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Abstract

The ‘micro-spall’ phenomenon is a variant of fragmentation process—or spall fracture—that is traditionally discussed in context of
solid materials (metals). However it concerns situations in which the medium is fully or partially melted—be it due to kinetic impact,
detonation or laser loading. The phenomenon takes place at sub-micrometer and sub-microsecond scales making it inaccessible to
direct experimental observation; so far, investigations have been restricted to observations of late time “post-mortem” fragments.

In this context, it becomes a viable approach to apply analysis using numerical description for fluids. This work presents such
an application for an idealized rapid uniaxial (one-dimensional) system expansion. Cavitation in the medium is represented by
including vacuous pores or cavities with surface tension whose growth and interaction are traced in time. The simulations reveal
two main regimes of pore growth regulated by a characteristic Weber number.

Keywords: micro spall, cavity, Volume of Fluid (VOF), free surface, pore competition

1. Introduction

Cavitation and micro-spall (see for instance Signor et al.,
2010, and references therein) appear when a weakly compress-
ible (or expansible) liquid is suddenly submitted to a large vol-
ume growth (expansion) resulting in negative pressures. This
process, which appears in many practical applications of inter-
est, occurs when an initially solid medium is subject to an un-
sustained impact or detonation and is entirely or partly melted
in the process. Once the system starts expanding, the pressure
drop causes the onset of cavitation with pores (or bubbles filled
with vapor) appear. After the initial phases of uniform expan-
sion and pore opening, a longer-lasting phase of pore growth
and competition appears, which is especially difficult to investi-
gate either experimentally or numerically (de Rességuier et al.,
2010; Signor et al., 2010).

We present here numerical simulations of this latter phase
for idealized conditions relevant to micro-spall. This paper
picks up on a previously published study of Malan et al. (2018)
which presented low-Weber number expansions of the system
(with constant expansion rates). Malan et al. (2018) focused
on a competition phenomenon in which expansion of some of
the pores caused their neighboring pores to collapse: in other
words, there was a volume transfer between the pores without
actual contact and merger between them. The pore competi-
tion effect is important as it is the main phenomenon driving
the evolution in time of the statistical distribution of pore sizes
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(Everitt et al., 2006). Small pores shrink and eventually disap-
pear as their volume is transferred to large pores. Pore statis-
tics and pressure evolution profiles can then be obtained for fu-
ture modeling purposes. Hypothetically, continued competition
accompanied by coalescence could lead to formation of larger
pores—or even of a single pore in the case of a spatially limited
system. In this work, we focus on the practically relevant case
of constant speed expansions whose rate decrease with time:
the corresponding Weber numbers typically start and end re-
spectively at ranges above and below the competition threshold.

Thus, our idealized assumptions are incompressible inviscid
fluid, vanishing vapor pressure in cavities, homogeneous uniax-
ial “ballistic” expansion, perturbed face-centered-cubic lattice
arrangement of pores. Under these assumptions, the system is
characterized by a single dimensionless group, the Weber num-
ber based on the number of pores per unit volume. The “ballis-
tic” expansion signifies evolution in which We rapidly decays:
in the initial stages of expansion the flow is entirely dominated
by inertia and the pores expand as if they were isolated (Ilinskii
et al., 2007). As We drops the system transitions into a regime
in which the bubbles interact and capillary pressure becomes
significant. We investigate this transition in more detail below.
Results indicate that both the uniform growth in the initial ex-
pansion phase, as the later “competition” (Everitt et al., 2006)
regime can be captured.

2. Elementary characterization of ideal micro-spall

2.1. Mean expansion field

We investigate a fluid element undergoing expansion follow-
ing a shock and release history. As sketched in the volume and
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Figure 1: Sketched evolution of mean macroscopic volume and pressure of a
material element undergoing mico-spall. As qualitatively represented, the ini-
tial pressure produced by the shock and the final spall stress are here assumed
respectively large and small enough that the eventual expansion is nearly bal-
listic. This ballistic evolution can then be backward extrapolated to vanishing
volume which defines the (arbitrary) time origin. As indicated, the system evo-
lution is here simulated after pores have opened and local fluid density has
returned to a nearly uniform and constant value.

pressure profiles of Fig. 1, pressure drops due to the acceler-
ated expansion and eventually becomes negative. At one point
the cohesive limit of the fluid is reached and pores open: in
this micro-spall phase, surface tension around the pores pro-
duces a macroscopic negative stress. If this spall stress is weak
enough compared to the stored momentum the system even-
tually evolves in a quasi-ballistic way. The micro-spall phe-
nomenon can appear regardless of the structure of the strain
tensor—which in general displays three different eigenvalues—
but we shall focus here on the most common situation of uni-
axial expansion and more marginally on the theoretically useful
situation of isotropic expansion.

