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(Dated:)

The temporal instability of parallel two-phase mixing layers is studied with a linear stability code by con-
sidering a composite error-function base flow. The eigenfunctions of the linear problem are used to initialize
the velocity and volume fraction fields for direct numerical simulations of the incompressible Navier-Stokes
equations with the open-source gerris flow solver. We compare the growth rate of the most unstable mode
from the linear stability problem and from the simulation results at moderate and large density and viscosity
ratios in order to validate the code for a wide range of physical parameters. The efficiency of the adaptive
mesh refinement scheme is also discussed.

I. INTRODUCTION

Two-phase mixing layers are easily found in nature and
industrial applications. Typical phenomena are the for-
mation of sea waves by the wind and fuel atomization. In
particular, the breakup of a liquid jet in thermal engines
is a very complex phenomenon investigated by many re-
search groups as the atomization process is important for
the combustion quality, engine efficiency and pollutant
emission. A number of mechanisms have been proposed
that may lead ultimately to ligament and droplet forma-
tion. A high level of turbulent eddies upstream of the
nozzle may have sufficient energy to overcome the sta-
bilizing effect of surface tension and to create ligaments
directly, while a lower level may give rise to interface per-
tubations that are unstable, in this case the gas phase
plays an essential role. In the second situation, planar
models are likely to be relevant to jet instabilities at the
early stages of the interface evolution near the nozzle exit
where the observed spatial scale of the instability is small
compared to the jet radius.

This paper focuses on the direct numerical simulation
of unstable perturbations in two-phase mixing layers in
a two-dimensional Cartesian geometry and in circum-
stances in which the turbulent eddies upstream of the
nozzle are of sufficiently small amplitude so that lin-
earized analysis may apply. This is in particular the case
of a number of experiments specially designed to reduce
the turbulence level1. This phenomenon was first investi-
gated by Kelvin and Helmholtz in the 19th century who
developed the single-phase inviscid theory. At the begin-
ning of the 20th century, Heisenberg, Lin, Tollmien and
Schlichting found how the viscosity modifies and con-
tributes to the inviscid perturbations2. Later on Yih

a)Electronic mail: stephane.zaleski@upmc.fr

found that for two different fluid phases a viscosity con-
trast can give rise to an interfacial mode for long waves3.
Finally, Hooper and Boyd4 observed other effects at small
Reynolds numbers which have been explained by Hinch5.

Up to now, a limited number of Direct Numerical Sim-
ulations (DNS) of the Navier-Stokes equations for two-
phase mixing layers have been performed. Some prelim-
inary results using the Volume of Fluid (vof) method
have been presented by Keller6, Li7 and Leboissetier8.
Other two-dimensional simulations of the Navier-Stokes
equations have been performed by Tauber using an in-
terface front tracking method9.

Linear stability analysis of viscous modes in two-phase
mixing layers has been performed by a number of au-
thors. In this paper we use the results obtained by
Yecko10 and Boeck11 who considered in their linear prob-
lem a base flow composed by error–function profiles in
each fluid layer. The eigenfuctions from their analysis are
used to initialize the interface and velocity profile, while
the growth rate of the most unstable mode is compared
with the value from the direct numerical simulations.

To perform the simulations presented in this work we
use the numerical code gerris12, an open-source flow
solver (http://gfs.sf.net). The incompressible single-fluid
formulation of the Navier-Stokes equations is simplified
with a classical time-splitting projection method and the
resulting Poisson equation for the pressure is solved with
a multigrid technique. The model implements adaptive
mesh refinement (amr), which is based on a quad/octree
spatial discretization with automatic and dynamic lo-
cal refinement according to different physical criteria.
A vof/plic algorithm has been implemented to recon-
struct the interface and a direction-split technique to
advect the volume fraction function. Continuous sur-
face force (csf) is combined with the height function
method13 to model surface tension14. Some preliminary
results about the validation of this code through compar-
ison with the viscous linear theory have been presented
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previously15.
The structure of the paper is as follows. In the fol-

lowing section we discuss the linear eigenvalue problem
including the velocity distribution of the base flow and
the inviscid and viscous linear stability equations. Next
we describe the initial conditions of the direct numerical
simulations obtained from the eigenfunctions of the lin-
ear stability problem and how we compute the growth
rate of the instability from the simulation data. Then we
present the results at moderate and large density and vis-
cosity ratios discussing how the instability wavenumber
and the surface tension coefficient affect the convergence
of the simulations. Finally we discuss the efficiency of
amr and present our conclusions.

