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a b s t r a c t

We present a multidimensional Eulerian advection method for interfacial and incompress-
ible flows in two-dimensional Cartesian geometry. In the scheme we advect the grid nodes
backwards along the streamlines to compute the pre-images of the grid lines. These pre-
images are approximated by continuous, piecewise-linear lines. The enforcement of the
discrete version of the incompressibility constraint is a very important issue to determine
correctly the flux polygons and to reduce considerably the integration, discretization and
interpolation numerical errors. The proposed method compares favorably with other pre-
vious multidimensional advection methods as long as the initial interface line is well
reconstructed. Conversely, we show that when the interface is very fragmented the total
numerical error is completely dominated by the reconstruction error and in these condi-
tions it is very difficult to assess which advection scheme is the most reliable one.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Two-phase and free-surface flows are very common in natural processes and industrial applications. Direct numerical
simulations of such flows present severe difficulties related to the discontinuity of physical properties, such as density
and viscosity, across the interface and to the singularity of the capillary force concentrated on the interface. Many methods
have been developed to deal directly with interfaces, such as the front-tracking method [1,2], the volume-of-fluid (VOF)
method [3,4], the level-set (LS) method [5,6] and the phase-field method [7,8]. More recently, a number of methods that cou-
ple two different schemes have been proposed with the aim to combine the strengths of each method. Among others, we can
mention the coupled level-set and VOF method [9,10], the hybrid particle-level-set method [11] and the mixed markers and
volume-of-fluid method [12].

The VOF method is based on a characteristic function vðx; tÞ with value 1 in the region occupied by the reference phase
and 0 where the other phase or vacuum is present. If the two fluids are assumed to be immiscible, the function v does not
change its value as it is passively advected by the flow and satisfies a standard advection equation
Dv
Dt
� ov

ot
þ ðv � rÞv ¼ 0: ð1Þ
The discrete version of v is the so-called color or volume fraction function C representing the fraction of each cell of the com-
putational grid which is occupied by the reference phase. The numerical solution of (1) is far from being simple because the
. All rights reserved.
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function v is discontinuous across the interface. Standard algebraic schemes, such as upwind finite differences, tend to dif-
fuse the interface, therefore geometrical methods are usually adopted to keep the interface sharp.

From the C data the interface is first reconstructed, i.e. an approximated evðx; tÞ distribution is found which satisfies
Ci ¼
Z

Vi

evðx; tÞdV ; ð2Þ
where Vi and Ci are respectively the volume and the volume fraction of the cell i. In the piecewise-linear interface calculation
(VOF/PLIC) the boundary of the ev distribution in each cell is defined by the linear equation m � x ¼ a, where m is the local
interface normal vector and a a constant. The reconstructed interface is then piecewise-linear and in general not continuous
across the boundary of adjacent cells. Reconstruction techniques mainly differ from each other in the way the normal vector
m is computed. In this paper we do not present a new reconstruction method, but use the two-dimensional Puckett’s algo-
rithm [13] in order to compare our results with those obtained using different advection algorithms but the same recon-
struction method. Puckett’s algorithm is based on a second-order iterative method, which minimizes a measure of the
error between the actual volume fractions and those obtained by extending the approximate linear interface from the cell
under investigation to the surrounding 3� 3 block of cells. Detailed reviews and tests of other reconstruction procedures
can be found in [3,14–16].

After the reconstruction, the interface can be advected in either an Eulerian or a Lagrangian fashion. The first approach has
been used mainly for Cartesian grids and it requires a geometrical evaluation of the fluid-volume fluxes across the cell
boundary, which in two dimensions are usually approximated as triangular, rectangular or trapezoidal flux polygons. This
can be accomplished independently along each coordinate direction, with multidimensionality obtained with an opera-
tor-split technique [17,3,18,15], or with unsplit schemes that are more accurate but also geometrically characterized by
more complex fluid fluxes [17,3,19–21]. In the coupled level-set and VOF method (CLSVOF) [9] the level-set function
/ðx; tÞ is given by the signed normal distance from the interface and follows the same advection equation for v
o/
ot
þ ðv � rÞ/ ¼ 0: ð3Þ
Strictly speaking this equation is satisfied only by the interface line where / ¼ 0. An Eulerian advection is performed with a
split scheme, to update the values at the next discrete time of the level-set and volume fraction scalar functions, by comput-
ing the fluxes of v and / across the cell edges. Fluid-volume fluxes are rather involved in unstructured triangular cells, but
Lagrangian–Eulerian advection methods, consisting in a Lagrangian advection of the interface and a projection onto the fixed
grid, could be a promising alternative [22,23]. This technique has been coupled to a level-set method and extended to adap-
tive unstructured grids (ACLSVOF) [10]. In the hybrid particle-level-set method [11] an Eulerian level-set method has been
combined with Lagrangian particles to perform interface reconstruction in under-resolved regions of the interface, while in
the mixed markers and volume-of-fluid method [12] interfacial makers are used together with a VOF scheme. We should
also mention the polygonal area mapping method, an interface tracking method, where the cell boundary is traced back
along the streamlines to update the reference phase boundary via polygon-clippings [24].