For a small enough material volume, the average strain can
be considered as uniform and the backward-extrapolated posi-
tions of all the fluid elements collapse to a single point: this
is the virtual “Big Bang” that provides the time and space ori-
gins in all the following, t = 0 and x = 0. Depending on the
strain dimension and depending on the selected coordinate sys-
tem, Lagrangian X or Eulerian x, the mean velocity field in the
material volume can always be written as

Lagrangian Eulerian
Uniaxial u(X, t) = u(X, t0) = X/t0, u(x, t) = x/t, (1a)
Isotropic u(X, t) = u(X, t0) = X/t0, u(x, t) = x/t, (1b)

where the Lagrangian coordinate X is the actual position at ref-
erence time t0, and x and X represent the first coordinates of
the x and X position vectors. Equations (1) describe expansion,
as the “Hubble time” t0 is assumed positive. The uniform but
non-constant divergence of the mean velocity field is

∇ · u = d/t, (2)

where dimensionality d is 1 or 3 for respectively uniaxial or

Figure 2: Schematic representation of idealized micro-spall as a pore cluster
undergoing expansion along the x direction.

isotropic expansions, and is related to mean density through

d
d t

ln ρ = −∇ · u. (3)

Combining (2) and (3) yields

ρ = ρ0 (t0/t)d, (4)

where the reference state is conveniently taken here at time
t = t0 where cavitation nuclei appear (Batchelor, 1967) (and
pores open) and where the mean density coincides with the fluid
density ρ0 = ρl.

Equations (1) are solutions of the Euler equation

∂tu + (u · ∇)u = −
1
ρ
∇p, (5)

with zero mean pressure gradient and uniform but non-constant
mean density ρ. The ultimate goal of modeling is to provide a
closure relationship between ρ, u, and p so as to simulated the
effect of micro-spall on large scale dynamics (possibly elliptic
unstable).

2.2. Mean pore characteristics
At microscopic scales, micro-spall displays fluctuations on

all its smooth large-scale fields. As sketched in Fig. 2, a first ap-
proximation convenient to capture surface tension effects con-
sists in assuming all pores as spherical, with no internal mass
and pressure (vanishing vapor pressure), and furthermore with
identical radii R(t) and no translation velocity with respect to
their surroundings (Caflisch et al., 1985). Therefore, no coales-
cence effects can be present, and the number of pores is constant
and equal to the number of cavitation nuclei at t = t0. The mean
number density of pores N then scales as mass density (4)

N = N0 (ρ/ρl) = N0 (t0/t)d. (6)

In a more realistic situation were pores may collapse or merge,
as in the present simulations, this relationship does not hold.

Under the simplifying assumption of local spherical symme-
try the number density of pores provides their geometric charac-
teristics. Each pore influences a mean spherical volume defined
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by the Wigner–Seitz radius `(t) (Girifalco, 2000):

4π
3
`3N = 1. (7)

As the mean volume fraction of liquid is (ρ/ρl), identification
of volume fractions in the Wigner–Seitz sphere yields the mean
pore radius R(t) from the equivalent relationships

4π
3

R3N = 1 − (ρ/ρl) = 1 − (t0/t)d, (8a)

4π
3

R3N0 = (ρl/ρ) − 1 = (t/t0)d − 1. (8b)

Combining (8) and (7) yields the aspect ratio of the equivalent
mean spherical shell

(R/`)3 = 1 − (ρ/ρl) = 1 − (t0/t)d. (9)

Equations (8) to (9) hold even if, due to collapse and merger,
(6) may not.

2.3. Kinetic and surface energies, Weber number
Under expansion, the kinetic and surface energies evolve and

the overall behavior of the system is characterized by their ratio:
the Weber number. Because the fluid is assumed incompress-
ible and inviscid, these two energies fully control the system
and only two regimes are expected: all situations can be col-
lapsed according to the Weber number alone. The energies can
be estimated within the framework of the mean spherical pore
of Section 2.2.

