momentum of the

droplet, but also the momentum of the unresolved perturbed flow around the

droplet. The latter can be viewed as the momentum of a virtual volume of

fluid that moves with the LPP droplet. Therefore, although the perturbed

flow around the droplet is removed in the RD-to-LPP conversion, the cor-

responding momentum is kept. As a result, the momentum of the overall

system is conserved.

2.4.3. LPP-to-RD conversion

Several conversion criteria can be devised to examine if a LPP droplet

is still qualified for the LPP model, for example the droplet volume can

increase due to collision and merging of droplets or to phase change. These

physical processes are not considered in the present LPP model, where the

only condition for converting a LPP droplet to a resolved one is that the

droplet position is very close to the liquid jet interface.

A schematic picture of the conversion process is shown in Fig. 5(b), and

the algorithm is described in Fig. 4. First, a spherical droplet is rebuilt
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around xp, by updating properly the color function in the cells that will be

occupied by the resolved droplet. The ghost fluid that was added in the

inverse RD-to-LPP conversion is now taken out.

In the same cells containing the new resolved droplet the velocity field

needs to be updated to take care of the LPP droplet velocity. In principle, the

local perturbed flow inside and outside the droplet should be reconstructed,

this being the inverse process of the removal of the perturbed flow in the

RD-to-LPP conversion. The reconstruction of the local perturbed flow is

quite a difficult task, except in the limit of zero Reynolds number for which

an analytical solution exists (however, in that case the perturbed region is

infinitely large). Nevertheless, if one naively ignores the effect of the local

perturbed flow and only changes the velocity inside the droplet to be the LPP

droplet velocity up, then it can be easily shown that the droplet velocity will

have a significant transition jump right after the LPP-to-RD conversion. This

is simply due to the fact that a portion of the momentum of the droplet given

in the conversion is transferred to the surrounding flow and used for the local

perturbed flow development.

As described in the RD-to-LPP conversion, the LPP droplet actually

contains the momentum of both the droplet and the virtual fluid moving

with the droplet. In the naive conversion approach described above, only the

portion of droplet is included. In order to compensate the perturbed flow that

is not reconstructed, the momentum of the virtual fluid also needs to be added

back. Therefore, the velocity in the cells occupied by the resolved droplet

should be changed to u′p for the purpose of compensating the momentum in
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the perturbed flow field around the droplet, i.e.,

ρpVp(u
′
p − ũf ) = ρpVp(up − ũf ) +

∫
Vf

ρf (uf − ũf )dV , (17)

where ũf and uf represent the undisturbed and disturbed fluid velocity

around the droplet. The second term on the right hand side is the mo-

mentum of the perturbed flow field, which is approximated by assuming a

virtual volume of fluid, αVp, moving with the droplet velocity,∫
Vf

ρf (uf − ũf )dV ≈ αρfVp(up − ũf ) . (18)

Then the velocity to be used in the cells of the resolved droplet in the LPP-

to-RD conversion can be expressed as

u′p − uf =
(

1 + α
ρf
ρp

)
(up − uf ) . (19)

The physical meaning of α is the ratio between the volumes of the virtual fluid

and the droplet. However, it is not easy to get a precise value of α. It is known

that, in order to accelerate a particle, additional forces, i.e., the added-mass

and history (viscous-unsteady) forces, are needed to accelerate the ambient

fluid around the particle. For the added-mass effect, it is considered that

the ratio between the volumes of the virtual fluid to be accelerated through

the inviscid mechanism and the particle is the added-mass coefficient CM ,

which is equal to 0.5 for a sphere in incompressible flows. Due to finite viscous

diffusion time scale, the history force usually needs to be expressed in integral

form. [7, 43] Nevertheless, it has been shown by Ling et al.[35] that, if the

particle and ambient fluid acceleration time scales are much larger than the

viscous diffusion time scale, the history force can also be expressed as non-

integral form like the added-mass force, and a viscous-unsteady coefficient
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Cvu similar to the added-mass coefficient CM can be derived as

Cvu ≈ 8.51

(
0.75 + 0.105Rep

Rep

)
. (20)

The viscous-unsteady coefficient Cvu, can be considered as the ratio between

the volumes of the virtual fluid to be accelerated through the viscous mech-

anism and the particle. It is shown that Cvu decreases with the droplet

Reynolds number Rep. When Re varies from 10 to 100, Cvu decreases from

1.53 to 0.96. The excess momentum added through u′p is to mimic the effects

of the added-mass and history forces on accelerating the surrounding fluid

around the droplet. Therefore, α can be estimated as the sum of CM and

Cvu and thus depends on the droplet Reynolds number as well. In an actual

computation, the resolution of RD is usually 4–6 grid cells across the diam-

eter, and the local perturbed flow may not be computed very accurately. As

a result, α usually needs to be adjusted slightly. For simplicity, a constant of

α = 4 is used in the present study, which has ben shown to yield a smooth

droplet velocity transition in the LPP-to-RD conversion.

3. Results

To validate the combined multiphase flow model where the smallest droplets

are represented by the LPP model, four test problems with increasing com-

plexity are conducted: settling droplet, droplet in a lid-driven cavity, pulsed

jet atomization, and gas-assisted atomization. The combined model consid-

ers the point-particle approximation for small droplets, that introduces errors

even when the droplets are spherical. Nevertheless, these errors should be

small and should not influence the features of interest to be captured by
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ρl (kg/m3) ρg (kg/m3) µl (Pa s) µg (Pa s) dp (m) σ (N/m) g (m/s2)

1000 10 10−3 10−4 10−4 0 9.8

Table 1: Parameters for the settling droplet problem.

atomization simulations, such as droplet size PDF and droplet flying angle

PDF. To validate the combined model, its numerical results are compared

with experimental data or DNS, depending on the test problem.

3.1. Settling droplet

The combined model is first tested with the simulation of a liquid droplet

settling in a large rectangular cuboid filled with a stationary gas, see Fig. 6(a).