In this paper we present an unsplit advection scheme in two-dimensional domains partitioned with a Cartesian mesh,
where we combine both the Eulerian and Lagrangian approaches [25]. We compute the fluid fluxes across the cell boundary
by enforcing the incompressibility condition as in a standard Eulerian advection, but the flux polygons are defined by advect-
ing backwards in time the grid nodes along the streamlines [26]. The pre-image of the grid nodes and the flux polygons are
computed with a geometrical predictor–corrector technique in order to define continuous piecewise-linear lines that in the
time step Dt will be mapped to the grid lines. The technique is applied in this paper to the advection of the characteristic
function v, but it can be used to advect the signed distance function / as well.

We begin in Section 2 with a quick review of a few unsplit advection algorithms for the volume fraction function and then
discuss in Section 3 the geometrical predictor–corrector advection (GPCA) scheme. In Section 4 we present a few results and
compare the performance of several advection schemes. Finally we present our conclusions.
2. Multidimensional Eulerian advection schemes

We consider the advection Eq. (1) for the characteristic function v and add to both sides the term vr � v, which is iden-
tically equal to zero if the flow is incompressible, to get
ov
ot
þr � ðvvÞ ¼ vr � v ¼ 0: ð4Þ
Furthermore, we consider a standard two-dimensional MAC grid with square cells of side h [27], where the discrete diver-
gence-free condition becomes uþ � u� þ vþ � v� ¼ 0, as shown in Fig. 1(a). We multiply this expression by the time step
Dt ¼ tnþ1 � tn and the cell side h in order to obtain the following relation among the fluid fluxes F that leave and enter
the cell through its boundary
Fþx � F�x þ Fþy � F�y ¼ uþDt h� u�Dt hþ vþDt h� v�Dt h ¼ 0: ð5Þ
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Fig. 1. Unsplit Eulerian advection: (a) concurrent split advection on a staggered MAC cell; (b) the velocity components determine directly the flux polygon
1–2–3–4 [3]; (c) the interpolated velocity at vertices 1 and 2 determines the slope of the sides 2–3, 1–4, while edge 30–40 is moved to 3–4 by enforcing area
conservation [21].
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As long as the fluid fluxes F satisfy expression (5) the incompressibility relation is also satisfied and the total fluid area, or
equivalently its mass, is conserved. We now integrate (4) in space over the area of the square cell ði; jÞ and in time with a
forward scheme and, by assuming that the discrete incompressibility condition is exactly satisfied, we get
h2ðCnþ1
ij � Cn

ijÞ ¼ �ðU
þ
x �U�x þUþy �U�y Þ; ð6Þ
where U is the reference-phase flux across the cell boundary. For example in Fig. 1(a), the total fluid area, including both
phase 1 and phase 2, that in the time Dt will flow through the right side 1–2 is Fþx ¼ uþDt h and is represented by the rect-
angle 1–2–3–4, where the length of side 2–3 is uþDt, while Uþx is given by the grey part of this area which is occupied by the
reference phase.

We now discuss briefly three fluxing schemes of increasing accuracy to show how the Eulerian unsplit advection has
evolved over the last several years. The first (naive) method shown in Fig. 1(a) satisfies the discrete incompressibility con-
dition, but it ignores completely the multidimensionality of the flow by approximating F through a cell side with a rectan-
gular region as in a split monodimensional advection. As a result some area is fluxed twice, as the darker grey area in
Fig. 1(a). In these conditions it is straightforward to show that the volume fraction data may develop overshoots, C > 1,
or undershoots, C < 0. Furthermore, there is no flux in the diagonal direction through vertex 1 and the interface line rapidly
develops numerical oscillations.

In the scheme proposed by Rider and Kothe (RK) [3] the rectangular flux Fþx ¼ uþDt h of the naive method is deformed into
a trapezoid by including two right-angled triangles that take into account the multidimensionality of the flow. In the recon-
struction of the fluxing area the velocity field components, which are defined on a MAC cell, are used directly, as in Fig. 1(b)
where the height of the triangle added on the top side of the cell is j3� aj ¼ jvþjDt, while that of the triangle removed from
the bottom side is j4� cj ¼ jv�jDt, since both vþ and v� are negative. However, since the velocity field varies from point to
point in general vþ – v� and Fþx – uþDt h. As a result the relation (5) is not satisfied and the total fluid flux entering the cell
from its boundary may be smaller or bigger than the outgoing one. Another problem associated with this scheme is that
some area may be fluxed twice, as depicted in Fig. 1(b). To reduce the negative effects of these issues the authors have pro-
posed an algebraic approach by retaining the divergence term in the r.h.s. of (4), thus solving the discretized form
h2ðCnþ1
ij � Cn

ijÞ ¼ �ðU
þ
x �U�x þUþy �U�y Þ þ eC ijðFþx � F�x þ Fþy � F�y Þ; ð7Þ
where eCij may be an intermediate value of the volume fraction, say eCij ¼ ðCnþ1
ij þ Cn

ijÞ=2. Finally, the volume fraction may be
locally redistributed whenever C > 1 or C < 0. Alternatively, it is possible to change the area of trapezoid 1–2–3–4, by mov-
ing the side 3–4 parallel to itself until the spanned area is equal to Fþx of expression (5). Then the divergence correction on the
r.h.s. of the discrete equation (7) is identically zero. This second scheme has been implemented by Lopez et al. [21], however
they show that for standard kinematic tests one approach is not always better than the other one. We will come back to this
issue in the results section.