The surface energy of a single mean pore is given by the
surface tension coefficient σ

Es = 4πR2σ. (10)

The kinetic energy is obtained by assuming the velocity field
to be radial and divergence free around the mean pore, with a
vanishing mass flux at the Wigner–Seitz boundary

Ek =

∫ `

R

1
2ρl ˚̀2

(
`

r

)4
4πr2 d r = 2πρl

(d/3
t

)2
`6

( 1
R
−

1
`

)
, (11)

where ˚̀ is the time derivative of `which according to (7) and (6)
verifies ˚̀/` = (d/3)/t. Using identities (6) to (9) we can now
represent both mean radius R and Wigner-Seitz radius ` only in
terms of t and state of the system at t0. Namely, from (6) we
have

N0

( t0
t

)d
=

3
4π`3 , (12)

thus ` can be expressed as:

l = 3

√√
3

4πN0

(
t0
t

)d . (13)

Using the aspect ratio (8) we find that

R = `
3

√
1 −

( t0
t

)d
. (14)
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Figure 3: Evolution of the reduced Weber number of the characteristic mean
pore during expansion We(t)/We0 in (15a) as a function of reduced time t/t0−1
(log scales); solid lines: uniaxial expansion; dashed lines: isotropic expansion;
thin lines: asymptotic limits with slopes −1 and −2. Points represent transitions
between asymptotic behaviors at small and large times where We/We0 = 1.

Subsequently, we substitute both (13) and (14) in (11), so the
Weber number We = Ek/Es is eventually obtained as

We(t) = We0
d2 (t0/t)2−d

3
(
1 − (t0/t)d) (

1 − 3
√

1 − (t0/t)d
)
, (15a)

We0 =
ρl

8πσN0t2
0

. (15b)

Notice here that the Weber scaling We0 built from quantities at
t = t0 is not equal to We(t0): it is actually found that We(t) =

We0 at t/t0 ≈ 1.16 and 1.38 for respectively d = 1 and 3—
with volume expansion ratios of ρl/ρ = (t/t0)d ≈ 1.16 and 2.60.
As illustrated in Fig. 3, the Weber number We(t) diverges as
(t − t0)−1 for t → t0 and vanishes as (t − t0)−2 for t → ∞.
The expressions in (15) were scaled in such a way that these
asymptotes actually intersect at We0 for either t/t0 = 4/3 or 2
for uniaxial and isotropic expansions as shown in Fig. 3.

The fact that the Weber number We(t) decreases from vir-
tually unbounded values down to zero shows that two regimes
should appear during expansion. At early times, kinetic en-
ergy dominates and expansion is quasi-ballistic, whereas at late
times, surface tension dominates, thus slowing expansion and
inducing pore interactions through Laplace pressure. The tran-
sition will appear more or less early depending on the initial
conditions defined by the Weber scaling We0 and possibly in
either of the t → t0 or (t − t0)−2 regimes represented in Fig. 3.
According to the N0 dependence in (15b), these two regimes
correspond to respectively dense or sparse distributions of cav-
itation nuclei.

2.4. Pressure Evolution

Mean macroscopic p evolution has been sketched in Figure
1, presenting its sharp drop after the shock and during accel-
erated expansion phase. At the moment of pore opening pres-
sure chanes sign, while its growth is restored in the micro-spall
regime. We can trace this evolution in a more detailed manner
using velocity potential φ(t) and mean radii R. We first formu-
late the Bernoulli equation
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φt +
u2

2
+

p − p∞
ρ

= 0, (16)

where u = ṘR2/r2 and thus φ = −ṘR2/r. This leads to a
Rayleigh-Plesset type expression for pressure “at infinity”

p∞ = ρl

(
R̈R +

3
2

Ṙ2
)
−

2σ
R
. (17)

Having discussed the mean spherical cell aspect ratio in the
previous subsection, we can now solve for R̈ using (8) leading
to

R̈ = −
2l0
9 3
√

t
(t − t0)−5/3 , (18)

which allows us to retrieve p∞ by substituting back to (17):

p∞(t) =
ρll20

18 3

√
t2
0(t − t0)4

−
2σ
ρl

3

√
t0

t − t0
. (19)

It is easy to verify that the above formula depicts a curve
whose shape corresponds closely to the pressure curve sketched
in Figure 1 as long as t0 � l0/ which is normally the case, as
mean Wigner-Seitz radii will be significant at the moment of
pore opening.

While the simulations described in this work are set up in
such a way that initial time value is t1 > t0, it is interesting to
study the effect of the propagating pressure pulse on the system.
This reasoning is not without substance, as in computational
practice the flow will respond to imposed expansion boundary
conditions used here with a negative pressure pulse (see e.g.
Figure 7 in (Malan et al., 2018) and results presented in Section
5). We assume incompressibility, however because of the neg-
ative pressure created by surface tension on the bubbles/pores,
the system could be seen as having negative compressibility, so
that the speed of sound c, given below:

c2 =
∂p
∂ρ

(20)

is imaginary. Taking this into account, and linearizing the Euler
equation (5) and the mass conservation equation (3) we obtain

|c|2∂2
xx p + ∂2

tt p = 0 (21)

A quick estimate based on Laplace’s law leads to

|c|2 =
σ

4πNρlR4 . (22)

A conclusion that may be drawn from the pressure equation
(21) is that as soon as the pressure has been affected by grow-
ing pores in a region, the pressure pulse will propagate to the
rest of the system at a speed |c|. Such a propagating solution, of
the form p = atan(x/|c|t), is possible even in the elliptic system
case. The speed |c| of the wave may be comparable to the ini-
tial speed L0/(2t1) of the expansion wave; comparison will be
dependent on surface tension and Weber number.

