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Abstract

We perform numerical simulations of two-phase liquid-gas sheared

layers, with the objective of studying atomization. The Navier-Stokes

equations for two-dimensional incompressible flow are solved in a pe-

riodic domain. A Volume of Fluid (VOF) method is used to track the

interface. The density ratio is kept around 10. The calculations show

good agreement with a fully viscous Orr-Sommerfeld linear theory
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over several orders of magnitude of interface growth. The nonlinear

development shows the growth of finger-like structures, or ligaments,

and the detachment of droplets. The effect of the Weber and Reynolds

numbers, the boundary layer width and the initial perturbation am-

plitude are discussed through a number of typical cases. Inversion of

the liquid boundary layer is shown to yield more readily ligaments

bending upwards and thus more likely to produce droplets.
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1 Introduction

A strong gas flow parallel to a liquid-gas interface tends to shatter it into

small droplets. Wind, when of enough magnitude, will strip droplets from

wave crests. Many industrial atomization processes rely on the atomization of

fast liquid jets into droplets. This spray formation process is of considerable

importance in combustion technology. A case in point is air-blast atomization

devices (Lefebvre, 1989) or coaxial injectors in cryogenic engines.

Our current understanding of the mechanisms leading to atomization

rests in part on various theoretical approaches and in part on experimental

observation. In addition there are relatively few numerical studies (Tauber

& Tryggvason, 2002; Tauber et al., 2002; Leboissetier & Zaleski, 2002). The

work reported here focuses on the influence of viscosity on ligament forma-

tion and sizes. Various mechanisms have been suggested to explain liquid

jet atomization (Reitz & Bracco, 1982; Lasheras & Hopfinger, 2000). At

low enough Weber number (defined below) the Savart-Plateau-Rayleigh jet

instability dominates and creates droplets of roughly the size of the jet. At

larger velocities, instabilities of much shorter length scale develop.

At these large speeds, the process is rather complex. It involves turbu-

lence upstream of the injector as argued by Faeth et al. (1995), instabilities

near the injector due to the shearing motion of the liquid and the gas, liga-

ment and droplet formation and dispersion in an initially dense spray. The

region near the nozzle, where spray formation is initiated by the growth of

surface instabilities is thus especially interesting. To understand the instabil-

ities that develop in this region we focus in this paper on the two-dimensional,

spatially-periodic shear flow. This simplification is warranted by the approx-

imately periodic nature of the flow observed in experiments (see for instance

Hoyt & Taylor (1977); Lasheras & Hopfinger (2000)).

3



There is a large literature on the linear theory of the instability. The

classical stability theory of Chandrasekhar (1961) predicts droplet formation

when the gas Weber number We (defined below) exceeds a critical value. One

effect of viscosity is also to impose the existence of a critical Reynolds number

for instability development. Recently, we have discussed in another paper

(Yecko et al., 2002) the full viscous stability theory, finding several distinct

modes of instability. Relatively little work on the other hand can be found on

the nonlinear development. Inviscid fluid equations were solved by Rangel &

Sirignano (1988) using a boundary integral method for relatively moderate

density ratios r = ρg/ρl, however despite the large Reynolds numbers at

which atomization occurs, it is likely that finite viscosity effects are present

and thus inviscid fluid flow may not be close to Navier Stokes solutions.

Full simulations of the Navier-Stokes equations for two-phase liquid-gas

layers were seldom performed. Our group has performed calculations using

Volume of Fluid (VOF) methods. Some preliminary two-dimensional results

may be found in Keller et al. (1994), Li (1995) and Leboissetier & Zaleski

(2002) , while Zaleski et al. (1995) , Zaleski et al. (1996) and Bianchi et al.

(2005) have shown some preliminary three-dimensional results. Agreement

between the volume of fluid calculations and linear theory is particularly dif-

ficult to obtain, because of the complex effect of viscosity on the base profile

and on the instability growth rates and modes. Recently two and three-

dimensional solutions of the full Navier-Stokes equations were performed by

interface tracking methods, using connected markers to follow the interface

(Tauber & Tryggvason, 2002; Tauber et al., 2002).

In this paper we focus on the effect of viscosity on the length scales of

the ligaments and droplets. The theories existing today for droplet size (see

Lasheras & Hopfinger (2000) for a review and Marmottant & Villermaux
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(2002) for recent results) all assume that the droplet size is in proportion of

the wavelength of the instability. However in this paper we fix the wavelength

of the instability and observe the variation in droplet sizes. This should lead

to improved theories for droplet formation.