In the edge-matched flux polygon advection (EMFPA) [21] the velocity field is first linearly interpolated to the cell ver-
tices. For example in the MAC cell ði; jÞ of Fig. 1, if we denote with the indices ðiþ 1=2; jÞ the velocity uþ in the midpoint
of the right side of the cell, then the interpolated horizontal component of the velocity at vertex 2 is simply given by
u2 ¼ uiþ1=2;jþ1=2 ¼ ðuiþ1=2;j þ uiþ1=2;jþ1Þ=2, the vertical component v2 is computed in an analogous way. The straight line parallel
to the velocity vector v2 ¼ ðu2; v2Þ approximates the characteristic curve (in other words the fluid–particle trajectory)
through vertex 2. This point is linearly advected backwards along the streamline for a distance jv2jDt to determine point
30 of Fig. 1(c). Similarly, point 40 is computed by moving backwards vertex 1 along the local linearly-approximated streamline
for the distance jv1jDt. The slope of the segment 30–40 is then clearly



Fig. 2.
backwa
enforcin

A. Cervone et al. / Journal of Computational Physics 228 (2009) 406–419 409
dx
dy

� �
3040
¼ x2 � x1 � ðu2 � u1ÞDt

y2 � y1 � ðv2 � v1ÞDt
; ð8Þ
but the area of the resulting trapezoid 1–2–30–40 in general is not equal to Fþx , therefore the segment 30–40 is moved parallel
to itself to 3–4 to get the correct area of the flux polygon. By construction no area is fluxed twice and in each cell the incom-
ing fluid area is always equal to the outgoing one as long as the discrete velocity field is divergence-free. There are a few
minor problems with this scheme as well. Notice that in Fig. 1(c) the reconstruction of two consecutive flux polygons is
not continuous at point 4. Furthermore, as the one-dimensional CFL number, jujDt=h or jvjDt=h, gets close to its limiting value
which is equal to 1, point 4 may move outside the cell ði; jÞ or point 3 out of ði; jþ 1Þ: both occurrences lead to inconsisten-
cies. To overcome these problems we have developed a new advection scheme that will be discussed in the next section.

3. The geometrical predictor–corrector advection (GPCA) scheme

In this new scheme we require the flux polygons to satisfy the incompressibility relation (5) and their boundary line to be
continuous between two consecutive polygons. To this aim we first determine with a geometrical predictor–corrector tech-
nique the points that in the time step Dt will be advected along the streamlines to the cell vertices. Then we connect two
consecutive points by enforcing area conservation and by keeping the shape of the resulting polygon rather simple, in par-
ticular the union of a triangle and of a trapezoid, as the shapes 2–3–a and 2–a–4–1 of Fig. 1(b).

3.1. Discrete velocity field and pre-image of the grid lines

To ensure that the discrete incompressibility condition is satisfied to machine accuracy, we compute the velocity field
components u and v on the staggered MAC grid of Fig. 1(a) from an analytical stream function wðx; yÞ, with u ¼ �ow=oy
and v ¼ ow=ox and use centered finite differences to approximate the derivatives. For example, the horizontal component
of the velocity placed in the midpoint of the right side of the cell ði; jÞ is given by uiþ1=2;j ¼ �ðwiþ1=2;jþ1=2 � wiþ1=2;j�1=2Þ=h.
We then interpolate linearly the velocity field from the sides to the vertices of each cell [28], in particular in the top-right
corner of the same cell we have uiþ1=2;jþ1=2 ¼ ðuiþ1=2;jþ1 þ uiþ1=2;jÞ=2 ¼ �ðwiþ1=2;jþ3=2 � wiþ1=2;j�1=2Þ=ð2hÞ, therefore the velocity
components on the cell vertices are obtained from w with centered finite differences with a grid spacing of 2h.

In order to describe the main features of the geometrical advection scheme we consider the velocity field from the single-
vortex test of Section 4.1. In particular the bottom-left cell of Figs. 2 and 4 correspond to the cell of Fig. 6 that includes the
point with coordinates (0.3,0.6). In Fig. 2 we use nondimensional variables, so that the side of the square cells is equal to 1
and the local maximum CFL number is about 0.85. The dashed lines are the exact pre-images of the grid lines and the points
where these lines intersect each other will be advected in time Dt to the grid nodes by flowing along the streamlines, which
are shown in the figure as dotted lines. In practice, all these lines have been computed numerically from a given analytical
velocity field with a fourth-order Runge–Kutta integration scheme, where the time step Dt has been subdivided several times
until we reach convergence to a degree that cannot be distinguished in the figure (for example six decimal digits).
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3.2. Position of the points mapped onto the cell vertices

On a staggered MAC grid we first interpolate linearly the velocity components from the cell sides to the cell vertices. We
then trace backwards along the streamline for the time Dt to compute the pre-image of each cell vertex with a geometrical
predictor–corrector method.