3. Computational Methods

3.1. The Paris Simulator
The simulations presented in this paper use the Parallel Ro-

bust Interface Simulator (or PaRIS, PariSimulator Ling et al.,
2015; Malan et al., 2018), which is a is an in-home CFD code
developed jointly at Institute ∂’Alembert, University of Notre-
Dame and University of Bologna. Paris is a classical, MAC-
type solver using uniform, cuboidal meshes. Its strengths lie in
a very efficient MPI parallelisation and broad variety of imple-
mented computational methods, especially for interfacial, two-
phase flows. These include e.g. Front Tracking (Tryggvason
et al., 2011), Volume of Fluid (Hirth and Nichols, 1981) and
tracking Lagrangian particles. The code is GPL licensed1 and
publicly available2.

A well known projection scheme (Tryggvason et al., 2011)
is used to solve momentum conservation equations. We will
explain it briefly by showing a way the algorithm progresses
from n-th to n + 1-st step. Knowing the values of all fields at
the end of n−th step, we are starting with the definition of the
temporary velocity field u∗

u∗ − un

∆t
= −un · ∇hun, (23)

which can be found easily since, at the end of n-th time-step
it is the only unknown in above formula. Symbol ∇h stands
for the discrete differential operator. This is a projection step
since velocity is projected onto a space with zero pressure field.
We can now write a discrete version of (5) which involves u∗,
only this time changing the way the approximation of temporal
derivative is formulated

un+1 − u∗

∆t
= −
∇h pn+1 + σκnδs

ρn , (24)

where superscript n + 1 stands for the value at the end of n-
th time-step. Notice surface tension contribution has been in-
cluded in (24): σ stands for the surface tension coefficient, n is
the vector normal to the interface, while κ is scalar curvature—
also the restriction to the interfacial surface S is ensured by the
δS operator. If now we apply a divergence operator to both
sides of (24) and remember that we assume ∇ · un+1 to vanish,
we obtain the Poisson equation from which pressure pn+1 can
be found

∇h ·

[
∆t
ρn∇h pn+1

]
= ∇h · u∗ + ∇h ·

(
∆t
ρnσκnδs

)
. (25)

In most computational codes numerical solution of (25) is the
stage to which most computational cost (up to 90 percent) is as-
sociated; especially in multi-phase flows with variable density.
Once (25) is solved with pn+1 found, both it and u∗ are used to
find the divergence-free velocity at the end of the time-step

un+1 = u∗ −
∆t
ρn

(
∇h pn+1 + σκnδs

)
(26)

thus ending the procedure. Many authors call (26) a “correc-
tion” step as solenoidal character of un+1 is ensured thereby.

1https://www.gnu.org/licenses/gpl.html
2Available at http://www.lmm.jussieu.fr/∼zaleski/paris/index.html
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3.2. Interface Tracking
As mentioned, normal vectors n and curvatures κ in above

equations3 are found from the color/fraction function C, whose
advection equation follows in discrete form

Cn+1 −Cn

∆t
+ ∇h · (Cun) = 0. (27)

Above equation cannot be solved directly, as C is a sharp
jump function: the jump would be diffused by numerical errors
(Youngs, 1984). Therefore, in most applications (27) is solved
using specially crafted geometrical reconstruction–advection
schemes such as CIAM (Li, 1995) or PLIC (Aniszewski et al.,
2014). Normal vectors and curvature are calculated using
Height Functions technique (Cummins et al., 2004; Popinet,
2003) which has multiple provisions for the cases of insufficient
grid resolutions and/or specific interface configurations.

3.3. Free Surface Solver
To implement the boundary conditions on the interface, a free

surface method has been implemented in PariSimulator (Malan
and Zaleski, 2015). The flow within the pores is not explicitly
solved for (except up to two interior cell layers as explained
below), additionally in this paper we initially set the pp pres-
sure value to zero. With that assumption the flow is in fact
a quasi-single phase flow, but surface tension is accounted for
on the pore surfaces. Still, pressure pp inside the pores is de-
fined, although it is assumed spatially constant inside them and
is calculated using the polytropic equation of state (Malan et al.,
2018).

