#include "utilf.h"
#include "markers.h"
#include "extra1.h"
#include "extra.h"
#include "make_bc.h"
#include "inout.h"
Include dependency graph for extra1.c:
Go to the source code of this file.
Defines | |
#define | NU 5 |
#define | NV 5 |
#define | NI 2 |
Functions | |
int | aligned (real x0, real y0, real x1, real y1, real x2, real y2, real x3, real y3) |
int | four_aligned (real *x, real *y, int n) |
int | closest_u (real x, real y, real2D u, real2D cu, real *xu, real *yu, real *uu, int nx, int ny) |
int | closest_v (real x, real y, real2D v, real2D cv, real *xv, real *yv, real *vv, int nx, int ny) |
int | gauss3 (real A[12][12], real B[12], real C[12], real *det, int n) |
void | extra_poly (real x, real y, real2D u, real2D cu, real2D v, real2D cv, interface in, real *eu, real *ev, int nx, int ny) |
|
Definition at line 10 of file extra1.c. Referenced by extra_poly(). |
|
Definition at line 8 of file extra1.c. Referenced by extra_poly(). |
|
Definition at line 9 of file extra1.c. Referenced by extra_poly(). |
|
Definition at line 13 of file extra1.c. References real. Referenced by four_aligned().
00015 { 00016 real dx, dy; 00017 dx = x1 - x0; dy = y1 - y0; 00018 if (dx*(y2 - y0) - dy*(x2 - x0) != 0.0 || 00019 dx*(y3 - y0) - dy*(x3 - x0) != 0.0) 00020 return 0; 00021 return 1; 00022 } |
|
Definition at line 39 of file extra1.c. References INU, real, real2D, and sq. Referenced by extra_poly(), extra_velocity_normals(), and extra_velocity_normals2().
00041 { 00042 int i, j, k, i1, j1, n = 0; 00043 real xl, yl, ul, dl; 00044 00045 i = x; j = (int) ((real)y - 0.5); 00046 for (i1 = i - 2; i1 <= i + 2; i1++) 00047 for (j1 = j - 2; j1 <= j + 2; j1++) 00048 if (INU(i1,j1)) { 00049 xu[n] = i1; yu[n] = j1 + 0.5; uu[n++] = u[i1][j1]; 00050 } 00051 00052 /* sort the points */ 00053 for (k = 1; k < n; k++) { 00054 xl = xu[k]; yl = yu[k]; ul = uu[k]; 00055 i = k - 1; 00056 dl = sq(x - xl) + sq(y - yl); 00057 while (i >= 0 && sq(xu[i] - x) + sq(yu[i] - y) > dl) { 00058 xu[i+1] = xu[i]; yu[i+1] = yu[i]; uu[i+1] = uu[i]; 00059 i--; 00060 } 00061 xu[i+1] = xl; yu[i+1] = yl; uu[i+1] = ul; 00062 } 00063 return n; 00064 } |
|
Definition at line 67 of file extra1.c. References INV, real, real2D, and sq. Referenced by extra_poly(), extra_velocity_normals(), and extra_velocity_normals2().
00069 { 00070 int i, j, k, i1, j1, n = 0; 00071 real xl, yl, vl, dl; 00072 00073 i = (int)((real)x - 0.5); j = y; 00074 for (i1 = i - 2; i1 <= i + 2; i1++) 00075 for (j1 = j - 2; j1 <= j + 2; j1++) 00076 if (INV(i1,j1)) { 00077 xv[n] = i1 + 0.5; yv[n] = j1; vv[n++] = v[i1][j1]; 00078 } 00079 00080 /* sort the points */ 00081 for (k = 1; k < n; k++) { 00082 xl = xv[k]; yl = yv[k]; vl = vv[k]; 00083 i = k - 1; 00084 dl = sq(x - xl) + sq(y - yl); 00085 while (i >= 0 && sq(xv[i] - x) + sq(yv[i] - y) > dl) { 00086 xv[i+1] = xv[i]; yv[i+1] = yv[i]; vv[i+1] = vv[i]; 00087 i--; 00088 } 00089 xv[i+1] = xl; yv[i+1] = yl; vv[i+1] = vl; 00090 } 00091 return n; 00092 } |
|
Definition at line 140 of file extra1.c. References closest_normal(), closest_u(), closest_v(), four_aligned(), gauss3(), interface_arc(), interface::n, NI, NU, NV, real, real2D, splint, splint1, interface::spx, interface::spy, sq, interface::t, xi, and yi.