II. BASE FLOW AND LINEAR STABILITY PROBLEM

In experiments on atomization wavy perturbations of
the liquid-gas interface grow away from the nozzle, evolv-
ing into liquid sheets that by three-dimensional desta-
bilization may develop ligaments that eventually break
up into droplets16. The velocity field near the interface
is characterized by a boundary layer of different size in
each phase, which develops further on with the down-
stream distance from the nozzle exit. In order to neglect
the spatial evolution of the base flow and to approxi-
mate the physical problem as the temporal evolution of
a spatially periodic flow, one has to resort to the paral-
lel flow assumption. The consistency of this assumption
requires the cross-stream velocity component to be neg-
ligible compared to the streamwise component and the
predicted unstable wavelength to be much smaller than
the downstream distance over which the boundary layer
thickness changes significantly. Both requirements can
be satisfied within the usual assumptions of boundary
layer theory, namely when the Reynolds number based
on the downstream distance is large17. We also remark
that the stability results for sinusoidal streamwise per-
turbations are related to spatially growing perturbations
by Gaster’s transformation provided the growth over one
oscillation period is sufficiently small18.

In this paper we are interested in the amplification of
wavy two-dimensional perturbations of a liquid-gas inter-
face which is initially flat, hence not too far away from
the nozzle. The base flow will be approximated by a par-
allel flow, as schematically illustrated on the left of Figure
1. The stability of this flow will be studied as a linear
eigenvalue problem and the eigenfunctions corresponding
to a given wave number will be used to initialize a per-
turbation of the base flow. The perturbed initial state
will be followed in time by the numerical code gerris in
order to compare the two growth rates.

The self-similar velocity profile of the base flow has
been computed by Lock19 using the boundary layer the-
ory for a two-phase flow. Even if there is no analyti-
cal solution of the nonlinear boundary layer equations,
an analytical tanh-profile has been considered as a good

approximation of the base flow for stability calculations
in the one-phase problem20. Therefore, as in previous
works10;11, we consider an error function profile for both
phases. The argument of the error function is scaled
by the boundary layer thickness in each phase and the
zero is located on the stationary interface line (see Fig-
ure 1). The shape of the numerical solutions of19 are well
approximated by such error functions, while stability re-
sults based on the exact profiles of Lock’s problem have
been compared with those based on the error function
profile in21.

FIG. 1. Parameters and base flow profiles used in the liquid
and gas phases for the viscous (left) and inviscid (right) linear
stability problem.

A. Velocity distribution of the base flow

In the co-moving reference frame where the velocity is
zero on the stationary interface, the analytical expres-
sions for the parallel base flow are

Ul(y) = U∗
l erf

(
y/δl

)
(y < 0), (1)

Ug(y) = U∗
g erf

(
y/δg

)
(y > 0), (2)

where the subscripts l and g denote liquid and gas (or
more generally two fluids with different physical proper-
ties) and the interface coincides with the coordinate axis
y = 0.

The two asymptotic velocities, U∗
l and U∗

g , and the
boundary layer thicknesses, δl and δg, are not indepen-
dent parameters since they are coupled by the shear
stress continuity at the interface. Thus, by using (1-2)
the following relation is established

µl U
∗
l

δl
=

µg U
∗
g

δg
. (3)

Nondimensional physical and geometrical parameters
of the problem are the density, viscosity and thickness
ratios

r =
ρg
ρl
, m =

µg

µl
, n =

δg
δl
. (4)

To define other dimensionless numbers we need a ref-
erence velocity and length. A convenient choice are the
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asymptotic velocity U∗
g and boundary layer thickness δg

of the gas phase. With these two reference scales we de-
fine the Reynolds and Weber numbers for the liquid and
gas phases as

Rel =
ρl U

∗
g δg

µl
, Reg =

ρg U
∗
g δg

µg
,

(5)

Wel =
ρl (U∗

g )2 δg

σ
, Weg =

ρg (U∗
g )2 δg

σ
,

where σ is the constant surface tension coefficient.