3.2.1. Predictor step
Vertex 1 of Fig. 2 is traced back to point A with a simple predictor–corrector integration scheme but with three subdivi-

sions of Dt, thus going through points 10 and 100 before reaching A. The local value of the velocity is computed with a bilinear
interpolation from the velocity at the cell vertices. At the end of the predictor step we have then computed the position of the
points, such as A, B, C of Fig. 2, that will be mapped to the cell vertices.

3.2.2. Corrector step
We adjust the position of the computed points with the following scheme. The area of the trapezoid 1–2–B–A in general is

not equal to the total fluid flux Fþx leaving the top-left cell from the side 1–2. We then move the side B–A to B0–A0 in a parallel
way until this condition is satisfied. Similarly, we move the side C–A of the trapezoid 1–3–C–A to C00–A00 so that the area of 1–
3–C00–A00 is equal to the fluid flux Fþy leaving the bottom-right cell through side 1–3. The position of the two points A0 and A00,
which are aligned with A and vertex 1, can be seen in the zoomed area of Fig. 3(a). We conclude the corrector step by select-
ing one of the two points A0 and A00. Our aim is to distribute the area correction homogeneously along the boundary of the
flux polygon, therefore we select A� between A0 and A00 so that
0

Fig. 3.
near A
show th
jA—A�j ¼ MINðjA—A0j; jA—A00jÞ: ð9Þ
In this way, if an area correction is still necessary, it will be distributed along the boundary line connecting two consecutive
pre-image points, such as A� and B�.

Finally, if we consider an integration scheme backwards along the streamline with a fractional time step, we can also save
the position of the last point before A, such as 100 of Fig. 2 and add the correction jA—A�j along the segment 100–A rather then
1–A. The final result does not change in a dramatic way, as shown in Fig. 3(a), but it is a bit smoother with little computa-
tional effort. At the end of this corrector step we have defined a set of pre-image points, such as A*, B*, C* of Fig. 4, each of
them corresponding in time Dt to a different cell vertex.

3.3. Flux polygons

In the final step of the proposed scheme we determine the flux polygons, again with a predictor–corrector technique.

3.3.1. Predictor step
We compute the area of the trapezoid based on two consecutive pre-image points, such as A* and B* of Fig. 4 and the cor-

responding vertices 1 and 2.
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3.3.2. Corrector step
This area usually is not equal to the total fluid flux Fþx through the cell side 1–2, therefore we move the intersection of the

segment A*–B* with the horizontal grid line of Fig. 4 to point D, so that the area of the polygon 1–2–B*–D–A* is equal to Fþx .
As anticipated, the area of the flux polygon is the union of a triangle, 1–D–A*, and a trapezoid, 1–2–B*–D. Similarly, the

area of the flux polygon 1–3–C*–E–A* is equal to the fluid flux Fþy through the cell side 1–3. The set of four consecutive seg-
ments B*–D, D–A*, A*–E and E–C* is our final approximation to the two curved lines that in the time step Dt will be mapped to
the two cell sides 1–2 and 1–3.

The shape of the flux polygons can change considerably if we consider a velocity field with non-uniform vorticity. In Fig. 5
we show a few different cases: on the left the standard flux polygon similar to that of Fig. 4, in the central case the fluxing
area is defined across two horizontal cells because of the clockwise rotation of the flow around a point on the right side of the
cell, finally in the third case the horizontal component of the velocity changes its sign and the flux polygon cuts three dif-
ferent cells. By considering the intersections of the polygon sides with the grid lines the fluxing area can be easily subdivided
in triangles, as shown in Fig. 5. Therefore to compute the reference phase fluxes we use a single routine that determines the
area of a triangle that is cut by interface which is approximated in each cell by an oriented segment [10]. Because of this
feature, the methodology can be directly extended to unstructured grids.

3.4. A geometrical representation of the numerical errors

If we consider a translational velocity field on a Cartesian grid with square cells, then the fluxing areas are given by poly-
gons that are computed exactly by this and other schemes as well [21]. However, in a vortical flow a few integration errors
are always present and in this section we discuss how relevant they are by considering again the single-vortex velocity field
of Figs. 2–4. We point out that the local CFL number is about 0.85 and that for this test the maximum variation of the one-
Fig. 5. Three different shapes of the flux polygon through the right side of a cell: (a) in the standard case the flux polygon is inside two consecutive vertical
cells; (b) close to an instantaneous center of rotation the flux polygon may be defined across two horizontal cells; (c) when the horizontal component of the
velocity changes its sign, the polygon may intersect three different cells. To compute the reference phase fluxes the polygons are subdivided in triangles
(dashed lines).
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dimensional CFL number is from zero to one in just three cells. As a matter of fact, this is a rather severe test and the errors
can be considered as an upper limit for actual dynamical simulations. Furthermore, to simplify the analysis we assume that
the total numerical error is made up by several independent terms.