The relevant physical properties of the two phases and other parameters are

given in Table 1. The dimensions of the tank are Lx = Lz = Ly/2 = 10−3m.

Gravity is along the negative y–direction. The center of the droplet is is

initially at (0.5Lx, 0.5Ly, 0.5Lx) and reaches the settling velocity at about

time t = 0.03 s. The droplet terminal velocity is about vt = 0.04m/s with

a corresponding droplet Reynolds number Ret ≈ 0.4. The droplet remains

about spherical during the settling due to viscous effects, and surface tension

is therefore not included in this simulation.

Note that the standard drag correlation Eq. (10) is for LPP in an un-

bounded domain. Here, the tank width and depth are only 10 times the

droplet diameter and, as a result, the tank wall has a noticeable retarding

effect on the settling velocity vt. The relation between the terminal settling

velocity vt and the diameter-to-width ratio dp/Lx has been studied by many

researchers, typically in a cylindrical tube with a circular cross section. [17]
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Figure 6: A liquid droplet settling in a stationary gas tank: (a) problem setting, (b)

settling velocity as a function of time.

To include the wall effect, the correlation of [17]

η =
vt

vt,unbounded

=

(
1− dp/Lx

1− 0.33 dp/Lx

)2.7

, (21)

is used to correct the drag calculation, where η is defined by the ratio between

the terminal settling velocity in bounded and unbounded domains. This

correlation is here used to correct the quasi-steady force in the equation of

motion (6) in the following way

dup
dt

=
ũ− up
τp

φ

η
+

ρ

ρp

Dũ

Dt
+
Cmρ

ρp

(
Dũ

Dt
− dup

dt

)
+ g . (22)

In DNS without the LPP model and with cubic cells of side h, four dif-

ferent resolutions, dp/h = 2, 4, 8, 16, are used to resolve the droplet. With

the LPP model there is only one droplet in the tank, hence the one-way

coupling approximation is made and f p is ignored in Eq. (1). As a result, ũ

and Dũ/Dt are equal to zero. The LPP model result is simply obtained by
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integrating Eq. (22) and thus it is independent of the cell size. The results for

the y-velocity of the droplet with only the VOF method or the LPP model

are shown in Fig. 6(b). It can be observed that the LPP result agrees well

with the DNS results obtained with the finest meshes, dp/h = 8, 16, when the

droplet is sufficiently resolved. When the mesh resolution is low, dp/h = 2, 4,

DNS yields errors of 16.2% and 7.0% in the terminal velocity, respectively.

Therefore, in this case LPP model yields more accurate results than DNS of

a poorly resolved droplet.

Though there is no experimental data for this specific test case, there are

empirical correlation for the terminal settling velocity to compare with. For

a droplet settling in an unbounded domain, the terminal velocity obtained

through the standard drag [11] is about vt = 0.0493m/s. This value is

considerably larger than the simulation results, implying that the wall effect is

significant and should be considered. As a function of the Reynolds number,

in the two limits Rep → 0 and Rep → ∞, the terminal velocity, including

the wall retarding effect, can be computed as vt,0 = 0.0393m/s and vt,∞ =

0.0478m/s. [17] Both DNS and LPP results, with the exception of the

lowest resolution dp/h = 2, are bounded by these two limits. In particular,

since the Reynolds number based on the droplet terminal velocity is about

Rep = 0.4, we expect and find that our results are closer to the lower limit.

With the correlation of Di Felice [17] the terminal velocity is about vt =

0.0406m/s, which again agrees reasonably well with our simulations. The

small discrepancy may be also due to the different shape of the domain cross

section in the present study and in [17].
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ρl (kg/m3) ρg (kg/m3) µl (Pa s) µg (Pa s) dp (m) σ (N/m) L (m) U0 (m/s)

3000 10 10−3 10−4 10−4 1.5 10−5 3.2 10−4 3.125

Table 2: Parameters for the 3D lid-driven cavity problem.

3.2. Lid-Driven Cavity

In the second test problem, we investigate the droplet motion in a 3D

lid-driven cavity. The cavity is a cube of size L and the flow is driven by a

moving lid on the upper boundary with velocity U0; the Reynolds number

of the cavity is Rec = 100. The boundary conditions along the x- and y-

directions are no-slip, periodic boundary conditions are considered along the

third z-direction. The relevant physical properties of the two phases and

other parameters are given in Table 2. Simulations are first run without any

droplet, then the induced flow remains 2D, moving towards the steady state

condition shown in Fig. 7. In Fig. 7(b), the u component of the velocity (x-

direction) along the vertical centerline y = z = L/2, and the v-component

(y-direction) along the horizontal centerline x = z = L/2 are compared with

the classic work of Ghia et al.[26] Good agreement is observed with the results

obtained with the two grid resolutions L/h = 64, 128.

After the cavity flow reaches a stationary condition at about time t =

1ms, a single or multiple droplets are seeded into the cavity. We first consider

the simpler case where only one droplet is seeded. As in the settling droplet

problem, the feedback effect of the single LPP droplet to the resolved flow is

ignored, hence f p = 0.

Four different computations are performed: DNS (RD), LPP, and two

different implementation of the RD-LPP conversion. In the first one (RD-
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Figure 7: Single phase results of the lid-driven cavity problem: (a) velocity vector plot at

z = L/2, (b) u at y = z = L/2 and v at x = z = L/2.

LPP-1), the complete conversion algorithm described in Section 2.4 and Fig. 4

is used; while in the second one (RD-LPP-2) the velocity remains unchanged

in the conversion, namely the undisturbed and disturbed flow fields are not

reconstructed in the two conversions LPP-to-RD and RD-to-LPP. The con-

version criteria for this particular test case is that the droplet is represented

by the LPP model inside the region ymin < yp < ymax.