1. The pressure field is extrapolated onto the interface which
is necessary for (25). The boundary value of the gradient
is computed as

p∗ = pp − σκ, (28)

where pp is constant pore pressure, and σκ is Laplace
pressure, thereby assuring that surface tension effect is ac-
counted for. The p∗ value is used for ∇h operators in cells
neighboring the interface;

2. The velocity field is extrapolated to within the pores; these
values are necessary for higher-order gradient operators
for cells neighboring the interface. Extrapolation is based
on liquid velocity, which is extended to two grid-cell lay-
ers (or ’levels’) within pore/bubble interior by geometrical
fitting and least-squares minimization;

3. Finally, the extrapolated velocities in level 1 and 2 cells
are corrected to ensure the new field is divergence free.

Computational tests have shown the above procedure
amounts to approximately 10% of CPU cost in a massively par-
allel simulation compared with Poisson solver cost standing at
80%.

Limitation introduced by current implementation of the
above algorithm is—apart from aforementioned necessity of
pre-seeding the pores—that the pores cannot coalesce, as it is

3The same applies for the approximation of Dirac delta δs.

not yet made compatible with the point 2. of the above list,
as topology change of the pores cannot be accounted for. The
model however allows for the pore collapse, to which the sys-
tem responds with a pressure pulse. It is also interesting to no-
tice that the pores can undergo displacement (i.e. move) for ex-
ample due to non-balanced surface tension force distributions.
More details on the Free Surface sub-solver implementation can
be found in Malan et al. (2018).

3.4. Implementation

In implementation, we apply the Hypre package’s (Falgout
and Yang, 2002) SMG (semi-coarsening multigrid solver with
3D plane smoothing) for numerical solution of the Poisson
problems (25) on the structured, cubic meshes that PariSimu-
lator uses. Advection terms in (23) are calculated using cen-
tral differencing with WENO (Shu, 1997) and Superbee-type
(Sweby, 1984) slope limiters. Interface curvatures for (24) are
calculated with a combination of techniques providing for var-
ious stencil shapes and built within the framework of Height
Function method (Cummins et al., 2004) and with the mixed-
Youngs-central (Youngs, 1984) scheme for normal vector n
computation. Finally, Volume of Fluid method is used to
track the interface, using explicit geometric reconstruction of
the interface (Scardovelli and Zaleski, 2000) and CIAM/PLIC
(Aniszewski et al., 2014) scheme to compute fluxes cun in (27).
A cavity tagging and Lagrangian particle-tracking algorithm
(Ling et al., 2015) are used to retrieve statistics of cavity sizes.

The method was validated comparing numerical solutions to
solutions of the Rayleigh–Plesset equation for oscillating bub-
bles (Malan and Zaleski, 2015; Malan et al., 2018).

4. Simulation setup

4.1. Initial Conditions

To simulate the idealized micro-spall phenomena in a way
specified in Section 2 we have set up the simulations in a fol-
lowing way. Cubical computational domain is used (see Fig. 2),
containing a given number of pre-seeded pores in a FCC (Face-
Centered Cubic) lattice. The domain is expanded in x direction
as assumed in Section 2. More specifically, the proper tempo-
ral evolution of the velocity field described by (1) is ensured by
initializing:

• the x-velocity component to u = x with proper translation
and scaling, so that for t = t1 we have u(0, t1) = −un,
u(L/2, t1) = 0 and u(L, t1) = un where un is the outflow
velocity;

• the outflow boundary condition for the velocity field u =

(u, v,w) in such manner, that

un = 1/t1, (29)

where t1 > 0; for subsequent moments of simulated time t
(29) is held so that |un(t)| = 1/t at all times;

• the v and w components to zero.
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This implies usage of Dirichlet boundary condition for u in
the x direction, which is time-dependent as said above. Neu-
mann boundary condition for p is thus applied on the x+ and
x− walls. Imposing Dirichlet boundary conditions for pressure
(instead of velocity) could be a valid choice for this type of
flow, however—unlike the cases in which pores are wholly con-
tained in the domain (Malan et al., 2018)—uniaxial expansions
discussed here involve pores crossing outer domains along x
axis. This in turn would make Dirichlet condition for pressure
inconsistent.

Periodic boundary conditions are imposed on YZ walls. For
the condition to be compatible with the pore cluster geometry,
it is re-shaped by adjusting the pore-free buffer surrounding it.
More precisely, due to periodic condition in YZ directions, the
buffer is present only in the x direction (visible as empty region
in Fig. 2), i.e. for x < 0.12 and x > 0.88 the domain contains
no pores at t = t1. Cubic domain of size L = 1 is assumed with
initially 365 pores. Thus, we arrive at value of ` ≈ 0.14.

4.2. Physical parameters and computational grids

We describe simulation results concerning the uniaxial ex-
pansion using example simulations whose parameters are given
in Table 1.