A first contribution comes from the integration scheme to trace back the cell vertices along the streamline for the time Dt.
Near point A in Fig. 3(a), which is aligned with A0 and A00, there are actually two more points, as shown in Fig. 3(b). The right-
most one Apc has been obtained with a single predictor–corrector step, the central one is point A of our scheme obtained by
subdividing Dt in three equal parts and by using the same predictor–corrector technique in each fractional step. The leftmost
one Ark has been obtained with a fourth-order Runge–Kutta method and four equal subdivisions of the time step. The last
two positions almost overlap, jA—Arkj=j1—Aj < 5� 10�4, and the contribution to the total error of the integration along
the streamline is very small. We have chosen the predictor–corrector integration with three fractional steps as a satisfactory
compromise between accuracy and efficiency. This method also gives us a good estimate near the endpoint A of the tangent
along which we add the correction jA—A�j, as discussed at the end of Section 3.2 and shown in Fig. 3(a).

A second contribution is a discretization error. We have computed the velocity field components on the staggered MAC
grid with centered finite differences of the stream function in order to satisfy the discrete divergence-free condition and then
we have linearly interpolated these values to the cell vertices. If we consider the analytical value of the velocity at the cell
vertices, but with the same integration and interpolation schemes, we now end up at point X of Fig. 3(a). The length of the
segment A–X is then a measure of the discretization error for this case.

A further contribution is an interpolation error. We compute the velocity values inside the cell from the numerical values
at the cell vertices with a bilinear interpolation, that guarantees that the velocity field is continuous everywhere but it does
not satisfy locally the divergence-free condition. If we integrate along the streamline as for the pre-image of the grid lines
with a fourth-order Runge–Kutta integration scheme, several subdivisions of the time step Dt and with the analytical value
of the local velocity we reach point Y of Fig. 3(a) and the length of the segment X–Y is then a measure of the interpolation
error. The discretization and interpolation errors are comparable in size and larger than the integration error.

However, at the end of our geometrical predictor–corrector scheme, the three pre-images A*, B* and C* of vertices 1, 2 and
3 of Fig. 4 are very close to the exact values. The fractional increase of area from the initial trapezoid 1–2–B–A to the final one
1–2–B*–A* can be as high as 10%. Therefore, a strict enforcement of the divergence-free condition is indeed very important to
compute accurately the pre-images of the grid nodes.

Up to now we have considered a time-independent velocity field. Time dependent errors should not be very important
because of the strong limitations on the time step due to numerical stability requirements. They can also be reduced by con-
sidering the velocity field at the intermediate time level nþ 1=2 or by interpolating it linearly between the two consecutive
time levels n and nþ 1.

As a final issue we point out that in the approximation of the flux regions we connect A* to vertex 1 with a straight line,
however the streamline through these two points is curved (this is the dotted line of Fig. 4 connecting A* and 1). The area
comprised between these two lines is an error that enters as an extra positive contribution to the fluxing area through side
1–2. The opposite is true for the area between the straight line and the streamline connecting B* and 2. Because of the spatial
variation of the velocity field these two opposite contributions do not cancel out, in particular in Fig. 4 the first positive con-
tribution is larger than the second negative one. As a result, the segment B*–D needs to be on the right of the exact line, so
that the area between the two consecutive segments B*–D and D–A* and the dashed line B*–A* cancels out this net positive
contribution and the total flux through side 1–2 is equal to Fþx . This last error is of the order of 1% at most and it is the main
source of the difference between our piecewise-linear reconstruction of the fluxing areas and the pre-images of the grid
lines. It is possible to reduce it by approximating the area between the streamline and the segment connecting A* to 1, or
B* to 2, with a triangle, but we have not implemented such a scheme. Finally, notice that in Fig. 4 the area of these two oppo-
site contributions for the vertical flux Fþy is almost the same, and the segment A*–E is now a rather good approximation as it
intersects twice the exact dashed line.
4. Flux polygon reconstruction and volume fraction advection tests

We now consider two standard analytical velocity fields with non-uniform vorticity, namely the single-vortex test and
the deformation field. The aim is to check how the geometrical method approximates the fluid areas that are flowing through
the grid cell boundary and to compare them with the approximations from the two other Eulerian schemes previously men-
tioned. We then present results for the advection of the volume fraction function only for two standard benchmark tests,
namely the Rudman–Zalesak slotted disk rotation test and the Rider–Kothe reversed single-vortex test, in order to point
out the main differences with other state-of-the-art VOF methods.