The initial position of the droplet is at xp = (0.61L, 0.61L, 0.59L), and

two different initial velocities are considered, up1 = (−0.18U0,−0.03U0, 0)

and up2 = (0.032U0,−0.032U0, 0.032U0). The first value is equal to the local

fluid velocity, up1 = u(xp), the second value has a different magnitude and

direction with respect to the local fluid velocity. With the initial velocity

up1 the droplet will be represented by the LPP model in the slab defined

by the two limits ymin = 0.61L and ymax = 0.64L, with up2 the limits are
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Figure 8: Time evolution of the velocity components when the droplet initial velocity is

the same as the local fluid velocity: (a) u, (b) v.

ymin = 0.59L and ymax = 0.625L. The simulations are performed with the

mesh resolution L/h = 128, corresponding to a ratio dp/h = 4.

The time evolution of the droplet velocity for the two initial velocities is

shown in Figs. 8 and 9. First, it should be observed that the DNS and LPP

results agree reasonably well for both cases, as the difference in magnitude of

the u component in Fig. 8(a) is about 10%. If this value is compared to the

time variation of the v component in Fig. 8(b), then the difference between

DNS and LPP is indeed quite small. Furthermore, this error magnitude is

also consistent with the droplet low resolution, dp/h = 4.

When we consider the conversion model with the initial velocity up1 we

observe that the droplet at about time t = 1ms is on the lower boundary

of the slab with a negative y-component of the velocity. The LPP particle

is quickly converted to RD, then after a transient it changes the sign of this

velocity component and finally it enters the slab region where it is converted
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Figure 9: Time evolution of the velocity components when the droplet initial velocity is

different from the local fluid velocity: (a) u, (b) v.

back to LPP. A similar discussion holds for the initial velocity up2. With

the conversion model described in section 2.4, the droplet velocity has a

smooth transition after the conversions for both initial velocities up1 and

up12. In Figs. 8 and 9 this model is represented by the RD-LPP-1 lines, with

the conversion instants marked by an arrow. If the perturbed flow field is

not reconstructed properly in the LPP-to-RD conversion, then remarkable

transition jumps are observed in the droplet velocity after the conversion

(RD-LPP-2 lines). The transition jump is more significant when the droplet

is not in velocity equilibrium with the local fluid.

As the drag force tends to bring the droplet in velocity equilibrium with

the fluid, the droplet velocity may slowly change toward the correct value,

as in Fig. 8, but the transient process can be quite long. However, if the

initial error in the conversion causes a significant deviation of the droplet

trajectory, the droplet velocity will never go back to the correct value, as in
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Fig. 9(b). Therefore, it is critical to handle properly the local flow field in

the conversion process.

We also consider the case with multiple droplets seeded in the cavity. In

total 183 monodisperse droplets are seeded randomly after a steady state

flow is reached in the cavity with a single phase. The mass fraction of the

seeded droplets, defined by the ratio of their mass to the total mass of liquid

droplets and gas, is about 0.75. In this case the mass fraction is large, and

two-way coupling simulations are performed with the force coupling model

described in Section 2.3. The size of the parameter that controls the force

distribution is L = 10 dp.

Figure 10 shows the droplet distribution inside the cavity at times t =

1.04, 1.08, 1.12ms. When the droplets are resolved by the VOF method the

interfaces are plotted as the intermediate contour level C = 0.5, and are

indicated by a red color. The droplet distribution represented by the LPP

model is given by the green spheres. The DNS and LPP results overall

match well on the droplet location. The differences, shown in the images on

the third column, mainly occur when the droplets are subject to collisions or

serious deformations, as near the top of the cavity where the shear is strong.

This indicates the need for a future improvement of the model to take into

account both droplet-droplet and droplet-wall interactions.

It is also important to point out that the results obtained with the one-

way and the two-way coupling models are indeed very close. Therefore, the

one-way coupling with the present conversion model seems to be adequate

even when the LPP droplet mass fraction is quite large. Nevertheless, further

validation of the coupling model is still required in future works.
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(a) 

(b)

(c)

DNS LPP DNS vs LPP

Figure 10: Droplet distributions in the cavity at times: (a) t = 1.04 × 10−3, (b) t =

1.08× 10−3, and (c) t = 1.12× 10−3 s.
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3.3. Pulsed-Jet Atomization

Next we consider the problem of pulsed-jet atomization, to examine the

capability of the present model to simulate multiphase flows with very com-

plex interfaces. A dense cylindrical liquid jet is injected into a stagnant gas

tank. The jet diameter is denoted by Djet and the tank dimensions are Ly =

Lz = 4Djet and Lx = 10Djet. The injection is along the positive x-direction.

The inflow velocity u is modulated sinusoidally, u = Ujet
(
1+0.05 sin(20 π t)

)
,

to promote the growth of primary shear instabilities. The physical proper-

ties and parameters in non-dimensional form are listed in Table 3, where

Rejet = ρl UjetDjet/µl and Wejet = ρl U
2
jetDjet/σ.

On the left and right boundaries, inflow and outflow boundary conditions

are considered, respectively, while free-slip conditions are applied on the other

four boundaries. The grid is composed of cubic cells of side h = Djet/64.

Two simulations are performed for this problem: the first one is DNS with

the VOF method, the second one with the combined method, with the small

ρl/ρg µl/µg Rejet Wejet

20 20 800 4000

Table 3: Parameters for the pulsed-jet atomization problem.

droplets described by the LPP model. Since the mass fraction of the LPP

droplets in the flow is small during all the simulation, and based on the

knowledge of the previous test, the one-way coupling model is used. The

simulation of the pulsed-jet problem is conducted on the CALMIP machine,

with a typical CPU time on 160 processors of 245 minutes for the combined

model and 253 minutes for DNS.
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Snapshots of the interface configuration in the two simulations at time

t = 9Djet/Ujet are shown in Figs. 11(a) and 11(b), with the VOF interface

represented in green and white for the contour level C = 0.1, in order to

make small droplets clearly visible. The orange spheres represent the liquid

droplets of the LPP model, and their radius length is such to give the actual

droplet volume. The two figures are in good agreement with each other, thus

confirming the capability of the combined model to capture atomization.