2 Basic equations and numerical method

We model the problem assuming sharp interfaces between two Newtonian,

viscous fluids with constant surface tension, in two dimensions of space. This

leads to the Navier-Stokes equations. We note u(x, t), p(x, t) the velocity

and pressure field, σ the surface tension (assumed constant), κ the interface

curvature, n the normal to the interface, µ the viscosity. The equations are

∂tu + u · ∇u = −1

ρ
∇p +

1

ρ
∇ · (2µD) + σκnδS , (1)

where δS is a distribution concentrated on the interface and D is the rate-of-

strain tensor

Dij =
1

2

(

∂uj

∂xi
+

∂ui

∂xj

)

. (2)

Incompressible flow is assumed

∇ · u = 0. (3)

The interface follows the flow, or in other words, the normal velocity of the

interface equals the normal flow velocity u ·n. For an interface height h(x, t)

this implies

∂th = v − u∂xh (4)

The viscosity and density are constant in each phase but vary from phase to

phase. An important consequence of Eq. (1) are the jump conditions on the

interface:

[u]S = 0 (5)
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for the velocity and

[−pn + 2µn ·D]s = σκn, (6)

for the stress.

The equations are solved in a square L×L domain and periodic bound-

ary conditions are used in the x direction. In the y direction we use free-slip

boundary conditions so that v = 0 and ∂yu = 0. To fully specify the problem

we also need initial conditions. The initial base flow is described in Sections

3 and 4. To this base flow we add an initial perturbation εu1(x, 0) where ε

is some small number.

With periodic boundary conditions, the problem is invariant under any

Galilean transformation that shifts the horizontal velocity field. Thus the

only relevant velocity scale is the velocity difference ∆U . With the above

parameters several dimensionless numbers may be defined, such as the Weber

numbers We i = ρi(∆U)2L/σ based on the gas (i = g) or the liquid (i =

l) and similarly the Reynolds numbers Re i = ρi∆UL/µi. Two additional

numbers are the density and viscosity ratios r = ρg/ρl = We g/We l and

k = νg/νl = Re l/Re g. With for instance We g, Re g, r and k we have a full

set of parameters.

We solve these equations using a combination of numerical methods de-

scribed in several prior publications (Lafaurie et al., 1994; Li, 1995; Gueyffier

et al., 1999; Scardovelli & Zaleski, 1999). The flow in the gas and liquid is

considered as the flow of a single fluid with variable viscosity and density,

and with singular forces inside the domain, in a manner consistent with the

formulation used in equation (1). We then discretize directly equation (1)

on a square, staggered, finite-difference grid known as the Marker-and-Cell

(MAC) grid. An explicit projection method is used for the pressure. This

method requires the resolution of an elliptic equation for the pressure which
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is solved using a multigrid method. The multigrid resolution is made more

efficient by tuning the number of iterations of the smoothing operator. The

tuning is a function of the convergence rate.

1.01.0

0.9

0.2

0

0.1 0 0

0.8

Figure 1: The basic principle of the VOF-PLIC method: the interface is

reconstructed by linear unconnected segments in each cell.

The motion of the interface following the flow is tracked using a second-

order volume of fluid (VOF) method described in Li (1995); Gueyffier et al.

(1999). The interface is located by a Volume of Fluid function Cij, and is

reconstructed at each time step as a series of linear segments (Fig. 1). The

principal advantage of this method compared to its competition is that it

ensures very good volume conservation. To transport the interface segments

from cell to cell we use the “explicit lagrangian” method Li (1995); Scardovelli

& Zaleski (2003); Aulisa et al. (2003) . It conserves mass with acceptable

accuracy (better that 0.1%) and automatically breaks thin ligaments.

For the viscosity of mixed cells we used two methods. The first method

is the arithmetic mean

µij = µ1Cij + µ2(1 − Cij) (7)

where µp is the viscosity of phase p and µij the viscosity at location ij. When

the viscosity is needed at staggered grid locations averages of neighboring
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points are taken. The other method is the harmonic mean

µ−1

ij = µ−1

1 Cij + µ−1

2 (1 − Cij). (8)

The arithmetic mean is optimal in a shear flow when the interface is perpen-

dicular to the flow, while the harmonic mean is optimal when the interface

is parallel to the flow.

Surface tension is also represented using an approximation of the dis-

tribution δS in (1) over the grid. We use the “continuous surface stress”

formulation described in Lafaurie et al. (1994) in which the surface tension

force is represented in a continuous way. The normal is calculated by

n =
∇h C

||∇hC|| . (9)

where ∇h is a finite difference operator. To compute the capillary term we

use the identity (valid for constant σ)

σκnδS = ∇ · [σ(I − n ⊗ n)]. (10)

We discretize it using

σκnδS = ∇h · [σ(1 − nh ⊗ nh)||∇hC||] (11)

In some cases (discussed below) we replace C by a smoothed field. In the

smoothed version the function Cij is filtered to obtain a smoothed function

C̃ij =
1

2
Cij +

1

8
[Ci,j−1 + Ci,j+1 + Ci−1,j + Ci+1,j] (12)

then we use it in expressions (9) and (11) above. This representation of

surface tension was shown to give good results for small amplitude capillary

waves. Indeed, simulations and theory compare well for capillary surface

oscillations as shown in Gueyffier et al. (1999). The smoothing is generally

considered to be a useful operation as it reduces spurious currents (Gueyffier

et al., 1999) however we show below in Section 4.5 that it may also have

drawbacks.
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3 Comparison with linear theory

Many previous tests of components of this code were performed, but it had

not been possible to succesfully compare the instability growth with linear

theory.