4.1. Flux polygon reconstruction tests

In this first we focus our analysis on the comparison of the flux polygons computed by different advection schemes with
the exact fluid fluxes. In the single-vortex the velocity field is determined by the stream function
wðx; yÞ ¼ 1
p

sin2ðpxÞ sin2ðpyÞ; ð10Þ
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and with u ¼ �ow=oy and v ¼ ow=ox the flow rotates in the clockwise direction. The computational domain is a unit square
½0;1� � ½0;1� partitioned with square cells of side h ¼ 1=n, where n is the number of cells along each coordinate direction. In
Fig. 6 we show the grid lines of the top-left quadrant with n ¼ 12, their pre-images obtained by a backward advection along
the streamlines of (10) and the portion of the streamlines covered by the pre-images of the points in their motion towards
the cell vertices. In the same figure we depict the flux polygons of the three advection schemes previously described, namely
the RK, EMFPA and GPCA algorithms. As seen in Fig. 6 when the vortex is resolved with 12 cells across its diameter the max-
imum variation of the one-dimensional CFL number is from zero to one in just three cells. The RK algorithm is clearly dis-
continuous and many flux polygons overlap. The EMFPA scheme presents difficulties in the cells marked by the symbol ‘�’,
where the corrected flux polygon 1–2–3–4 of Fig. 1(c) will have either point 3 or 4, or both, out of their cell, corresponding to
a CFL greater than 1. There are also a few instances where the two sides 1–4 and 2–3 intersect each other, but the area of the
resulting triangle is smaller than the flux F, hence the problem has no geometrical solution. In both cases we draw only the
flux polygon which is equivalent to 1–2–30–40 of Fig. 1(c). We will discuss in the next section the solution suggested in [21] to
go around this problem. The flux polygons computed with the new geometrical predictor–corrector algorithm always satisfy
the CFL condition and are very close to the exact solution. Finally, we consider the same test but with the maximum CFL
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Fig. 6. Single-vortex: grid lines of the top-left quadrant with n = 12, their pre-image when max(CFL) = 1 (thick solid lines) and streamline through grid
nodes (dashed lines) (top-left); RK algorithm with the flux polygons through the horizontal (solid lines) and vertical (dashed lines) cell sides (top-right);
EMFPA (bottom-left) and GPCA (bottom-right) flux polygons (solid lines) and exact pre-image of the grid lines (dashed lines). The boxed area in the top-left
figure is Fig. 2.
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number equal to 0:5 to show in Fig. 7 the major differences between the EMFPA and GPCA schemes at a CFL number closer to
those found in actual dynamical simulations.

For the deformation field test we consider the stream function
Fig. 7.
flux po

Fig. 8.
pre-ima
wðx; yÞ ¼ 1
4p

sinð4pxÞ sinð4pyÞ; ð11Þ
that describes in the same computational domain as the previous test a matrix of 4� 4 square counter-rotating vortices. We
now consider n ¼ 1=h ¼ 32 so that each vortex is inside a little square with eight cells along each side. In Fig. 8 we show the
rectangular computational grid that contains two consecutive vortices in the horizontal direction. In the figure we also show
the pre-images of the grid lines computed numerically both with the analytical velocity field and with the GPCA scheme
from the discrete velocity values on the MAC grid. Again, the flux polygons approximate rather well the exact fluxing areas.
Notice that even if each vortex is defined inside a square with only eight cells per side, the velocity along its boundary is not
zero and the maximum variation of the CFL number is now equal to one across 4 cells. However, the deformation test case
has counter-rotating vortices which allow for more complex cell acceptance and donor fluxing characteristics than the sin-
gle-vortex test.

We finally set n ¼ 31, so that the horizontal line y ¼ 0:5 does not coincide with a grid line. In Fig. 9 we show a portion of
the computational grid around y ¼ 0:5 and the computed pre-image lines. The flow is of course incompressible, but from left
to right it is first converging towards the horizontal direction and then it diverges. In this case the central leftmost cell is
accepting fluid through its left side from three consecutive vertical cells, the opposite is true for the central rightmost cell
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Single-vortex test: a box with four grid cells of the top-left quadrant with n ¼ 12, pre-images inside the box when max(CFL) = 0.5 (dashed lines) and
lygons inside the box (solid lines) computed by EMFPA (left) and GPCA (right).
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Two horizontal vortices of the deformation field test (that on the left rotates in the counterclockwise direction) with n ¼ 32 and max(CFL) = 1: exact
ges (dashed lines), their approximation by GPCA (solid lines) and a part of the streamline through the grid nodes (thin dashed lines).
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streamline through the grid nodes (thin dashed lines), showing a convergent-divergent behaviour towards the horizontal line y ¼ 0:5.
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which is donating fluid through its right side to three consecutive vertical cells. These two cases define the most complex flux
polygon structures in two dimensions.

4.2. Rudman–Zalesak slotted disk rotation test

In this test a slotted disk is advected by a uniform vorticity field. The test was first introduced by Zalesak [29] and the
version described in [30] is often used to check the performance of an interface capturing method. A square of side equal
to 4 is divided in 200� 200 square grid cells. The diameter of the circle is 50 mesh cells and the slot width is 6 cells. The
circle center is initially at (2.0,2.75) and the velocity components of the solid-body rotation are derived from the following
stream function:
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Fig. 10. Rudman–Zalesak slotted disk rotation test: initial (thin solid line) and final (thick solid line) interface profiles.