00144 { 00145 real xu[25], yu[25], uu[25]; 00146 real xv[25], yv[25], vv[25]; 00147 real xi[NI], yi[NI], xni[NI], yni[NI]; 00148 real xmin, ymin, pmin, tmin, xn, yn, t, t1, dl; 00149 int i, j, n; 00150 real a[12][12], b[12], c[12], tt, tp, det; 00151 FILE *fptr; 00152 static int graph, graph1; 00153 00154 if (!closest_normal(x, y, in, &xmin, &ymin, &pmin, &tmin, &xn, &yn)) { 00155 fprintf(stderr, "extra_poly(%g,%g): no closest normal\n", x, y); 00156 exit(1); 00157 } 00158 for (n = 0, t = tmin - 0.5; n < NI; n++, t += 1.0) 00159 if (t < 0.0 || t > in.t[in.n-1]) { 00160 t1 = t < 0.0 ? -t : 2.*in.t[in.n-1] - t; 00161 i = interface_arc(in, t1); 00162 xi[n] = splint(in.spx[i], t1); 00163 yi[n] = 4. - splint(in.spy[i], t1); 00164 xni[n] = - splint1(in.spy[i], t1); 00165 yni[n] = - splint1(in.spx[i], t1); 00166 dl = sqrt(sq(xni[n]) + sq(yni[n])); 00167 xni[n] /= dl; yni[n] /= dl; 00168 } 00169 else { 00170 i = interface_arc(in, t); 00171 xi[n] = splint(in.spx[i], t); 00172 yi[n] = splint(in.spy[i], t); 00173 xni[n] = - splint1(in.spy[i], t); 00174 yni[n] = splint1(in.spx[i], t); 00175 dl = sqrt(sq(xni[n]) + sq(yni[n])); 00176 xni[n] /= dl; yni[n] /= dl; 00177 } 00178 00179 fptr = fopen("ipoints", "at"); 00180 for (i = 0; i < NI; i++) 00181 fprintf(fptr, "%g %g\n%g %g\n%g %g\n\n", x, y, xi[i], yi[i], 00182 xi[i] + xni[i], yi[i] + yni[i]); 00183 fclose(fptr); 00184 00185 if (closest_u(xmin, ymin, u, cu, xu, yu, uu, nx, ny) < NU) { 00186 fprintf(stderr, "extra_poly(%g,%g): not enough u's\n", x, y); 00187 exit(1); 00188 } 00189 if (closest_v(xmin, ymin, v, cv, xv, yv, vv, nx, ny) < NV) { 00190 fprintf(stderr, "extra_poly(%g,%g): not enough v's\n", x, y); 00191 exit(1); 00192 } 00193 00194 fptr = fopen("upoints", "at"); 00195 for (i = 0; i < NU; i++) 00196 fprintf(fptr, "%g %g\n%g %g\n\n", x, y, xu[i], yu[i]); 00197 fclose(fptr); 00198 fptr = fopen("vpoints", "at"); 00199 for (i = 0; i < NV; i++) 00200 fprintf(fptr, "%g %g\n%g %g\n\n", x, y, xv[i], yv[i]); 00201 fclose(fptr); 00202 00203 if (four_aligned(xu, yu, 4)) { 00204 xu[3] = xu[4]; yu[3] = yu[4]; uu[3] = uu[4]; 00205 xu[4] = xu[5]; yu[4] = yu[5]; uu[4] = uu[5]; 00206 } 00207 if (four_aligned(xu, yu, 5)) { 00208 