A specific test of our code for the study of sheared layers is to compare

its predictions to those of linear theory. Conversely, the linear theory is also

tested . The linear theory is rather complex and has been worked out in

detail only recently by Yecko et al. (2002); Boeck & Zaleski (2005); Gordillo

& Perez-Saborid (2005). An important conclusion of the recent work is that

great care must be taken to resolve the viscous stability problem with the

corresponding Orr-Sommerfeld equations, since their growth rates are very

different from the inviscid ones. In particular a new “H-mode”, named after

Hooper and Hinch (Hooper & Boyd, 1983; Hooper, 1985; Hooper & Boyd,

1987; Hinch, 1984) was found at higher wavenumbers and growth rates than

the previously known modes. Here we give only the result of the comparison

between linear theory and full numerics, for a discussion of the theory and

modes the reader is referred to the abvove references.

The typical base flow takes some time to adapt after the nozzle exit

but eventually settles on a flow with two boundary layers, one in the gas

and the other in the liquid. A realistic base flow that is a solution of the

Navier-Stokes equations has been considered (Figure 2(c)). It is made of two

error-function profiles with

u0,i(y) = Uierfc
(

y

δi

)

(13)

where the index i = g for y > 0 and i = l otherwise. When δi =
√

4νi(t + t0)

this is the flow that would evolve from the step function profile at t = −t0.
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Figure 2: The initial or base flows discussed in this paper (a) The simplest

profile: sharp velocity jump (b) A piecewise linear flow with two boundary

layers used in early studies. (c) A smooth boundary layers profile, used for

comparisons with linear theory and in most full simulations. (d) An inverted

liquid boundary layer, which mimics the situation just outside the nozzle.

At t = 0 there are two boundary layers of size δi =
√

4νit0. Then

δg/δl =
√

νg/νl (14)

It is also useful to define numbers based on boundary layer size Re?
g = Ugδg/νg

and We?
g = ρgU

2
g δg/σ. The two boundary layers must satisfy the stress

balance condition (6) which yields

µgUg/δg = µl|Ul|/δl (15)

Together with (14) this equation fixes the ratio Ug/Ul. For realistic liquid-gas

parameter values one finds Ug � |Ul|. When the Reynolds numbers are large

the boundary layers grow slowly by diffusion.

The full, Navier–Stokes, viscous equations were perturbed to find a lin-

earized approximation. The resulting Orr-Sommerfeld equations were solved

using a polynomial expansion and standard linear algebra packages (Yecko

et al., 2002; Boeck & Zaleski, 2005). Comparison of full numerical simulations
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with the predictions of the Orr-Sommerfeld theory gave excellent agreement

as shown on Figure 3 for parameter values Re g(L) = 8000, r = 0.1, m =

0.02, σ = 0. The boundary layer sizes were δl = δg = L/4. The computa-

tions reported in this Section were initialized using the linear mode computed

from the Orr-Sommerfeld equation. Exponential growth was observed on a

range of amplitudes of several orders of magnitude. Details of the analysis

and numerical resolution of the linearized equations may be found in Yecko

et al. (2002); Boeck & Zaleski (2005).

Another delicate point when performing a comparison between linear

theory and simulations is the necessity to avoid artifacts at early times. At

initial time the flow is set to the mode given by linear theory. The correct

growth rate is embedded in this mode: indeed the initial velocity of the

fluid under the interface in that mode is v0 = dh/dt(0) = h0s where s is

the growth rate and h0 the initial interface height. Thus the short-time

dependence h(t) = h0 + h0st yields, still at short times, an apparent growth

of the form h = h0 exp(st). To avoid this type of artifact it is important to

continue the simulation until h/h0 has varied by several orders of magnitude,

as we did in our comparisons. Moreover one of us (P.Y.) has also compared

the full numerical solution starting from random initial perturbations, finding

equally good agreement with Orr-Sommerfeld theory.