The size distribution (PDF) of the droplets formed in the pulsed-jet at-

omization at different times is shown in Fig. 12. Since more and more liquid

is injected into the domain and then atomized to small droplets as time

evolves, the droplet Sauter mean decreases with time, while the number of

small droplets increases. It can be seen that the droplet size distributions

obtained by DNS and the combined model are in good agreement. In partic-

ular, the combined model captures the peak of the PDF, while the difference

of the Sauter means with the DNS results is less than 10%.

The development of shear instabilities on the liquid-gas interface can be

clearly seen in Fig. 11. Near the inlet the perturbation on the interface

remains almost sinusoidal, but as it is advected downstream, the interface

folds and thin liquid sheets are formed. The sheets incline toward the up-

stream direction, looking like an umbrella or a mushroom. Then the sheets

break up into thin ligaments and in sequence the ligaments into droplets.

A recirculation is generated on the inside of the umbrella, and as a result

a few droplets are carried back to the liquid jet after traveling for a while

in the gas. The forward RD-to-LPP process and the backward LPP-to-RD

conversion, from the ligament breakup to the droplet merging back in the
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(a) (b)

Figure 11: Snapshots of the liquid-gas interface of the pulsed-jet atomization at time

t = 9Djet/Ujet: (a) DNS, (b) the combined model, where the orange droplets are from

the LPP model.
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Figure 12: Size distribution and Sauter mean of droplets formed in pulsed-jet atomization

at times (time units Djet/Ujet): (a) t = 8, (b) t = 8.5, (c) t = 9.
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liquid jet, are shown in Fig. 13. In particular, a ligament is breaking in Fig.

13(a), and in Fig. 13(b) the droplet has a rather irregular shape, becoming

closer to a spherical shape in Fig. 13(c), under the action of surface tension.

Then, since the droplet satisfies both the size and aspect-ratio criteria and

is enough away from the jet, it is converted from RD to LPP, as shown in

Fig. 13(d). The LPP droplet moves for a while in the gas, then it undergoes

a backward conversion from LPP to RD in Fig. 13(e), and finally it is reab-

sorbed by the liquid jet in Fig. 13(f). The present results indicate that the

two-way conversion scheme is capable to capture complex droplet dynamics

in atomization.

3.4. Gas-assisted atomization

The combined model is finally applied to simulate the gas-assisted at-

omization experiment conducted by Descamps et al.[16] This experiment is

particularly interesting to the present study, because the drop trajectories

and drop flying angle statistics are measured in the experiment and thus can

be used to validate the capability of the present combined model in accurately

capturing the drop dynamics. Up to the authors’ knowledge, the experiment

by Descamps et al.[16] is the only one in the literature that provides detailed

measurements of drop trajectories.

3.4.1. Simulation setup

The simulation setup is shown in Fig. 14. The atomizer consists of two

planar jets: on top the faster gas jet with injection velocity Ug, and on

bottom the slower liquid jet with injection velocity Ul. The inlet height

for both phases is the same, and is denoted by H. As a function of this
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(a) (b) (c)

(d) (e) (f)

Figure 13: The two-way RD-to-LPP and LPP-to-RD conversions for a droplet initially

formed from a ligament breakup and later reabsorbed by the liquid jet, at times (time

units Djet/Ujet): (a) t = 2.0, (b) t = 2.2, (c) t = 2.4, (d) t = 2.6, (e) t = 2.8, (f) t = 3.2.
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Figure 14: Problem description of gas-assisted atomization.

characteristic length, the width, height and thickness of the computational

domain are Lx/8 = Ly/4 = Lz = H, respectively. The domain is subdivided

with cubic cells of side h = H/64 for the coarse mesh and h = H/128 for the

fine one.

At the inlet, a separator plate, indicated by the blue color in Fig. 14, has

been positioned to separate the gas and liquid flows. The need for such a

plate to accurately simulate atomization has been shown in previous papers.

[23] The width and height of the separator plate are lx = H/4 and ly = H/32,

respectively. Inflow and outflow boundary conditions are applied along the

x-direction, slip conditions along the vertical y-direction, periodic boundary

conditions along the z-direction. A snapshot of the liquid-gas interface re-

solved by the VOF method (in grey) and by the LPP model (in orange) is

also shown in Fig. 14.
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The relevant physical properties of the two phases and other parameters

are given in Table 4. The properties of the gas and liquid phases are chosen in

such a way to guarantee that the important dimensionless parameters are as

close as possible to the corresponding value of the experiment by Descamps

et al.[16].

ρl ρg µl µg σ Ul Ug H δg

(kg/m3) (kg/m3) (Pa s) (Pa s) (N/m) (m/s) (m/s) (m) (m)

1000 10 10−3 10−4 0.2 8.3 0.1 0.01 0.0011

Table 4: Parameters for the gas-assisted atomization problem.

ρl/ρg µl/µg Rel Wel M Reg,δ Weg,δ Reg

Experiment 833 58.8 1000 1.45 69.1 960 5.68 1.69 104

Simulation 100 10 1000 1.45 68.9 913 11.0 8.30 103

Table 5: Important dimensionless parameters of the present simulation and the experiment

by Descamps et al.[16] of gas-assisted atomization.

In particular, Table 5 shows that the Reynolds and Weber numbers of

the liquid inflow, Rel = (ρl UlH)/µl and Wel = (ρl U
2
l H)/σ, and the mo-

mentum ratio between the gas and liquid inflows, M = (ρg U
2
g )/(ρl U

2
l ), are

very close to the experimental value. On the other hand, while the numer-

ical Reynolds number based on the gas inflow boundary layer thickness δg,

Reg,δ = (ρg Ug δg)/µg, is also very similar, the corresponding Weber number,

Weg,δ = (ρg U
2
g δg)/σ, is about twice as big. Finally, the numerical Reynolds

number of the gas jet is fairly large, Reg = (ρg UgH)/µg ≈ 8000, but still
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Figure 15: Time evolution of the volume fraction of liquid within the whole domain.

only about 42% of the experimental value. For such high Reynolds numbers,

it is extremely expensive to resolve all turbulent scales in the gas flow, and we

do not expect that the current mesh resolution can capture the smallest tur-

bulent eddies. Therefore, the term “DNS” here refers to simulations solving

the Navier-Stokes equation without the LPP model, but it does not necessar-

ily mean that every physical scale is fully resolved. In terms of turbulence,

the numerical simulation can be considered as implicit LES instead of true

“DNS”. Nevertheless, the mesh resolution considered in this test seems to

be sufficient to capture the macro-scale features of the atomization process

and droplet dynamics, as shown later.