B. Inviscid and viscous eigenvalue problem

The linear stability problem is formulated in two di-
mensions and without gravity for both phases. The per-
turbations of the base flow are written in terms of the
streamfunctions ψl and ψg, as in10;11. The streamwise
and cross-stream velocity components u and v are de-
fined by

u = ∂yψ, v = −∂xψ , (6)

in both phases. Since the unperturbed flow does not
depend on time t and streamwise coordinate x, the lin-
earization of the dynamical problem about the base ve-
locity profile implies that the solution can be written as

ψl(x, y, t) = φl(y) exp
(
iα(x− ct)

)
(y < 0) , (7)

ψg(x, y, t) = φg(y) exp
(
iα(x− ct)

)
(y > 0) . (8)

With this ansatz and proper boundary conditions, we
obtain an eigenvalue problem for the two ordinary differ-
ential equations in φl and φg. The real wavenumber α
should be considered as a parameter, while the complex
eigenvalues c = cr + ici determine the phase velocity cr
and growth rate (α ci) of the modes.

In the inviscid case, from the linearized momentum
equation one derives the following differential equations
for the liquid and gas phases

(Ul − c) (D2 − α2)φl − D2Ul φl = 0 , (9)

(Ug − c) (D2 − α2)φg − D2Ug φg = 0 , (10)

where D is the differential operator along the cross-
stream coordinate y. The boundary conditions at the
interface (y = 0) are the continuity of the normal com-
ponent of the velocity v and the pressure

φl = φg , (11)

− α2

r cWel
φl =

1

r
(cDφl +DUl φl) − (cDφg +DUg φg) .

(12)

Analytical solutions of Equations (9-12) can be found
when the second derivative of the base flow U is zero,

i.e. for base velocity profiles composed by a chain of
consecutive segments, as shown on the right of Figure 1.
In this case the solution is a linear combination of the
exponential functions exp (±αy). The same boundary
conditions (11-12) should be applied at the intersection of
two consecutive segments. The whole problem is reduced
to an algebraic eigenvalue problem for c. The roots of the
characteristic polynomial can be computed with standard
software packages.

In the viscous case, the linearized momentum equa-
tion gives rise to the well-known fourth-order Orr-
Sommerfield equation for each phase

(Ul − c) (D2 − α2)φl

−D2Ul φl =
1

iαRel
(D2 − α2)2 φl , (13)

(Ug − c) (D2 − α2)φg

−D2Ug φg =
m

r

1

iαRel
(D2 − α2)2φg . (14)

The higher order of the differential equations leads to
additional conditions at the interface, where we require
the continuity of the normal and tangential components
of the velocity

φl = φg , (15)

(D +
1

c
DUl)φl = (D +

1

c
DUg)φg , (16)

and that of the normal and tangential stresses as well

− α2

r cWel
φl =

1

r
(cDφl +DUl φl)

+
1

iαrRel
(D3φl − 3α2Dφl)

−(cDφg +DUg φg)

− m

iαrRel
(D3φg − 3α2Dφg) , (17)

(D2 + α2 +
1

c
D2Ul)φl

= m (D2 + α2 +
1

c
D2Ug)φg . (18)

The viscous eigenvalue problem for the error function
profile can only be solved numerically. For the geometry
shown in Figure 1 it is possible to introduce two semi-
infinite mappings to push the top and bottom boundary
conditions to infinity, see for example22. Alternatively,
one can set a boundary condition at some large but finite
cross-stream distance from the interface. Therefore, we
place two rigid walls at y = −Ll and y = Lg, where the
fluid velocity is equal to zero

φl = Dφl = 0 (y = −Ll) , (19)

φg = Dφg = 0 (y = Lg) . (20)

In the inviscid case only the normal component of the
velocity is zero. We remark that Ll and Lg should be



4

sufficiently large in order to ensure the independence of
the results from their values10;11. With this geometry,
the initialization of the nonlinear Navier-Stokes solver
gerris is straightforward.