On Figure 4 a typical comparison is shown. On this figure and the

following ones, h1 is the Fourier amplitude of the interface deformation h(x)

with the minimal wavenumber 2π/L. The amplitude of the perturbation

starts at 10−6, much smaller than the grid spacing. In order to compare with

the most often used method, we have used the arithmetic mean. The initial

growth is faster than the theory, but as the amplitude reaches the level of

the grid spacing, the numerical and theoretical growth rates agree. When
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0 5 10 15 20 25 30
t

0,001

0,01

0,1

h 1

arithmetic mean, h=1/512
harmonic mean, h=1/512

Lx=1, Reg=8000, m=0.02, r=0.1, n=1,  α=2π
δg=Lx/4, α and Reg based on Lx, amplitude of perturbation = meshsize h/2

Figure 3: Amplitude growth for the arithmetic and harmonic mean of the

viscosity with initial amplitude of the order of the mesh size. The numerically

obtained amplitude growth is undistinguishable from the theoretical straight

line obtained from the solution of the Orr-Sommerfeld equations in the early,

linear part.
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0 5 10 15 20 25 30
t

1e-06

0,0001

0,01

1

h 1

h=1/1024
h=1/512
h=1/256
theory

Lx=1, Reg=8000, m=0.02, r=0.1, n=1,  α=2π
δg=Lx/4, α and Reg based on Lx, amplitude of perturbation = meshsize h/1000

Figure 4: Amplitude growth for an unstable mode as a function of dimen-

sionless time. Variables are dimensionless with the simulation box size Lx.
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one uses the harmonic mean, the initial rapid growth phase does not show

and the agreement with theory is immediate (Figure 5). Finally when the

initial amplitude of the perturbation is large enough, there is no difference

between the two methods (Figure 3).

0 5 10 15 20 25 30 35 40
t

1e-06

0,0001

0,01

1

h 1

arithmetic mean, h=1/512
harmonic mean, h=1/512

Lx=1, Reg=8000, m=0.1, r=0.1, n=1,  α=2π
δg=Lx/4, α and Reg based on Lx, amplitude of perturbation = meshsize h/1000

Figure 5: Amplitude growth for the arithmetic and harmonic mean of the

viscosity with initial amplitude smaller than the mesh size.

There is a significant difference between the two methods, but it appears

only when the deformations are smaller than the grid size. The harmonic

mean is definitely preferred here, but we do not exclude that the arithmetic

mean may be better in other flow configurations.
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4 Nonlinear results

4.1 Initial conditions and simulation parameters

Initially, a liquid layer of thickness L/3 is placed at the bottom of a square

L × L simulation domain, corresponding to an uniform square grid. The

interface is flat at initial time while we used various profiles for the ve-

locity. The instability is triggered by inserting two pairs of vortices inside

the liquid phase. Therefore, the initial wavelength of the imposed insta-

bility is λ = 0.5L. The vortices are patches of uniform vorticity of ra-

dius rc = 4 10−2L. Their dimensionless circulation (indicated in Table 1)

is Γ = (
∮

udl)/(2π∆UL), where ∆U is the velocity difference between gas

and liquid. For two boundary layers ∆U = Ug + Ul. In what follows we use

dimensionless numbers Re l,g, We l,g based on ∆U and L.

We have performed a very large number of simulations at various values

of the parameters. There are however about eight independent parameters

(Six in Table 1 and Re l and r). A full parametric study as a function of the

eight parameters is beyond the means of the present study, so we had to fix

the values of some of the parameters. The overall principle guiding the choice

of the parameter is numerical convenience: it is difficult to perform accurate

simulations when the surface tension (dimensionless surface tension may be

measured by the Laplace number La = ρldσ/µ2
l = Re2

l /Wel where d is a

characteristic length scale.), the Reynolds numbers and the density ratio are

all large. Although such computations are not impossible to attain, they are

much more complex. The simulations in this paper are thus restricted to the

case r = 0.1 which is simpler than the air-water one (which has r ≈ 0.0012).

This simpler case has however direct applications to liquid-gas atomization

at high pressure. We let Re l = 1000 as this provides a low-enough liquid
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viscosity to diminish the effect of liquid viscosity on ligament formation. The

other parameters varied are Re g and We g, and, in some cases, the boundary

layer width and structure.

The initial boundary-layer configuration is delicate to fix. In all cases

except D3 and E, the boundary layer widths are fixed by the diffusive growth

condition (14). The ratio Ug/Ul is fixed by the stress balance condition (15).

4.2 Convergence study

The effect of grid resolution is a tricky issue that we discuss in this Section

and in Section 4.8. On Figure 6 we show the result of a comparison between

the two viscosity methods (harmonic and arithmetic) and for two grid sizes.

The parameters are those of case D in Table 1.

We see that convergence is attained in both cases, and that the choice

of the viscosity method has no visible effect. On the other hand when we

initialize the simulation with an initial sharp velocity profile as shown in

Fig. 2(a) (a simplification used in most simulations of the literature for the

sake of simplicity) we see two effects on Fig. 7. One is that as the grid is

refined, more and more small structures are seen. The other effect is that

these small structures are more pronounced in the arithmetic mean case. A

likely explanation for the small structures is as follows: the case of a sharp

velocity profile is essentially identical to a profile where the boundary layers

have shrunk to the size of the grid spacing. As the boundary layers decrease

in size, the modes found by the Orr-Sommefeld theory (Boeck & Zaleski,

2005) reach a very large growth rate and wavenumber. This can be seen by

comparing Fig. 19 and Fig. 22 containing the growth rates for the cases

D and D2. For the second effect, the growth is enhanced in the arithmetic

mean case as it gives faster growth in the initial instants as on Fig. 4.