The simulation starts at time t0 = 0 with no liquid inside the domain and

it takes a long transient for the liquid jet to flow into the domain and reach

an “equilibrium” state between the inflow and outflow of the liquid phase.

The volume fraction of liquid within the whole domain as a function of time

is plotted in Fig. 15. It can be seen that the amount of liquid in the domain
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increases gradually and finally reaches a plateau at about te = 0.4 s. To save

computational time only DNS is performed up to time te. After reaching

the “equilibrium” state, both DNS and the combined model are executed up

to the final time tf = 0.6 s. When running the combined model, droplets

with an equivalent diameter smaller than four grid spacings are converted to

Lagrangian particles if all conversion criteria are satisfied. The simulations

with a grid resolution h = H/64, are conducted on 256 processors of the

CINES-JADE machine: about 33 hours of CPU time are required to reach

time te, and 12.5 more hours to time tf , either with DNS or the combined

model.

3.4.2. General behavior

The liquid jet atomization assisted by the fast gas stream is shown in

Fig. 16 at different times. The grey and orange colors indicate the interface

resolved by the VOF method and the small droplets represented by the LPP

model, respectively. The vector plot on the background shows the flow ve-

locity, where the vector magnitude is indicated by both length and color of

the arrow. The flow velocity within the liquid is much smaller than in the

gas, and the length of the arrows is too small to be appreciated. The simu-

lation results are shown in Fig. 16 on a xy-plane. Due to the large velocity

difference between the liquid and gas jets, a Kelvin-Helmholtz instability de-

velops when the two streams meet at the end of the separator plate. [38, 23]

The interface wave appearing near the inlet, which is indicated by a purple

arrow, is at first characterized by a small amplitude and by a shape close to

a sinusoidal wave, see Fig. 16(a). As the wave propagates downstream, its

amplitude grows and the wave crest rises into the fast gas stream, introduc-
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(a) t=0.44s

(b) t=0.45s

(c) t=0.46s

(d) t=0.47s

(e) t=0.48s

(f) t=0.49s

Figure 16: Numerical results with the combined model of the atomizing liquid jet for

times in the range 0.44− 0.49 s, viewed along the z-direction. The grey and orange colors

indicate the interface resolved by VOF and the small droplets represented by LPP model,

respectively. The vector plot on the background shows the flow velocity, with its magnitude

indicated by both length and color of the arrows.
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ing a significant perturbation into the gas stream that strips small droplets

away from the wave, see Fig. 16(b). Since the wave propagates much slower

than the gas stream, it acts like an obstacle to the gas flow. As a conse-

quence, the gas flow over the wave separates and forms a recirculation zone,

indicated by a yellow arrow in Fig. 16. The recirculation zone formed at the

downstream of the interface wave has also been observed experimentally and

numerically by Jerome et al.[29]. The interaction between the wave and the

gas stream becomes more complex as the wave further grows and propagates

downstream, and the wave crest breaks up in a more pronounced way and

generates a large amount of droplets, as shown in Fig. 16(b)-(d). The in-

terface then starts to fold and liquid ligaments are formed, see Fig. 16(e).

The gas stream is significantly influenced by the deformed interface and is

observed to bend upward. A counterclockwise circulation is formed near the

top of the gas stream, indicated by blue arrows Fig. 16(a)-(b) and (e)-(f).

The clockwise circulation at the downstream of the wave grows in time and

pushed downstream as the wave moves. These circulation regions are ob-

served to have a significant impact on droplet formation. [29] The ligaments,

stretched by the gas stream, finally break up into many droplets due to a

Plateau-Rayleigh instability, as shown in Fig. 16(f). Finally, the atomized

droplets are advected downstream and leave the computational domain.

3.4.3. Droplet dynamics and flying angle statistics

Due to the strong interaction between the wavy interface and the gas

stream, the formation and dynamics of the droplets are rather complex. The

droplets are generated along the streamwise direction with different formation

mechanisms. Near the inlet, droplets are mainly stripped off the interface by
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(a) t=0.46 s

(b) t=0.49 s

2D-view 3D-view

2D-view 3D-view

A

B

Figure 17: 2D and 3D views of trajectories of the droplets formed at the top of the

perturbation wave on the liquid-gas interface at times: (a) t = 0.46 s, (b) t = 0.49 s. The

interface and streamwise fluid velocity are also shown in the background.

the gas stream, as highlighted by the purple arrow in Figs. 16(a)-(c). Further

downstream, the droplet formation is mainly due to ligament break-up, or a

combination of the two mechanisms, see Figs. 16(d)-(f).

Droplets are not only generated at different streamwise positions by dif-

ferent mechanisms, but their dynamics changes remarkably as well, as shown

in Fig. 17 by the trajectories of the droplets formed near the two streamwise

positions x1 = 2H and x2 = 4H, at times t1 = 0.46 s and t2 = 0.49 s, re-

spectively. In the figure are also plotted a snapshot of the interface and the

streamwise velocity component, on the plane z = 0, to show the influence of
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the gas-interface interaction on the droplet dynamics.

In particular in Fig. 17(a) at time t1, droplets are formed at the wave

crest when its amplitude is still relatively small and the interaction with the

gas stream is not very important. As a result, the gas stream remains fairly

horizontal and the flying angle of the droplet is generally small (a flying angle

equal to 0 is along the x-direction). Except for a few large droplets that cross

the whole gas stream, most of them stay in its interior as they are convected

downstream.