The linear stability problem for the complex eigen-
value c, with given physical and geometrical parame-
ters and wavenumber α in the domain −Ll ≤ y ≤ Lg,
is solved numerically by using a Chebyshev colloca-
tion method10;23;24. Each fluid subdomain, [−Ll, 0] and
[0, Lg], is transformed into the interval [−1, 1], by a differ-
ent linear transformation of the independent variable y.
The eigenfunctions φl and φg are expanded in Chebyshev
polynomials and are evaluated at prescribed collocation
points, here the extrema of the highest order polyno-
mial, in order to ensure spectral accuracy23;25. In the
resulting linear algebraic system for the coefficients of
the Chebyshev polynomials the eigenvalue c is consid-
ered as a parameter, and the system is resolved with the
QZ-algorithm26 implemented in the NAG library. At the
end of the calculation, the eigenfunctions are normalized
in such a way that the maximum coefficient is equal to 1.
For a given set of physical and geometrical parameters
and wavenumber α, several unstable modes with differ-
ent growth rates may be found. A detailed analysis of
these modes and of the physical mechanisms driving the
instability can be found in11. In this paper we focus only
on the most unstable mode.

III. SIMULATIONS AT MODERATE DENSITY AND
VISCOSITY RATIOS

In this section we present the results of the eigenvalue
problem and the numerical simulations for cases where
the density and viscosity ratios are of the order of 10.

A. Base flow parameters

The four parameters U∗
l , U∗

g , δl and δg are related
by (3). Furthermore, we assume δl = δg = L/6,
with L = Ll = Lg. Then, we need to specify only
the reference velocity, U∗

g = 10m/s, and length, δg =

2.5 10−3m. For all cases, the gas properties have the
same value, with density ρg = 1 kg/m3 and viscosity
µg = 1.25 10−5 kg/ms. The surface tension coefficient
σ is either zero or 2.5 10−2 J/m2.

In the first two cases A and B of Table I, the two fluids
have the same density, r = ρg/ρl = 1, but different vis-
cosity, m = µg/µl = 0.1. The other two cases, C and D,
have almost the same viscosity, m = 0.99, but a differ-
ent density, r = 0.1. With these values the adimensional
numbers given in Table I are readily computed.

Case m r δl/Ll δg/Lg Rel Reg Wel Weg

A 0.1 1 1/6 1/6 200 2000 ∞ ∞
B 0.1 1 1/6 1/6 200 2000 10 10

C 0.99 0.1 1/6 1/6 19800 2000 ∞ ∞
D 0.99 0.1 1/6 1/6 19800 2000 100 10

TABLE I. Physical and geometrical parameters of the base
flow profiles.

N case A case B case C case D

40 0.10855398 0.093916996 1.5400230 0.14058223

70 0.10870192 0.093773774 0.20126900 0.18923558

90 0.10870175 0.093773438 0.20070193 0.18854588

100 0.10870181 0.093773482 0.20069428 0.18853798

120 0.10870161 0.093773446 0.20069689 0.18853832

140 0.10870154 0.093773649 0.20069848 0.18850341

160 0.10870432 0.093774442 0.20069865 0.18860924

190 0.10871292 0.093770611 0.20071194 0.19463859

TABLE II. Variation of the growth rate with the number N
of Chebyshev polynomials for the four cases of Table I with
α δg = π/2.

B. Eigenfunctions from linear stability theory

An important parameter to get accurate results in the
linear eigenvalue problem is the number N of Chebyshev
polynomials used in the expansion of the eigenfunctions
φl and φg. We consider the same number of polynomi-
als in the liquid and gas phases, i.e. N = Nl = Ng.
The growth rate for the four cases of Table I is pre-
sented in Table II as a function of the integer N . For
each case we observe a range of N where the growth rate
remains roughly constant. To compute the eigenfunc-
tions we consider the minimum value in this interval of
N . Thus, for the four cases of Table I we have chosen
N = (70, 70, 100, 100). Beyond this range of constant
growth rate, round-off errors become important as the
number N of polynomials is increased. Quadruple preci-
sion could be a way to overcome this issue.