Consider now the simulation domain (−L0/2, L0/2)3 within
which spherical pores are initialized with non-zero radii (which
is necessary due to limitations of Paris code) i.e. numerical
simulations are started at t1 > t0. With this in mind, the mean
radii distribution right after pore opening is

R(t1) = L0

[
3

4πN0

(
t1
t0
− 1

)]1/3

, (30)

which is how pores are defined as a initial simulation condition.
In this computational configuration, it is desirable for R(t1) to
be possibly small, to offer a large range of scales - in other
words, headroom for V(t) growth before the pores coalesce. A
favourable relation would be

∆x � R(t1) � ` � L0. (31)

where ∆x is the grid size. The leftmost and rightmost inequali-
ties of (31) are however slightly relaxed for the results presented
in this paper due to grid resolutions used, as will be detailed be-
low.

Example simulations have been performed using 2563 grid
points. For the first simulation (“I”), value of Weber number
(15a) at t1 is 512.83. The pore lattice is configured as speci-
fied above, with liquid characteristics found in Table 1. In the
Table, “I” and “C” are labels designating the “Isolation” and
“Competition” regimes; We and Ma are dimensionless Weber
and Mach numbers, ρ and σ are respectively liquid density and
surface tension applied at the pore surfaces, while var(r) stands
for the a variation in pore radii applied to the initial condition.
Mach number values presented in Table 1 are calculated using
the speed of sound c as defined by (22).

As mentioned above (see (30)), due to the applied spatial res-
olution, certain restrictions on the initial pore radii R(t1) are

imposed, as the pores must be properly represented by the in-
terface tracking method at t1 . This representation requires e.g.
that gradients of the fraction function C can be resolved near the
interface (to calculate interface normals) with finite difference
operators. Having the size of domain L0 and initial pore num-
ber N0 fixed, and imposing additional restriction R > 3∆x we
e.g. choose t1 = 0.08 for the presented simulation of isolation
regime (see Table 1). This amounts to R(t1)/∆x ≈ 3.44 which
is considered resolved (Tryggvason et al., 2011) in that proper
values of curvature can be computed for pores of that radius4.
Due to the dependence (8) between simulation initial time t1
and bubble/pore radii, any decrease of t0, and t1/t0 would re-
duce R, which in turn would imply an increased grid resolution.

5. Results

5.1. Isolation regime

Figure 4a presents cluster geometry at t′ = t1 + 1.929 · 10−2.
Uniform expansion of the bubbles/pores is clearly visible with
pore layers closest to the walls along the x axis visibly elon-
gated due to the fact that convection is strongest there. At
t ≥ t1 + 1.92 · 10−2 one observes pore radii of order of `. Nearly
all pores are ellipsoidal in shape, and have expanded beyond
the region of the simulated volume, including periodic yz walls.
Moreover, the outer layer of pores has now completely disap-
peared (have been convected out) from the simulation domain,
as only remnant interfacial cells are visible.

Temporal evolution of the pore volume fraction Vg for “I”
regime flow is seen in Fig. 5. Seeing as all volume change in
the liquid results from growth of the pores, we can supplement
(4) by a following expression for pore volumes:

Vg = L3
0(1 −

t0
t

). (32)

Thus calculated pore volume fraction Vg(t1 = 0.08) should
be 3.59 · 10−3, however it is visibly lower in simulation, due
to the initial variance in pore radii (Table 1) introducing addi-
tional volume. Proper scaling has thus been used for the ana-
lytic formula to make up for that. Another source of a differ-
ence between (32) and simulated pore value is –as mentioned in
context of Fig. 4a – that the pores leave the computational do-
main as it is expanded, which in the “I” simulation takes place
at t + t1 > 0.05.

For the isolation regime simulation, we additionally present
in Fig. 6 the profiles for 〈p〉 (Fig. 6a) and 〈ux〉 (Fig. 6b) mea-
sured along the x axis. These are taken from the early simula-
tion stage (t = 6.732 · 10−3) and confirm that the evolution of
the system is indeed in the ballistic regime, as velocity profile
conforms to a linear as predicted in (1). The ’wavy’ character
of the plot if Fig. 6b is caused by inclusion of zero velocities
(inside the pores) to the average. Similarly, we observe no vari-
ance in 〈p〉 (Fig. 6a) when focusing our attention on the lattice-
occupied part: for x < 0.12 and x > 0.88 there is an empty
“buffer zone” in the x direction as mentioned above.

4Not accounting for about 5 percent variance in R in initialization.
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Table 1: Parameters for two examples of simulations of the uniaxial expansion, as explained in text.