16



harmonic 

512 x 512

harmonic 

256 x 256

arithmetic

512 x 512

arithmetic

256 x 256

Figure 6: Nonlinear development of the instability for the two viscosity meth-

ods and two grid sizes (case D).
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Table 1: Parameters used in the unequal density simulations. None instead

of a value for δl,g/L means that there were no boundary layers. Numbers

Re ?
g, We ?

g are based on boundary layer sizes.

Run Re g(L) We g(L) µg/µl δg/L δl/L Γ Re ?
g We ?

g

A 500 500 0.2 0.1 0.707 0.075 43.81 38.38

B 4000 500 0.025 0.1 0.2 0.025 380.95 45.35

C 500 4000 0.2 0.1 0.707 0.025 43.81 307.02

D 4000 4000 0.025 0.1 0.2 0.025 380.95 362.81

D1 4000 4000 0.025 0.1 0.2 0.05 380.95 362.81

D2 4000 4000 0.025 0.01 0.02 0.05 38.1 36.28

D3 4000 4000 0.025 0.1 inverted b. l. (see text)

E 4000 4000 0.025 none none 0.025 — —

From these results, we conclude that the initial sharp velocity profile

(Figure 2(a)) is an ill-posed problem: ever faster growth rates are obtained

as the grid is refined and larger wavenumber are explored. Thus in what

follows we always initialize the flow with small boundary layers in both the

gas and in the liquid.

4.3 Ligament formation at balanced density

Before we move on to the solution of the full problem, it is interesting to

consider a simpler case. We performed simulations with equal viscosity and

densities, and a sharp velocity jump. Typical Kelvin-Helmholtz roll-ups are

obtained, with the two phases occupying symmetrical regions of space. How-

ever if the base flow is made asymmetrical with a boundary layer in the gas

only then the flow of Figure 8 is observed. In that case, the boundary layer
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harmonic

1024 x 1024

512 x 512

256 x 256

arithmetic

We=4000, Re=4000, r=0.1, m=0.025, We,Re based on domain size

Initial condition four vortices of circulation−si = 0.5, L−si=0.01

Figure 7: Nonlinear development of the instability for the two viscosity meth-

ods and for two grid sizes (case E).

was linear as in Figure 2(b) with no boundary layer in the liquid (Ul = 0 ) and

δg = 0.2L, Re l = Re g = 2000, σ = 0. Grid size was 256× 256 nodes. Notice

how a ligament-like structure forms at t = 1. This demonstrates that density

or viscosity asymmetry are not alone responsible for the asymmetric ligament

formation: the asymmetry in boundary layers plays a major rôle. Such an

asymmetry in boundary layers occurs in most realistic flows. As a result of

the stress-balance condition (15) Ug/Ul = µl/µg(νg/νl)
1/2. The right-hand

side is a large number for most fluids, and thus most of the vorticity is in the

gas.

4.4 Results for variable density

We have observed ligament formation and evolution in the non-linear regime.

Ligaments form if Re g, We l and Γ are all large enough as shown on diagram

9 (This diagram was completed at relatively low resolution, thus the results
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( t  = 0.0 ) ( t  = 0.4 )

( t  = 1.0 ) ( t  = 1.6 )

( t  = 0.6 ) ( t  = 0.8 )

Figure 8: Simulation of a sheared flow between identical fluids. There is no

surface tension. The only asymmetry is in the boundary layers, as described

in the text. The lines are streamlines and the grey area tracks the “liquid”

phase. The gas boundary layer is visible as the region where streamlines are

more sparse.
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Re

10

100

1000

10000

We

Figure 9: Diagram in parameter space showing when ligaments form and

eventually break at low (256 × 256 resolution. Symbols ∗ indicate that a

ligament formed and broke, while + symbols indicate that ligaments did not

fully develop )
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are not readily comparable to those of Figures 11, 14, 17 etc.). A discussion

of the limits in this diagram is given in the next Section.

Four stages in the simulated development may be identified, although

not all of them occur for all parameter values. (i) The interface deforms

with a steadily growing amplitude. Vorticity remains attached close to the

interface but the gas boundary layer grows more or less rapidly depending on

Reynolds number. This stage corresponds to the linear development of the

instability as well as the early nonlinear development. (ii) Vorticity detaches

from the boundary layers. This corresponds to the situation at t = 0.8 on

Figure 8. (iii) Ligaments form. In the symmetric fluids case this is the

situation at t = 1 . Various ligament shapes are shown on Figures 11, 14,

17, 20, 21. (iv) As the ligaments stretch and bend, their tips grow into a

more or less visible bulge or end rim from capillary effects. This rim is of

the type studied by Taylor (1959); Culick (1960). It was shown by Brenner

& Gueyffier (1999) that it is more or less rounded depending on the ratio of

viscous to surface tension forces. The 3D destabilization of this rim is one of

the possible mechanisms for droplet formation (Fullana & Zaleski, 1999).