The flying angle statistics for the droplets in the sampling rectangular

cuboid A of Fig. 17(a), and defined by the coordinates ranges 4.5H ≤ x ≤
5.5H, H ≤ y ≤ 3H, and 0 ≤ z ≤ H, is shown in Fig. 18. The time interval

for the sampling is 0.45 ≤ t ≤ 0.47 s, which is chosen to select the droplets

that are formed close to the inlet. From Fig. 17(a), it can be observed that the

droplet trajectories are quite straight after the early acceleration within the

gas stream. Therefore, it is expected that the flying angles vary little while

the droplets are moving within the sampling region. It can be clearly seen

in Fig. 18(a) that most of the droplets are evenly distributed with a flying

angle ranging from -30 to 30 degrees. The statistics include all droplets,

hence represented by either the VOF method or the LPP model.

On the other hand, in Fig. 17(b) at time t2 the wave crest is near x2, the

interface has deformed seriously causing the gas stream to bend upward. The

liquid ligaments are mainly aligned with the stream, so when they break-up

the droplets are ejected into the bended gas stream. As a result, most of the

droplets are ejected with a positive angle and the corresponding flying angle

distribution is shifted to the right as shown in Fig. 18(b). The sampling is
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Figure 18: Numerical results of droplet flying angle distribution for the two time intervals:

(a) 0.45 < t < 0.47 s, (b) 0.48 < t < 0.50 s. The sampling volume is defined by 4.5H <

x < 5.5H, H < y < 3H, and 0 < z < H, and is also indicated by the letter A and the

dotted yellow line in Fig. 17(a).

done in the same volume A, but within the time interval 0.48 ≤ t ≤ 0.5 s,

which mainly captures the droplets formed by the ligaments break-up, as

shown in Fig. 17(b). Because of that, the droplets are more aligned with

the gas stream, their trajectories are less curved than for the droplets of Fig.

18(a) and their flying angle distribution in Fig. 18(b) is more peaked.

The flying angle statistics for the droplets in the sampling rectangular

cuboid B of Fig. 17(b), and defined by the coordinates ranges 4.5H ≤ x ≤
5.5H, 2.5H ≤ y ≤ 3.5H and for the longer time interval 0.4 ≤ t ≤ 0.5 s, is

shown in Fig. 19. The sampling volume B is similar to that of the experiment

of [16] and the time period is long enough to cover the overall cycle of wave

development and break up, as in Fig. 16. The simulation results agree fairly

well with the experimental data, as most of the droplets are released with a
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Figure 19: Droplet flying angle distribution: (a) experimental data, (b) numerical results.

The sampling region is volume B of Fig. 17(b) with 4.5H < x < 5.5H, 2.5 < y < 3.5H for

the time interval 0.4 < t < 0.5 s. The sampling region is similar to the experimental one,

with 4.5H < x < 5.5H and 2.5 < y < 4H. [16]

positive flying angle and the peak of the distribution is at about 20 degrees.

However, the experimental distribution profile is narrower than the numerical

one.

3.4.4. Droplet Reynolds and Weber number statistics

When the LPP model is applied, the relative velocity between the droplet

and the surrounding fluid can be easily obtained, being the term ũ− up, to

compute the corresponding Reynolds and Weber numbers. The probabil-

ity density function (PDF) and mass-weighted probability density function

(mPDF) of the LPP droplets as a function of the Reynolds and Weber num-

bers are shown in Fig. 20, for the sampling volume A of Fig. 17(a) and the

two time intervals 0.45 ≤ t ≤ 0.47 s and 0.48 ≤ t ≤ 0.5 s. In the first time

interval about 45% of the total number of droplets is represented by the LPP
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Figure 20: Probability density function (PDF) and mass-weighted probability density

function (mPDF) as a function of the Reynolds and Weber numbers, for the droplets

in the sampling volume A of Fig. 17(a), with 4.5H < x < 5.5H, H < y < 3H, and

0 < z < H, in the two time intervals 0.45 < t < 0.47 s and 0.48 < t < 0.5 s.
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model, and about 64% in the second one.

In general, the results for the two time intervals are rather similar, even

if slightly more droplets are observed in the PDF of the second time interval

at small Reynolds and Weber numbers. Both PDFs decrease with Rep and

while most of the droplets are in a regime of very small Reynolds numbers,

Rep < 1, still there is a significant amount of droplets in the flow at higher

numbers, in the range 1 < Rep < 200 as shown in Fig. 20(a). If the statistics

is made on mass rather than droplet number, the mass-weighted PDF is

obtained. From Fig. 20(c) a large fraction of the total mass is in the droplets

with 20 < Rep < 70. It should be reminded that the criterion dp < 4∆x is

used for RD-to-LPP conversion. For this range of Reynolds numbers, it is

expected that the droplets would not have been resolved accurately by VOF,

had they remained RD. The LPP model is actually a better alternative for

these poorly resolved droplets with a relatively large Reynolds number.

Both PDF and mPDF decrease monotonically as a function of the Weber

number, Wep, and for most droplets it is indeed quite small, Wep < 3, in

terms of both mass and particle number. The droplet deformation is then

expected to be small, and the assumption of a spherical shape in the LPP

model is indeed rather good.

The LPP droplet Reynolds number is plotted in Fig. 21 as a function of

the ratio between the droplet and cell sizes at two different time intervals.