Label ρ σ t1 t0 var (r) We(t1) Ma(t1)
I 1000 0.1 8 · 10−2 7.797 · 10−2 50% 512.83 15

C 444 1 2.1 2.092 50% 3.3 · 10−2 0.12

5.2. Competition regime
We continue the description of the results with the second

simulation (“C”) which, as seen in Table 1 is characterized by
a much lower Weber number. As a result of this, the evolution
of the pore lattice is no more dominated by expansion and the
pores are not isolated, and the elongated shapes of the pores
visible in Fig. 4a give way to a “pore competition” phenomenon
(Everitt et al., 2006). As visible in Fig. 4b, number of pores has
either shrunk or is at the verge of imploding, their volume being
overtaken by a group of large pores. Distribution of radii in the
latter group is rather isotropic with all pores roughly spherical,
while ellipsoidal forms are absent. For situation presented in
Fig. 4b average pressure 〈p〉 has a negative value. This is due to
the fact that positive pressure field is associated with expanding
liquid, while for low Weber number negative Laplace pressures
(capillary force) dominate the pressure distribution. We will
revisit this subject in Fig. 9.

Both increased radii variation and implosion events are visi-
ble in Fig. 7 which displays individual pore volume histories for
the larger (brown lines) and smaller (blue lines) Weber num-
bers. To the accuracy allowed by post-processing software,
each line displays volume of an individual pore, with about 300
pores tracked for each simulation. Time is normalized by cap-
illary timescale (Malan et al., 2018)

τR =

(
ρR3

σ

)1/2

(33)

which results (due to parameters presented in Table 1) in factor
of 5 between the two simulations presented in Fig. 7, accounted
for in the figure. Unlike the high-We regime, in which expan-
sion is rapid and nearly uniform, the low-We regime exhibits
higher variance in pore volumes, with a number of implosion
events visible towards the end of recorded time. This proves
that the presented numerical method is capable of capturing the
transition between the two regimes, provided that simulation
covers a sufficient temporal range5.

5.3. Evolution of the pressure field
We continue our comparison of the presented uniaxial ex-

pansion regimes with Figs 8a and 8b, first of which displays the
evolution of averaged pressure field

〈p〉 =
1
V

∫
V

pdV (34)

5Which in turns depends directly on numerical grid resolution. The smaller
R(t1) the more timespan will be included in the simulation before the pores
coalesce.

for both analyzed flow regimes. As the high-We regime is char-
acterized by a more violent decrease in average pressure in the
initial parts of expansion, it was necessary to plot 〈p〉 in log-
arithmic scale in Fig. 8a. However due to the function being
negative, we instead plot in Fig. 8a the

log(|〈p〉|) · sgn(〈p〉). (35)

It is clearly visible that the rapid decrease from e10 ≈ 2.2 · 105

to zero is followed by a period for which 〈t〉 < 0.
Figure 8b presents a plot comparable to Fig. 8a but obtained

by discarding Laplace pressures (i.e. capillary contributions).
Here, we are using only input from grid cells that do not co-
incide with pore surfaces (this can be found from values of C
function)—in other words, grid-cells away from the pores and
the interface. This can be roughly approximated by

〈p〉 =
1
V

∫
V

p(1 −C)dV (36)

where C stands for the fraction function. Accuracy provided
by (36) is moderate as it will still include contributions from
direct neighbours of the interface grid-cells; those neighbouring
cells are generally still influenced by Laplace pressures. While
better accuracy could be provided by a distance function-based
methods (Aniszewski et al., 2014), above formula is enough to
yield a much different result than depicted in Fig. 8a. Indeed,
while a similar pressure evolution as in Fig. 8a is observed in
Fig. 8b, we notice that

∀t :
{
〈p〉(t) > 0 ∧

∂〈p〉
∂t

< 0
}
, (37)

which is to say average pressure is always positive and de-
creasing. Additionally, slight oscillations visible in Fig. 8a for
0.025 < t < 0.035 are not found in Fig. 8b, thereby reassuring
us that they were attributed to the capillary forces.

A different 〈p〉 evolution is observed for the “competition”
regime. In Fig. 9 for low We, which (as we mentioned in con-
text of Fig. 4) is dominated by capillary pressures nearly from
the onset, we notice 〈p〉 ∈ [−50,−20] within the computed time
interval. For t > 0.15 individual peaks are visible (as triangles
in Fig. 9) which should be associated with implosion (collapse)
events. It is easy to note that unlike the isolation regime, in the
competition regime we find for t > 0.02

∂〈p〉
∂t

> 0, (38)

i.e. average pressure is steadily growing, which in fact is pre-
dicted by (19). We would associate this with the initially rapid
expansion slowing down, and competition process taking over.
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Figure 4: (a) Simulation of the flow characterized by We = 512. (isolation
regime) at t = t1+1.92·10−2. (b) Simulation of the pore lattice at We = 3.3·10−2

(“competition” regime) for t = t1 + 0.237.