Next, we examine the profile of the eigenfunctions.
Figure 2 shows the real φr(y) and imaginary φi(y) parts
of these functions for the cases A and C of Table I. The
real part φr(y) of the eigenfunction is rather similar in
the two cases, while the behavior of the imaginary part
φi(y) is substantially different. For case A, with density
ratio r = 1 and viscosity ratio m = 0.1, we observe a
very sharp negative peak in the liquid phase (y < 0) just
across the interface, and a weaker and more round max-
imum in the gas phase (y > 0). The opposite is found
for case C, with density ratio r = 0.1 and viscosity ratio
m = 0.99. There is a very large and round minimum in
the liquid and a sharp but rather small maximum in the
gas. Notice that the imaginary part of the eigenfunction
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FIG. 2. Real (top) and imaginary (bottom) parts of the eigen-
function φ(y) = φr(y) + i φi(y) for cases A and C of Table
I.

changes its sign twice in the gas. The introduction of sur-
face tension, at least in these two cases, does not change
the shape of the eigenfunctions, but simply reduces the
amplitude of its extremum.

C. Growth rates from the linear stability theory and initial
value problem

Let us consider a rectangular domain defined by −L <
y < 0 for the liquid phase and 0 < y < L for the gas
phase, while in the streamwise coordinate x we take the
horizontal length Lx = 2/3L. The basic geometrical
structures in the gerris code are squares, so our com-
putational domain consists of three boxes in the vertical
direction each of them with a maximum of 2562 square
cells. When we use AMR the maximum resolution has
the same grid spacing, i.e. h = Lx/256. We consider an
initial perturbation with a wavelength equal to Lx, then
the wavenumber is α = 2π/Lx, and we change the adi-
mensional wavenumber αδg by varying the gas boundary
layer thickness δg.

The velocity profile at the beginning of the simulation

is the sum of the base profile, Equations (1-2), and a small
perturbation derived from the complex streamfunctions
ψg and ψl given by Equations (7-8)

u(x, y, t = 0) = U(y) + ε
(
Dφr cos(αx)−Dφi sin(αx)

)
,

(21)

v(x, y, t = 0) = ε α
(
φi cos(αx) + φr sin(αx)

)
, (22)

where ε/U∗
g = 10−3 is the amplitude of the perturba-

tion. In the regime of linear growth rate, the results do
not depend on this ratio. Its value is a simple numeri-
cal compromise between an appreciable size of the initial
perturbation with respect to the grid spacing and a large
temporal window of linear growth rate (as shown on the
bottom of Figure 3).

The displacement η of the interface from the base state
is given by the equation

∂tη(x, t) = v(x, y = 0, t) → η(x, t) = i
αc∗ v(x, 0, t)

|αc|2
,

(23)
where the v component of the velocity is evaluated at the
initial time t = 0. The real part of (23) allow us to obtain
the initial interface displacement

η(x, t = 0) =
ε α2

|αc|2
[
ci

(
φi cos(αx) + φr sin(αx)

)
+

cr

(
φr cos(αx)− φi sin(αx)

)]
,

(24)

which is used to initialise the volume fraction field C.
Finally, we consider the harmonic mean of the viscosity

1

µ
=
C

µl
+

1− C
µg

, (25)

because this mean has been shown to give better results
when the interface is parallel to the flow16.

We should remark that the initial sinusoidal displace-
ment of the interface line is calculated from the solution,
expressed as a series of Chebyshev polynomials, of the
eigenvalue problem derived from the linearized Navier-
Stokes equations, while the initial-value code gerris re-
solves the nonlinear Navier-Stokes equations with a fi-
nite volume approach. Furthermore the VOF/PLIC al-
gorithm approximates the interface as a segment in each
mixed cell and the capillary force calculation as well is
affected by numerical errors that cause the well-known
problem of spurious currents. All these issues may be
the source of high-frequency disturbances that interact
nonlinearly with each other and with the initial pertur-
bation, which is the only unstable mode in the spec-
trum. However, these disturbances initially are indeed
very small and they need time to develop appreciably.
Therefore, in our simulations we observe indeed an ini-
tial regime of linear growth rate and, in order to obtain
the temporal evolution of the amplitude of the perturba-
tion, we fit the interface line with the sinusoidal function
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y = a sin(2πx/Lx + b) + c, as shown on the top of Fig-
ure 3, where a, b, c are three free parameters. We then
estimate the growth rate of the instability as the slope
of the amplitude a of the wave as a function of time t on
a linear-log plot, in the region where a linear behavior is
observed, as on the right of Figure 3. This procedure is
applied to the simulation data coming from gerris and
the fixed-grid code surfer27;28.
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FIG. 3. Simulation and fitted profiles of the interface line
(top) and time evolution of its amplitude (bottom). The in-
terface line on the left is at time t ≈ 4 (’+’ on the right plot).