A wider rim is most clearly seen when the Weber number is relatively

moderate as on Figure 11(b). Behind the thick rim the ligament continues

to stretch and eventually becomes so thin that it breaks. This rupture is a

resolution-dependent phenomenon.

We have frequently observed between step (ii) and (iii) that vortices

merge, ending with a single ligament and a single vortical region. This vortex

merging phenomenon is consistent with the vortex merging observed in the

spatial development of shear layers (Brown & Roshko, 1974). Indeed Raynal

(1997) has observed an increase in the wavelength with the distance from the

nozzle. This overall picture is modified with the parameters of the flow in a
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way we shall now examine.

4.5 Effect of Reynolds and Weber numbers

Table 1 describes the cases simulated in the nonlinear regime. It contains

four basic cases A, B, C and D and a few others derived from the basic

cases. To build these cases, we consider two values of the gas Reynolds and

Weber numbers: a “small” value of 500 and a “large” value of 4000 and get

four combinations. The growth rates predicted for five of the cases by the

Orr-Sommerfeld theory are shown on Figures 10-22. These show the growth

rate αci as a function of α, the wavenumber of the unstable mode; ci is

the imaginary part of the wave speed. The observed stability of the flow is

however not immediately derived from the theoretical growthrates. This is

because the base flow is not “frozen” as time increases, the boundary layer

size increases as
√

νt. Thus an initially unstable configuration may become

stable. The time scale for boundary layer growth for phase p is tν = δ2
p/νp and

the time scale for instability is ti = Lαci/∆U . The ratio of the time scales

is Rp = tν/ti = αciRe ∗

pδp/L, where Re ∗

p is the Reynolds number based on

boundary layer size and other quantities in phase p. To maintain the profile

approximately “frozen” in both layers during the growth of the instability by

several e-folds one needs to have both Rg, Rl >> 1. A similar theory was put

forward by Villermaux (1998) and Raynal (1997) but based on the inviscid

linear theory alone. In the inviscid theory, there is only one unstable mode

which as a rule of thumb is less unstable than the viscous modes as shown

by Boeck & Zaleski (2005).

The lowest Re and We numbers are those of case A, for which simula-

tions were performed with resolution up to 1024×1024. One sees from Table

1 and Figure 10 that the n = 2 mode, which corresponds to the initialization
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Figure 10: The growth rates in linear Orr-Sommerfeld theory for case A. The

wavenumber α is in units of 1/L. Thus the wavenumbers that fit in the box

are α = 2nπ. Only the n = 1 mode is unstable, while our initial condition

with two pairs of vortices corresponds to n = 2 and a stable mode. Both the

standard mode and the H-mode are seen in this case.

(a)

(b)

Figure 11: Two stages of ligament formation and elongation at low Reynods

number, 512 × 512 grid, case A Re g = 500 and We g = 500, (a) t = 2.8 (b)

t = 7.92.
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(a)

(b)

Figure 12: Reconnection of the thin gas layer in the simulation case A with

filtered C in the surface tension method (equation (12)), at time t = 7.28.

(a) full domain (b) detail.
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by our four vortices, is stable. However non-linear interaction will also excite

mode n = 1 with wavenumber α = 2π, which is barely unstable (Figure 10)

for which Rg ' 0.4. So despite the apparently high We and Re numbers

for case A the conditions for instability are not met. Indeed case A lies just

on the edge of the ligament-forming region on Figure 9. Actually, case A is

marked as “ligament-forming” on Figure 9, which reports results at resolu-

tion 256 × 256 with a moderate initial perturbation (Γ = 0.025), while the

sequence obtained at resolution 512×512 and higher with a similar moderate

initial perturbation does not lead to fully formed ligaments and breakup.

It is interesting to notice that the instability in cases A and C would be

even weaker, but for the existence of the second instability mode. This shows

the importance of computing accurately the stability properties in the realis-

tic viscous framework. Nonlinear calculations show that ligaments form in a

transient way but subsequently not stretch sufficiently to eventually fracture,

even at moderate resolution. However, with a relatively large circulation in

the initial condition (Γ = 0.075), one does see the formation of a ligament,

with a relatively large end rim. For such a large initial circulation the early

non linear shapes differ from those obtained with smaller amplitude vortices

(for instance in Figure 6). The air forms fingers entering the liquid (Figure

11(a)). An interesting effect of the surface tension algorithm may be ob-

served. On Figure 12 we see that using the filtered C for surface tension

creates an attractive force between the interfaces that speeds up the recon-

nection. This may be understood as the filtering will “feel” the neighboring

interface at a longer distance. In some sense it makes the interface thicker

from the point of view of the surface tension method. Without filtering, a

similar reconnection also occurs but much later, at t = 8.8.