The scaling estimate of the relationship between the Reynolds number and

the diameter of solid particles by Balachandar [5] can be applied to the

droplets here. When the droplet response time τp is larger than the largest

ambient flow time scale, the relative velocity is mainly controlled by the
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Figure 21: Droplet Reynolds number as a function of the the ratio between the droplet

and cell sizes for the droplets in the sampling volume A of Fig. 17(a), with 4.5H < x <

5.5H, H < y < 3H, and 0 < z < H, in the two time intervals 0.45 < t < 0.47 s and

0.48 < t < 0.5 s.
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ambient flow velocity and can be considered as independent of dp. In this

limit it can be shown that Rep ∼ dp. On the other hand, when τp is smaller

than the smallest ambient flow time scale, such as the Kolmogorov time

scale, then the relative velocity can be estimated by the Equilibrium Eulerian

Approach as |ũ − up| ≈ τpDũ/Dt, where Dũ/Dt is the acceleration of the

ambient flow and is again independent of dp. [20] Then it can be easily

shown that in this limit, Rep ∼ d3
p. It is observed from Figs. 21 (a) and

(b) that, the variation of the droplet Reynolds number with the droplet

diameter lies in between these two limits, for both 0.45 < t < 0.47 s and

0.48 < t < 0.5 s, although more droplets with smaller Reynolds number

are formed for the latter time period. Furthermore, the droplets with larger

Reynolds number agree better with Rep ∼ dp; while the droplets with smaller

Reynolds number follow the Rep ∼ dp scaling. At last, Fig. 21 also shows that

there are a significant amount of droplets with large Reynolds number and

small diameter-to-cell-size ratio formed in atomization. It is expected the

dynamics of these droplets would be incorrect if they remain to be resolved

by VOF with low resolution (dp/h . 4). This confirms it is necessary to

employ LPP model to represent these droplets.

3.4.5. Comparison of droplet trajectories with experiment

The trajectories of a sample of large droplets generated by the numerical

simulation of the atomization process are shown in Fig. 22(a), while in the

experiment the droplet trajectories are traced through high-speed cameras.

[16] Due to the limited size of the computational domain, the comparison

between numerical and experimental trajectories can be done only for a few

droplets. The traced trajectories are characterized by a large positive flying
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Figure 22: Numerical results of a sample of large droplets as a function of the longitudinal

x-direction: (a) projection of the trajectories on the xy-plane, (b) Reynolds number, and

(c) Weber number. The numerical trajectories are also compared with the experimental

measurements.
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angle, and they are likely to correspond to droplets with a big inertia. As

a matter of fact, from the simulation results we can compute trajectories of

large droplets, with dp = 0.24–0.5mm, which match quite well the experi-

mental measurements. Both the numerical and experimental trajectories are

rather straight. The computed trajectories for the two droplets with diam-

eter dp equal to 0.24 and 0.31mm, curve slightly as the droplets enters the

faster gas stream and are subject to a sudden acceleration in the streamwise

direction.

The corresponding Reynolds and Weber numbers along the droplets tra-

jectory are shown in Fig. 22(b)–(c). For the largest droplet with diameter

dp = 0.49mm, which belongs to the tail of the PDF of Fig. 20, the Reynolds

number can be as high as 400, while the Weber number remains smaller

than 5. These two numbers vary in a remarkable way as the droplets move

downstream, though the trajectories are quite smooth. These fluctuations

are related to the interaction with the gas turbulent flow. The turbulence of

the gas flows is shown in background of Fig. 17. However, the inertia of these

droplets is quite large, and the influence of turbulence on their trajectory is

not profound.

3.4.6. Droplet size distribution

Finally, the size distribution for the droplets formed in the gas-assisted

atomization is shown in Fig. 23. The droplet size distributions computed by

the combined model and DNS are shown in Figs. 23 (a) and (b), respectively.

The comparison of the probability density functions (PDF) of the droplet size

for the combined model and DNS on the same size mesh is also shown in Fig.

23 (d).
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The results of the combined model for the droplets larger than the grid

size agree very well with the DNS result on the same size mesh. This indicates

that the LPP coupling and conversion model do not introduce error on the

droplet formation, which is mainly resolved by VOF. When the LPP model is

introduced, a larger number of droplets smaller than the cell size are observed,

see Fig. 23 (a). The number of smaller-than-cell-size droplets is significantly

lower for the DNS results without the LPP model as shown in Fig. 23 (b).

The discrepancy may be due to the erroneous dynamics of small droplets

when they remain to be resolved by VOF. Indeed small fragments of VOF-

represented liquid tend to be reconstructed and advected so erroneously that

they do not move at all, an effect that can be easily demonstrated but is

never discussed as the dynamics of such small fragments is considered largely

erroneous anyway. As these small fragments stay where they are formed they

are easily swept by and merged into the moving bulk liquid jet. Therefore,

the size distributions for both the combined model and DNS are possibly

erroneous for the size range dp < h. The droplets smaller than the cell size

are thus excluded in the PDF statistics shown in Fig. 23 (d).

Furthermore, an exponential decay of droplet number with droplet diam-

eter for dp ∈ [0.2, 1.1] mm is observed in both Figs. 23 (a) and (b). The

decay rate can be characterized by a length scale λ1, which is considered

as the “average ligament size” in [38]. A least square fit of the data of the

present model for dp ∈ [0.2, 1.1] mm yields λ1 = 0.166 mm. The exponential

decay with λ1 = 0.166 is shown to match very well with the DNS results on

the same size mesh, see Fig. 23 (b). It is note that λ1 is comparable to the

cell size h = 0.156 mm.

61



In order to see the effect of grid resolution a DNS simulation is conducted

with a finer mesh, h = H/128. The total number cells is about 67 million and

it cost about 400 hours on 2048 cores to reach similar physical time t = 0.6 s.

The detailed results of the finer-mesh DNS are not the focus of the present

paper and discussion of which will be relegated to future work.