The first expansion phase (or the isolation regime) corre-
sponded to rapid expansion when the pores are still small com-
pared to `, while the latter is due to Laplace (capillary) pres-
sures which—in spite of being inversely proportional to pore
radii—become dominant, and competition phenomenon ap-
pears (Malan et al., 2018). Note that measured in absolute time
values, evolution presented in Fig. 9 involves a temporal inter-
val nearly ten times longer than that of Fig. 8.

To further validate the predictions of the numerical simula-
tion result presented in Figure 9 we have included a curve dis-

Figure 5: Volume fraction temporal evolution. Continuous line: simulation;
dashed line: using (32).

Figure 6: Isolation regime: Averaged (in YZ) profiles of u and p for t − t0 ≈
6 · 10−3.

playing temporal evolution of p∞(t) calculated using (19). The
sharp pressure drop resulting from initial shock as well as the
beginning of pressure growth after minimum is reached (men-
tioned in Section 2) are well visible in Fig. 9 for both curves,
and there is overall agreement in their shape. Obviously, mean
pressure 〈p〉 is not equal to p∞ and is strongly influenced by
the capillary pressures originating from surface tension on pore
surfaces. For this reason, minimum p value is predicted too
low. Interestingly, if instead of using σ = 1 in (19) we cal-
culated p∞ using σ = 1.3, we get mint(p∞(t)) = mint(〈p〉(t))
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Figure 7: Pores volume history for We = 512 (brown), and We = 0.03 (blue)
flows.

and a better agreement of the p∞ curve to 〈p〉 overall which
strongly suggests that indeed the contributions of Laplace pres-
sures substitute the difference between the analytic prediction
and simulation result.

Figure 10 presents an example of an additional simulation6

with We(t) = 9.56 · 10−2 at t = t0 + 0.157. This third presented
simulation corresponds to a transition from isolating to compet-
ing regimes predicted by (15a). We can illustrate this by direct-
ing our attention to values of pressure inside the pore cluster.
In Fig. 10, three isosurfaces are presented. First, a gray (semi-
transparent) isosurface of fraction function C is visible. This
marks the position of individual pores, although at first glance
it is hard to conclude if the competition phenomenon is present.
Similarly, regions with p ≈ −42 (green, semi-transparent iso-
surface in Fig. 10) exhibit little spatial variability: all pores are
surrounded by them. However, once an isosurface for p ≈ −63
is drawn (solid blue surface in Fig. 10) we notice that homo-
geneity is no more: pressure attains this value only close to cer-
tain pore’s surface. Upon closer inspection it is evident these
pores have smaller radii (hence larger mean curvatures); they
are being acted upon by other, growing pores to eventually suc-
cumb to the competition (Malan et al., 2018).

6. Conclusions

We have presented a numerical simulation setup that per-
mits prediction of the behavior of a pore lattice within rapidly
expanding medium.The expansion corresponds to a uniaxial
(one-dimensional) ballistic phenomenon characterized by large
initial outward velocity magnitudes which then immediately
diminish. On one hand, this setup facilitates recognition of
momentum-dominated phenomena such as rapid pore elonga-
tion in “isolation” regime. On the other, the decline in expan-
sion rate promotes the onset of pore “competition” and more

6The simulation uses the same boundary conditions as those mentioned
above, resolution is 5123 grid points.

Figure 8: Isolation regime: (a) Evolution of the domain-averaged pressure for
the flow at We = 512; (b) The same quantity prepared by including only grid
cells in the liquid.

anisotropic radii distribution in surviving pores. Moreover,
simulations allow us to observe transition between these two
regimes. We have presented that instantaneous velocity and
pressure profiles match analytic predictions, and so does the
temporal pressure evolution in the simulated pore systems.

It is relatively easy to point out numerous simplifications
of the presented model. One example is the lack of solu-
tion inside pore interiors, another is using an incompressible
medium. Still the work presented provides us with insights
into the micro-spall process which is otherwise inaccessible ex-
perimentally: simulation domains here correspond to microm-
eters while temporal span is of similar order, forcing physicists
and engineers to indirect analysis. In this context the present
study—especially with its choice of (partly periodic) boundary
conditions—may easily be used as a departure point for larger-
scale modeling e.g. in the context of metal breakup under load.

9



Figure 9: Evolution of the mean pressure field for the competition regime. Nu-
merical simulation (black triangles) and analytical p∞(t) using (19) (red line).

Figure 10: The bubble cluster at We ≈ 0.1, corresponding to a transition from
isolation to competition regime.
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