Case C has the same moderate Re but larger We . A thinner, longer
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ligament is created (Figure 14), at the standard value of the circulation. We

show on Figure 14c the last image before reconnection occurs: in a manner

similar to case A , the thin air film reconnects.
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0,1

0,2
αc

i

Figure 13: The growth rates in linear Orr-Sommerfeld theory for case C.

Two modes are seen again.

If we increase the Reynolds number but keep the Weber number mod-

erate as in case B we obtain the sequence shown in Figure 17. It is seen

that the two bumps merge between times t = 4 and t = 4.8. At t = 9.76,

just before breakup a very long ligament is seen (the reader should remember

that the domain is periodic, and lines ending on the right are connected to

lines starting on the left; thus on Figure 17c a single ligament winds around

the periodic box). The complex shape observed at time 9.76 is created by a

process of folding and stretching.

Finally, if we increase the Reynolds number and the Weber number as

in case D the ligament folds again in complex ways as show on Figure 20.

The effect of the gas Reynolds number on the stretching and fracture

mechanism can be seen by comparing the results for the low Reynolds number

cases A and C with those of the higher Reynolds numbers cases B and D.
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(a)

(b)

(c)

Figure 14: Three stages of ligament formation and elongation at low Reynods

number, 512 × 512 grid, case C Re g = 500 and We g = 4000, (a) t = 4 (b)

t = 5.6 (c) t = 8.8.

Figure 15: Vorticity in case C at t = 4
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Figure 16: The growth rates in linear Orr-Sommerfeld theory for case B.

(a)

(b)

(c)

Figure 17: Three stages of ligament formation and elongation at higher Reyn-

ods number, 512 × 512 grid, case B: Re g = 4000 and We g = 500, (a) t = 4

(b) t = 4.8 (c) t = 9.76.
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(a)

(b)

Figure 18: Vorticity in case B at (a) t = 4 and (b) t = 9.76

At relatively low Reynolds number (near the left boundary in Figure 9) the

boundary layer δg(t) grows fast. Before the ligaments have fully developed,

the boundary layer has spread over the entire box and little vorticity is left.

This may be seen on Figure 15 which shows the vorticity contours for case C.

At higher Reynolds number, vorticity does not spread but detaches from the

ligaments as shown in Figure 18. This process of boundary layer separation,

or roll-up, may occur very early. At high Reynolds numbers even a small

deformation of the interface triggers separation and roll up.

The effect of the Weber number may also be inferred from these results.

As a rough guide, a large Weber number favors the formation of very thin

ligaments with almost negligible end rims. However the time at which the

ligament is observed is also relevant. When breakup occurs late, ligaments

had the time to thin in their central part but the end rims have grown. This

may be seen for instance on Figure 14c: although the Weber number is rather

large, a significant end rim is seen.
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Figure 19: The growth rates in linear Orr-Sommerfeld theory for case D.

(a)

(b)

(c)

Figure 20: Three stages of ligament formation and elongation at higher Reyn-

ods number, 512 × 512 grid, case D Re g = 4000 and We g = 4000, (a) t = 6

(b) t = 6.8 (c) t = 6.96.
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4.6 Effect of the perturbation amplitude

One effect of a large perturbation amplitude has already been seen in case

A: the air penetrates the liquid.

In the high Reynolds number case, varying the initial amplitude of the

perturbation also has a dramatic effect on the fate of the ligament. Increasing

the initial perturbation, as in Case D1, makes the ligament rapidly sprout

up. A thin ligament, pointing upwards, is formed. It is shown just before its

breakup (at time t = 4) on Figure 21.

Which amplitude for initial perturbations is realistic depends on the

experiment or natural configuration being considered. While some nozzles

will involve highly turbulent flow, others are controlled to reduce the level of

turbulence in the nozzle. The turbulence level, defined as the ratio of root

mean square fluctuating velocity to the mean flow velocity may arguably be

of the order of Γ, and turbulence levels of 0.01 are not uncommon.

Figure 21: Case D1 (same as D but at larger perturbation amplitude): the

breakup occurs much earlier, just after time t = 4, which is shown here.

4.7 Effect of the boundary layers

All the simulations we have shown up to now involve boundary layers of

the shape shown on Figure 2(c), obey the condition of diffusive growth of

the boundary layers (14) and have the same width in the gas layer. We
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Figure 22: The growth rates in linear Orr-Sommerfeld theory for case D2.