In Figure 4 we compare the numerical results obtained
with gerris and the theoretical growth rates from the
viscous and inviscid linear stability formulations, respec-
tively given by Equations (9-10) and Equations (13-14),
for the four cases of Table I. The simulation results
correctly predict the nondimensional growth rate (α ci)
of the linear stability theory. Notice that the viscous
and inviscid theories predict the same behavior at small
wavenumbers αδg. For case A, characterized by a surface
tension coefficient equal to zero, the average percentage
difference between the growth rates at different αδg from
the two different approaches is about 2 %, while the max-
imum is about 9%. For case B, with the same physical
parameters as case A and with surface tension, the nu-

 0
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gerris case B
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inviscid case D
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FIG. 4. Theoretical and numerical growth rates of the most
unstable mode for cases A and B (top) and C and D (bottom)
of Table I with a spatial resolution of 16511 cells in the gerris
code.

merical and theoretical estimates of the growth rate are
closer to each other and the mean difference goes down
to about 0.8 %. For cases C and D, the results are consis-
tently better. The mean percentage difference between
the growth rates computed from the initial value prob-
lem and the viscous linear stability theory at different
αδg is about 0.45 % without surface tension and 0.6 %
when surface tension is included. Thus we can conclude
that at moderate density and viscosity ratios, the results
obtained with gerris compare favorably with the growth
rates from the linear stability eigenvalue problem.

Both codes, gerris and surfer implement a
direction-split VOF/PLIC algorithm, but they have some
noticeable differences. In surfer the advection and
diffuse terms in the Navier-Stokes equation are dis-
cretized on a staggered grid with a simple centered finite-
difference scheme in space, while the time-integration is
fully explicit and first-order accurate. The surface ten-
sion term is implemented with the continuum-surface-
stress (CSS) approach27 and the Poisson equation for the
pressure is solved with a multigrid technique. In gerris
variables are defined on a collocated grid. The advec-
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code gerris surfer

case 16 32 64 128 256 32 64 128 256

A - 21.33 10.74 3.50 1.5 - 22.87 10.47 5.82

B - 7.30 1.28 0.48 1.04 - 29.43 20.47 13.94

C 3.00 1.17 0.24 0.14 0.09 33.21 16.72 8.63 4.32

D 3.98 1.39 0.76 0.07 0.54 33.49 16.1 8.67 6.19

TABLE III. Percentage difference of the growth rate for the
four cases of Table I between the eigenvalue problem and
the gerris and surfer codes, for grid resolutions nx =
16, 32, 64, 128, 256 and wavenumber αδg = π/2. At the low-
est resolutions we cannot always extract a meaningful growth
rate from the simulation data.

tion term is estimated with a second-order unsplit up-
wind scheme29, with a Crank–Nicholson discretisation of
the viscous term. The continuum-surface force (CSF)
approach30 for the capillary force has been implemented,
with a curvature calculation based on the height func-
tion method. A staggered, second-oder accurate time
discretisation is also considered14.

In Table III we report the percentage difference be-
tween the growth rates of the eigenvalue problem and
the two initial-value codes for αδg = π/2 as a function of
the grid resolution nx, i.e. the number of cells along the
x-coordinate. Although a reasonably good convergence
with the mesh size is obtained with both codes, gerris
always displays a better performance than surfer. With
gerris percentage differences less than 1% are obtained
for the most refined meshes.

The error however ceases to decrease with mesh size in
cases B and D, the two cases with surface tension. Thus
the decrease of the error “saturates” around 1% for ger-
ris . This “saturation” is not observed for surfer, pre-
sumably because the 1% error level has not been reached
with the grid resolutions of the Table. We do not know
the origin of this “saturation”. Because of extensive test-
ing we exclude coding and algorithm errors. There are
several remaining explanations for this kind of error: a)
the numerical method, although properly coded, could be
intrinsically non convergent, b) nonlinear effects could
pollute the measurement of the growth rate obtained
from the linearized equations, c) other linear modes than
the one initialized could pollute the measurements, d)
the time evolution of the base flow creates errors.