Table 1
Geometrical error as defined in (13) in the slotted disk rotation test for different reconstruction and advection algorithms

Reconstruction/advection algorithms E

Youngs [30] 1.09 � 10�2

Puckett/Stream [19] 1.00 � 10�2

Puckett/DDR [20] 1.50 � 10�2

Puckett/EMFPA [21] 9.73 � 10�3

Puckett/GPCA 9.79 � 10�3
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wðx; yÞ ¼ �x
2
½ðx� x0Þ2 þ ðy� y0Þ

2�; ð12Þ
with ðx0; y0Þ ¼ ð2:;2:Þ. The angular velocity x is such that a full revolution is completed in 2524 steps, corresponding to a
maximum CFL number of about 0.25. For this test the geometrical error E is usually calculated as
E ¼
P

i;j CT
i;j � C0

i;j

��� ���P
i;jC

0
i;j

; ð13Þ
where C0
i;j, CT

i;j are the initial and final volume fraction values at cell ði; jÞ. The mass/area error is of the order of machine accu-
racy, since the discrete divergence-free condition is always satisfied. For comparison with other advection schemes we have
implemented Puckett’s reconstruction method [13] which performs a bit better than the ELVIRA reconstruction when the
interface has a local radius of curvature smaller than the grid spacing [14]. The geometrical errors of (13) are given in Table
1 for different combinations of reconstruction/advection schemes but for the same grid resolution. We basically recover the
same results of EMFPA scheme, since the flux polygons for this test, a solid-body rotation with relatively small CFL numbers,
are very similar and the geometrical error is mainly concentrated near the sharp edges of the disk (see Fig. 10).

4.3. Rider–Kothe reversed single-vortex test

In this test a circular body of radius 0.15 and center at point ð0:5;0:75Þ is advected by the velocity field derived by the
stream function wðx; yÞ of (10). The computational domain is a unit square box and the velocity field is zero on its boundary.
The stream function is modulated in time by the temporal factor cosðpt=TÞ, where T is the period [31]. The fluid body is
stretched by the flow, reaching a maximum deformation at time t ¼ T=2 and then it goes back to its initial position at
t ¼ T. The geometrical error E at grid spacing h ¼ 1=n and the order of convergence O, between the two resolutions n and
2n, are calculated as
EðhÞ ¼ h2
Xn

i¼1

Xn

j¼1

jCT
i;j—C0

i;jj; O ¼ lnðEðhÞ=Eðh=2ÞÞ
lnð2Þ ; ð14Þ
with C0
i;j, CT

i;j the initial and final volume fraction values at cell ði; jÞ, while the mass/area error is of the order of machine accu-
racy, since the discrete divergence-free condition is always satisfied. In Fig. 11 we show the reconstructed interface at times
t ¼ T=2; T obtained with two different grid resolutions, n ¼ 32;128. The geometrical errors of (14) are reported in Table 2 for
the three advection tests described in the previous sections. With the smallest period T ¼ 0:5 the body is deformed by the
flow, but the exact local radius of curvature remains always larger than the cell size and the interface is always numerically
well resolved. To quantify this statement we have calculated the jump of the interface reconstruction at the boundary of two
consecutive cells. This calculation has been performed for all mixed cells at every time step and we have found that the max-
imum of the computed discontinuity remains always Oðh2Þ. In these conditions the GPCA scheme performs slightly better
than the other two advection algorithms.

With period T ¼ 2 and at halftime as seen in Fig. 11, the deformed fluid body is poorly reconstructed near the head and
the tail of the spiral, where the local curvature is comparable or even smaller than the grid spacing 1=h and the discontinuity
at the cell boundary is now OðhÞ. In these conditions it is not difficult to devise a situation where an approximation in the
reference phase flux calculation can actually be more accurate than the GPCA scheme. More particularly, we recall that in
Fig. 1(c), when the CFL number is close to 1, point 3 may move out of the cell ði; jþ 1Þ. In these conditions the EMFPA algo-
rithm computes the reference phase flux inside the polygon P = 1–2–30–40 and then corrects it by a factor R, which is equal to
the ratio of the exact total fluid area Fþx to the area of P, R ¼ Fþx =P > 1. Now suppose that in Fig. 12(a) the segment 30–40 of the
flux polygon coincides with the interface line. If the corrected point 3 goes out of its cell, the reference phase flux through the
right side of the cell is estimated by multiplying the area of the polygon P by the factor R > 1, then its value is overestimated.
This is not the case for the GPCA scheme, which is not subject to this problem. Therefore when the reconstruction is close
enough to the interface line, GPCA should perform better than the other two schemes, as in the results of Table 2 with
T ¼ 0:5.

Consider now Fig. 12(b) which is similar to Fig. 12(a), except that the interface line 30–40 is poorly reconstructed by the
segment S–T, with A1 ¼ A2 because of area conservation. The two jumps at the cell boundary between the interface line and
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Fig. 11. Single-vortex test with period T = 2 and max(CFL) = 1: the exact and reconstructed interfaces at t ¼ T=2 (left) and t ¼ T (right). In both figures the
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Table 2
Geometrical error E and order of convergence O in the reversed single-vortex test for different periods T, grid resolution n and advection algorithms

n T = 0.5 T = 2.