Figure 23: Case D2 : larger perturbation amplitude but thinner boundary

layers. At time t = 2.4 the ligaments roll up instead of shooting upwards.
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have attempted many simulations were one or several of these conditions

are modified. This usually changes the eventual fate of the ligament. For

instance, thinner boundary layers change case D1, in which the ligament was

pointing upwards before breakup, into ligaments rolling downwards (Figure

23). The result for these thin boundary layers is however different from the

result obtained with no boundary layers (case E, not shown for late times).

Finally we have attempted to simulate the kind of boundary layers that

would occur just downstream of the splitter plate between parallel liquid and

gas streams. In that case, just behind the splitter plate, the boundary layers

will have the shape shown on Figure 2(d). In case D3 liquid velocity is now

of opposite sign

u0,l(y) = −Ulerfc
(

y

δl

)

. (16)

In case D3, the parameters are identical to case D but the condition of stress

balance (15) cannot be verified. The liquid velocity is set instead arbitrarily

by Ul/Ug = 0.1 ( a realistic ratio for laboratory experiments). We now find

again a ligament pointing rapidly upwards.

Figure 24: Case D3 : Inverted liquid boundary layer. At time t = 4.48 the

left ligament points up and is about to break.
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4.8 Effect of grid resolution

One effect of grid resolution that we have already reported is that coarse grids

lead to stronger instability : for instance in case A ligaments form at 256×256

as shown in Figure 9 while ligaments do not form at higher resolution. This

is due to a lower effective surface tension at low resolution. Once instability

is set and ligaments are stretching, finer grids lead to later breakups, however

the process is not uniform. At some moments and locations in the flow, the

ligaments are caught in rapid elongational flows that break them rapidly no

matter what the resolution. Then increasing the resolution has no dramatic

effect. For most of the figures shown, varying the resolution between 2562

and 10242 has no qualitative effect. On the other hand, in some cases a

remarkable effect is seen. On Figure 25 we show case B at low resolution,

just before breakup. In a sense, this lower resolution simulation may look

more realistic compared to experimental photographs: this may be because

the thinner, longer, convoluted ligaments obtained at larger resolution are

often broken by three-dimensional effects.

Figure 25: Case B at lower resolution: the breakup occurs much earlier than

in the high resolution case. Here the ligament is shown at t = 8.4 just before

breakup.
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5 Conclusion

In the foregoing, we have described a method built on several known numer-

ical schemes, such as Volume of Fluid, which together allow the deformation

of interfaces in a mixing layer to be followed. The validation is performed

through comparisons with the linear theory. In this way a kind of cross-

validation is achieved: the linear theory, which is rather complex, is also

made more reliable through the agreement with the full numerical resolution

of the Navier-Stokes equations.

We also show that the method used to approximate the viscous terms

in the mixed cells may have an important effect on the growth rate, but

the effect is limited to the range where the perturbation ampliture is small

relative to the grid size. Nevertheless, this effect may over-amplify the growth

of some length scales if proper care is not taken.

Indeed, our results show that one ingredient of a careful treatment of the

instability is the introduction of boundary layers in the initial conditions. The

absence of initial boundary layers makes the problem ill-posed because of the

appearance of very rapidly growing modes. This results in poor convergence

as the grid is refined.

On this basis we have been able to obtain some results on the non-linear

development of the instability. One of the most striking effects is that rela-

tively large Reynolds and Weber numbers are necessary to observe growing

ligaments. Going further in time after the formation of the ligaments, one

eventually sees the topology of the solutions change. This event is depen-

dent on the grid resolution and thus difficult to analyze. Physical reality is

three-dimensional and because of this the real flows may diverge from the

solutions in this paper before the breakup stages we have identified actually

occur. On the other hand, in a fast flow the width of the sheets may become
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so thin, of the order of nanometers, that they would break physically (see

Raynal (1997) pp 196 and 198 for experimental evidence).

Nevertheless the simulations show realistic mechanisms and may be

used to build theories of droplet formation. A systematic prediction of the

size of the end rim may help in determining the final droplet size. As seen

in this paper, accurate predictions require very high resolution simulations.

A complete series of such simulations should be undertaken to determine

end-rim size as a function of physical parameters.

Another perspective of this work is to perform three-dimensional and

spatially developing simulations of comparable resolution. Most existing

three-dimensional work, including the work by some of us (for instance Za-

leski et al. (1996); Bianchi et al. (2005)) suffers from one or several defects

that we tried to avoid in the present work: resolution too small (i.e. grids

too coarse), initial perturbation amplitude too large, lack of boundary layers.

Correcting these defects is likely to require extensive computing resources,

even allowing for a future marked increase in computer power.

Another perspective is to extend these results to more realistic cases,

were the parameters are closer to the experimental conditions of an air-

water experiment in a laboratory or a wind generated wave in the natural

environment. Such a study would involve more numerical difficulties than

the present one, as it requires to increase both the surface tension (or the

number La ) and the density ratio. It would however be of considerable

interest.
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