We believe that a) is likely: the method may be not
convergent because the surface tension and the density
and viscosity jumps create a singularity on the interface
which is only partially accounted for by our method. For
instance, the methods used for the estimation of the vis-
cous effects do not take into account the fact that the
velocity gradient has a jump. However, the same re-
mark holds for capillary waves, and in that case a better
agreement with theory is reported, of the order of 0,1%
or better14. Nevertheless, it is possible that for a differ-
ent testing procedure, the non-convergence could appear
at higher or lower accuracy. b) Non linear effects should

case m r δl/L δg/L Rel Reg Wel Weg

E 0.01 0.001 1/8 1/8 200 2000 ∞ ∞
F 0.01 0.001 1/8 1/8 20000 2000 100000 100

TABLE IV. Physical and geometrical parameters of the base
flow profiles at large density and viscosity ratios.

show as a progressive deviation from the straight line
in amplitude plots. We have not seen such effects, al-
though at the 1% level they could not be visible. One
option would be to reduce the range of amplitudes in
which the growth rate is measured, but this would also
reduce the accuracy of the growth rate measurement. c)
Other slowly decaying linear modes are present and al-
though we take care to initialize the system purely with
the single unstable mode, some numerical effects trigger
a low-amplitude excitation of the other modes. We some-
what reduced this effect but not completely. d) The time
evolution of the base flow is diminished when the Reynold
number is increased. We did not see a significant change
in the results as the Reynolds number was varied. .

IV. SIMULATIONS WITH LARGE DENSITY AND
VISCOSITY RATIOS

In many pratical applications, the density and viscosity
ratios are large. In this section we present the results
of the eigenvalue problem and the numerical simulations
with gerris for a case where we decrease the viscosity
ratio by one order of magnitude, m = µg/µl = 0.01, and
the density ratio by two orders of magnitude, r = ρg/ρl =
0.001. The surface tension coefficient σ is either zero or
2.5 10−3 J/m2. The value of the other relevant physical
parameters, i.e. ρg, µg, δg and Ug, is that of the previous
section. The dimensionless numbers for these two tests
are given in Table IV.

In Figure 5 we compare the numerical results obtained
with gerris and the theoretical growth rates from the
viscous and inviscid linear stability formulations for the
two cases of Table IV. Despite the large density and
viscosity ratios, the numerical simulations still provide
a good approximation of the growth rate (α ci) of the
most unstable mode. However, we remark the fact that
it is more and more difficult to reproduce the theoreti-
cal results when both the wavenumber α and the surface
tension coefficient σ are increased. Indeed, we reach
a condition where the amplitude of the interface pertur-
bation does not present a regime of linear growth rate,
as in the case of Figure 3, but where the amplitude con-
tinuously oscillates in time and we cannot compute the
growth rate.

An interesting feature of the spectrum of the most un-
stable mode is the separation between the viscous and
inviscid branches as the wavenumber increases, as shown
in the zoomed area of Figure 5. The curvature changes
its sign twice, this being a rather stable feature that does
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FIG. 5. Theoretical and numerical growth rates of the most
unstable mode for cases E and F of Table IV (top) and local
zoom where the viscous and inviscid curves separate from each
other (bottom).

case 32 64 128 256

E - 59.11 27.05 0.13

F - 54.95 14.11 0.05

TABLE V. Percentage difference of the growth rate for the
two cases of Table IV between the eigenvalue problem and
gerris, for maximal grid resolutions nx = 32, 64, 128, 256 and
wavenumber αδg = π/2. At the lowest resolution we cannot
extract a meaningful growth rate from the simulation data.