GPCA EMFPA RK GPCA EMFPA RK

32 E 4.12 � 10�4 4.45 � 10�4 7.29 � 10�4 2.18 � 10�3 2.14 � 10�3 2.36 � 10�3

(O) (2.41) (2.48) (2.36) (2.05) (1.99) (2.01)

64 E 7.32 � 10�5 7.99 � 10�5 1.42 � 10�4 5.32 � 10�4 5.39 � 10�4 5.85 � 10�4

(O) (1.93) (1.97) (1.86) (2.03) (2.06) (2.16)

128 E 1.93 � 10�5 2.04 � 10�5 3.90 � 10�5 1.29 � 10�4 1.29 � 10�4 1.31 � 10�4
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Fig. 12. The performance of a fluxing scheme is strongly affected by the reconstruction: (a) the interface line 30–40 coincides with a side of the fluxing
polygon 1–2–30–40 of area P, the corrected point 3 of the EMFPA scheme is out of the cell and the flux P R, with R > 1, overstimates the actual reference phase
flux; (b) the interface line is poorly reconstruced by the segment S–T, in this case the approximation in the EMFPA scheme fluxes more efficiently than the
continuous GPCA scheme (thin solid line).
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its approximation are clearly OðhÞ and they are given by the two distances 30-T and 40-S. With the EMFPA scheme the initial
reference phase defect is equal to A2, however as we multiply it by the factor R, we obtain a final flux which is larger than the
one computed by the GPCA scheme and closer to the exact value. The reason for this result is that as we move from point S0

towards the bottom-left cell vertex, the fraction of the cell height h which is occupied by the reference phase decreases pro-
gressively. Notice that by increasing the spatial resolution n we increase the number of cells where the local CFL number is
close to 1, both in space and in time because of the cosinusoidal time modulation of the stream function. Therefore, the num-
ber of cells where this situation may occur increases with the resolution. In practice, it is possible to devise situations where
because of the poor local interface reconstruction, the EMFPA and RK algorithms may locally flux better than a continuous



Table 3
Geometrical error as defined in (14) for different advection algorithms in the reversed single-vortex test for T ¼ 8 and grid resolution 128� 128

Reconstruction/advection algorithm E

Puckett/Rider and Kothe [3] 1.44 � 10�3

Puckett/Stream [19] 1.18 � 10�3

Puckett/EMFPA [21] 1.17 � 10�3

Puckett/GPCA 1.17 � 10�3
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fluxing scheme such as GPCA, even if the boundary of two consecutive flux polygons is not continuous or there are overlap-
ping regions.

In view of this discussion, the results of Table 2 at T ¼ 2 show that we are more or less at the limit of the accuracy that can
be achieved with Puckett’s method when the interface is highly deformed, in other terms a much more refined grid is re-
quired near the tail of the spiral to appreciate the differences among the different advection algorithms. Smoothing of the
interface normal can improve the performance of a combined reconstruction and advection algorithm where the interface
is already rather regular [3,21]. However, in regions of very high curvature or in the presence of filaments, whose thickness
is comparable to the grid spacing, adaptive mesh refinement and/or multiple segment reconstruction are required to im-
prove the performance of VOF methods.

The period T ¼ 2 is still too early to sufficiently test a VOF method. For this reason we perform the single-vortex test for
the longer period T ¼ 8. The numerical breakup of the interface is completely dominated by the reconstruction algorithm
which fails to approximate adequately high curvature regions and filament structures. In Table 3 we show the results on
a grid with 128� 128 cells. At lower resolutions, the interface line breaks in several pieces because the tail of the spiral be-
comes thinner than the edge h and the different fluxing schemes may locally perform better or worse with respect to one
another because of random favorable alignments of the reconstructed interface and the flux polygons. Front-tracking meth-
ods with interfacial points can approximate the interface in each mixed cell by an ordered sequence of segments and can
represent thin filaments and high curvature regions very precisely. In this test the interface usually does not break up
and the geometric error is one to two orders of magnitude smaller than the corresponding value of VOF methods [32,24].
Finally, we have compared the CPU time of the single-vortex test for T ¼ 8 and 128� 128 cells consumed by the GPCA meth-
od and the unsplit Eulerian–Lagrangian advection P of [15], the latter being computationally very efficient because it is char-
acterized by simple rectangular boundary fluxes. We have found that the GCPA method requires about twice the CPU time of
P, which we consider a satisfactory result given the complexity of the flux polygons.

5. Conclusions

We have developed a multidimensional Eulerian advection method in two-dimensional Cartesian geometry and we have
applied it to follow the evolution of the volume fraction function. The scheme is based on an accurate computation of the
pre-images of the grid lines that are approximated by continuous, piecewise-linear lines. The enforcement of the discrete
version of the incompressibility constraint is a key issue to reduce considerably the total numerical error. The proposed
method compares favorably with other previous multidimensional advection methods as long as the interface line is well
reconstructed. We have also found that when the interface is very fragmented the total numerical error is completely dom-
inated by the reconstruction error and in these conditions it is very difficult to assess which advection scheme is the most
reliable one.
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