The droplet size distribution obtained by DNS on a finer mesh is shown

in Fig. 23 (c). The comparison of the PDF of the droplet size with the

two different meshes is shown in Fig. 23 (d). With similar sampling time

period (about 0.03 s), the droplet number for the finer mesh is an order

of magnitude larger than that for the original mesh. It is also seen that the

size distribution of small droplets dp < 0.2 mm is slightly better resolved, but

not yet converged, when the finer mesh is used. Exponential decay of droplet

number similar to the original mesh is observed for dp ∈ [0.1, 0.6] mm in the

fine mesh results, though the decay is faster. The characteristic length scale

for the exponential decay, λ2 = 0.095 mm, is 42% smaller than λ1 = 0.166

for the original mesh, indicating lack of convergence, so that yet unresolved

small scales in the flow are important to droplet formation. To yield an

accurate prediction of the droplet size distribution, including the expected

peak at small scales and the exponential decay, the smaller scales must be

resolved with sufficient grid resolution. It is likely that the computational

cost for a fully-resolved DNS would be extremely high. Therefore, it may

be unavoidable for future exploration of atomization in this parameter range

to develop subgrid models accounting for the small-scale physics, such as

interface instability, interface-turbulence interaction and droplet formation

at the relevant scales.
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Figure 23: Size distributions for droplets formed in atomization. (a) Counts of droplets for

present model on the mesh h = H/64 = 0.156 mm, (b) Counts of droplets for DNS on the

mesh h = H/64 = 0.156 mm, (c) Counts of droplets for DNS on the mesh h = H/128 =

0.078 mm, and (d) Probability density function (PDF) (only droplets that are larger than

the cell size are considered in PDF calculation.) The characteristic length scales for the

original and finer meshes are λ1 = 0.166 mm and λ2 = 0.095 mm, respectively.
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4. Conclusions

In this paper, we introduce a multiscale simulation approach for atomiza-

tion. While the interface between different phases is resolved by the Volume-

of-Fluid (VOF) method, the small droplets formed in atomization are repre-

sented by the Lagrangian Point-Particle (LPP) model. To accurately com-

pute the dynamics of the LPP droplets that are larger than the grid spacing,

a new model of the momentum coupling and the two-way conversion between

the LPP droplets and the resolved flow is proposed. The combined model

is validated by a comparison with experimental data and DNS simulations

through a series of tests. A key aspect of the present momentum coupling

model is to distribute the coupling force exerted back to the resolved flow

over a length scale which is larger than the droplet diameter, say 5 to 10

times dp. By doing that the influence of an individual LPP droplet on the

local gas flow is small and the gas flow velocity at the LPP droplet location

is a close approximation of the undisturbed gas flow velocity that is required

for the droplet force calculation. Attention is also paid on reconstructing the

local flow field around the droplet during the two-way conversion between

the resolved droplets and LPP droplets. In the RD-to-LPP conversion, the

undisturbed flow field is rebuilt by interpolation from the flow properties

away from the droplet while in the reverse LPP-to-RD conversion, excess

momentum is added to compensate the development of the local disturbed

flow field. The tests clearly show that the reconstruction of the local flow

field is necessary to have a smooth transition in droplet velocity during the

conversion.

The combined VOF-LPP model is applied to simulate the gas-assisted

64



atomization experiment by Descamps et al.[16]. The numerical results show

complex droplet formation mechanisms. The dynamics, characterized for

instance by the flying angle of droplets formed at various streamwise loca-

tions is observed to strongly depend on the observation window. The PDF

and mass-weighted PDF of both Reynolds and Weber numbers of the LPP

droplets (with diameter smaller than four cells) are shown. The Reynolds

number of the LPP droplets changes in a wide range (up to several hun-

dreds), while the Weber number is in general small. Resolving the droplets

with high Reynolds number by VOF with less than four cells will yield catas-

trophic errors in the prediction of droplet dynamics, and it is a considerable

improvement to represent them by the LPP model. Agreement with the

experimental measurements is observed for both the the flying angle distri-

bution and the trajectories of the droplets. The exponential decay of the

PDF of droplet diameters is recovered but the rate of decay is not converged

for the current grid sizes. The present model faithfully recovers the large

scale features of atomization and the droplets at scales significantly larger

than the grid size, though some small-scale physics is missed.
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[8] T. Boeck, J. Li, E. López-Pagés, P. Yecko, and S. Zaleski. Ligament for-

mation in sheared liquid–gas layers. Theor. Comp. Fluid Dyn., 21(1):59–

76, 2007.

[9] G. Bornia, A. Cervone, S. Manservisi, R. Scardovelli, and S. Zaleski.

On the properties and limitations of the height function method in

two-dimensional cartesian geometry. J. Comput. Phys., 230(4):851–862,

2011.

[10] A. J. Chorin. Numerical solution of the Navier-Stokes equations.

Math. Comput., 22:745–762, 1968.

[11] R. Clift and W. H. Gauvin. The motion of particles in turbulent gas

streams. Proc. Chemeca, 1:14–28, 1970.

[12] R. Clift, J. R. Grace, and M. E. Weber. Bubbles, Drops, and Particles.

Dover Publications, 1978.

[13] E. Climent and J. Magnaudet. Dynamics of a two-dimensional upflowing

mixing layer seeded with bubbles: Bubble dispersion and effect of two-

way coupling. Phys. Fluids, 18:103304, 2006.

[14] C. T. Crowe, M. Sommerfield, and Y. Tsuji. Multiphase flows with

droplets and particles. CRC Press, 1998.

67



[15] R. DeBar. Fundamentals of the KRAKEN code. Technical report UCIR-

760, Lawrence Livermore National Laboratory, Livermore, California,

USA, 1974.

[16] M. N. Descamps, J.-P. Matas, and A. Cartellier. Gas-liquid atomisation:

gas phase characteristics by PIV measurements and spatial evolution of

the spray. In Proceedings du 2nd colloque INCA, Initiative en Combus-

tion Avancée, 2008.

[17] R. Di Felice. A relationship for the wall effect on the settling velocity

of a sphere at any flow regime. Int. J. Multiphase Flow, 22(3):527–533,

1996.

[18] J. K. Eaton. Two-way coupled turbulence simulations of gas-particle

flows using point-particle tracking. Int. J. Multiphase Flow, 35:792–800,

2009.

[19] H. Faxén. Der Widerstand gegen die Bewegung einer starren Kugel in

einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden
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