not depend on the number N of Chebyshev polynomials.
Another important issue of this set of simulations is the

convergence of the growth rate with mesh refinement, as
shown in Table V for αδg = π/2. We observe that the
percentage difference of the growth rate is close to the
value found at moderate density and viscosity ratios only
at the highest resolution, i.e. nx = 256. In order to un-
derstand this behavior we show in Figure 6 the profile
for case E of the real φr and imaginary φi components
of the eigenfunction φ(y). Notice that the eigenfunction
changes very rapidly as it crosses the interface at y = 0
from the liquid (y < 0) to the gas (y > 0) phase. There-
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FIG. 6. Real (top) and imaginary (bottom) components of
the eigenfunction φ(y) for case E of Table IV.

fore, it is necessary to resolve adequately these spatial
variations with approximatively 256 grid cells in order to
have a percentage difference of the order of 1% (see Fig-
ure 6). As an alternative approach, one can also consider
a more refined, adaptive grid near the interface. The ac-
curacy and efficiency of this technique will be discussed
in the next section.

V. EFFICIENCY OF ADAPTIVE MESH REFINEMENT
(AMR)

In the previous section we have pointed out the need
of grid refinement near the interface to resolve very steep
changes of the eigenfunction. In the present section we
investigate the performance of the tree-based amr im-
plemented in gerris. We consider again the four cases
of Table I and a computational domain with three boxes
in the vertical direction each of them with 2562 square
cells, for a total of Nc = 196608 cells with a uniform
mesh. With amr we consider a basic coarse resolution
of 162 cells in each box and allow up to four additional
levels of adaptive refinement, in order to have locally the
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same resolution of the fixed and uniform mesh. We
maintain this high resolution in a wide band around the
interface.

In Table VI, we provide the CPU time T for one hun-
dred time steps of a simulation. With amr we exclude
the first ten steps of the simulation. This is because the
initial step and a few of the following step are at high-
est resolution in the entire domain, while after these few
steps the rid settles to the desired adaptation. This bi-
ases the quantification of the number of cells Nc which
is an important component of the measurements below.
Indeed an interesting measure is the number of cells pro-
cessed in one second, or per-cell speed, defined as

Z =
n Nc

T
, (26)

where Nc is the average number of grid cells and n the
number of time steps. A simulation with amr will have
fewer cells and a smaller CPU time with respect to a uni-
form mesh with the highest resolution, but also a different
per-cell speed. Therefore, it is interesting to compare the
two per-cell velocities by defining their ratio η as the ”ef-
ficiency” of adaptation, η = Zamr/Z. One would expect
that on a uniform grid without amr the per-cell speed
would be higher, but Table VI shows that the opposite
is true: efficiency is larger than one, so that adaptative
simulations are faster by nearly a factor 3/2 on the small
meshes. The reason for this unexpected behavior is cur-
rently under investigation.

code gerris surfer

nx (Nc)amr Tamr Nc T η Nc T

32 1727 3.19 3072 8.97 1.58 3072 0.47

64 4607 11.37 12288 46.29 1.53 12288 1.83

128 16511 50.71 49152 190.54 1.26 49152 8.46

256 62847 212.75 196608 834.25 1.25 196608 32.4

TABLE VI. Average number of cells Nc and CPU times T for
the two codes gerris and surfer, for case A of Table I, with
different grid resolutions nx and wavenumber αδg = π/2.

The results of Table VI show that the per-cell speed
of surfer is approximately 20 times larger than that of
gerris, for a given test case and same mesh. However it
may be more interesting to compare the results at similar
accuracy rather than at the same number of cells. Then
in many cases gerris turns out to be more efficient.

CONCLUSIONS

Numerical simulations of the instability evolution of
a viscous shear layer have been performed with gerris,
an adaptive mesh refinement code based on the Volume
of Fluid method. Good agreement between the growth
rates predicted by the linear eigenvalue problem and the
nonlinear initial-value problem solved by gerris is found

for moderate density and viscosity ratios with a good
convergence with grid refinement.

For large density and viscosity ratios, it is more and
more difficult to compute the growth rate of the insta-
bilities as the wavenumber and the surface tension co-
efficient increase. The main reason for this behavior is
the fact that the complex eigenfunctions develop very
steep gradients near the equilibrium interface and many
grid points are there necessary to resolve adequately the
eigenfunctions. If high accuracy is necessary then amr
is required in these conditions in order to keep the grid
size and the computational time reasonable.
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