xu[4] = xu[5]; yu[4] = yu[5]; uu[4] = uu[5]; 00209 } 00210 if (four_aligned(xv, yv, 4)) { 00211 xv[3] = xv[4]; yv[3] = yv[4]; vv[3] = vv[4]; 00212 xv[4] = xv[5]; yv[4] = yv[5]; vv[4] = vv[5]; 00213 } 00214 if (four_aligned(xv, yv, 5)) { 00215 xv[4] = xv[5]; yv[4] = yv[5]; vv[4] = vv[5]; 00216 } 00217 00218 /* build the system of equations */ 00219 for (i = 0; i < NU; i++) { 00220 a[i][0] = sq(xu[i]); a[i][1] = sq(yu[i]); a[i][2] = xu[i]*yu[i]; 00221 a[i][3] = xu[i]; a[i][4] = yu[i]; a[i][5] = 1.0; 00222 a[i][6] = a[i][7] = a[i][8] = a[i][9] = a[i][10] = a[i][11] = 0.0; 00223 c[i] = uu[i]; 00224 } 00225 for (i = 0; i < NV; i++) { 00226 a[i+NU][0] = a[i+NU][1] = a[i+NU][2] = 00227 a[i+NU][3] = a[i+NU][4] = a[i+NU][5] = 0.0; 00228 a[i+NU][6] = sq(xv[i]); a[i+NU][7] = sq(yv[i]); a[i+NU][8] = xv[i]*yv[i]; 00229 a[i+NU][9] = xv[i]; a[i+NU][10] = yv[i]; a[i+NU][11] = 1.0; 00230 c[i+NU] = vv[i]; 00231 } 00232 for (i = 0; i < NI; i++) { 00233 tt = -xni[i]*yni[i]; tp = 0.5*(sq(yni[i]) - sq(xni[i])); 00234 a[i+NU+NV][0] = -2.*tt*xi[i]; a[i+NU+NV][1] = 2.*tp*yi[i]; 00235 a[i+NU+NV][2] = tp*xi[i] - tt*yi[i]; 00236 a[i+NU+NV][3] = -tt; a[i+NU+NV][4] = tp; a[i+NU+NV][5] = 0.0; 00237 a[i+NU+NV][6] = 2.*tp*xi[i]; a[i+NU+NV][7] = 2.*tt*yi[i]; 00238 a[i+NU+NV][8] = tt*xi[i] + tp*yi[i]; 00239 a[i+NU+NV][9] = tp; a[i+NU+NV][10] = tt; a[i+NU+NV][11] = 0.0; 00240 c[i+NU+NV] = 0.0; 00241 } 00242 00243 /* 00244 for (i = 0; i < 12; i++) { 00245 for (j = 0; j < 12; j++) 00246 printf("%g\t", a[i][j]); 00247 printf("\n"); 00248 } 00249 printf("\n"); 00250 */ 00251 00252 if (gauss3(a, c, b, &det, 12)) { 00253 FILE *fptr; 00254 char s[256]; 00255 sprintf(s, "nosolution.%d.xmgr", graph++); 00256 fptr = fopen(s, "wt"); 00257 fprintf(stderr, "extra_poly(%g,%g): no solution det = %g\n", x, y, det); 00258 fprintf(fptr, "%g %g\n&\n", x, y); 00259 for (i = 0; i < NU; i++) 00260 fprintf(fptr, "%g %g\n", xu[i], yu[i]); 00261 fprintf(fptr, "&\n"); 00262 for (i = 0; i < NV; i++) 00263 fprintf(fptr, "%g %g\n", xv[i], yv[i]); 00264 fprintf(fptr, "&\n"); 00265 for (i = 0; i < NI; i++) 00266 fprintf(fptr, "%g %g\n", xi[i], yi[i]); 00267 fprintf(fptr, "&\n"); 00268 fclose(fptr); 00269 /* exit(1); */ 00270 } 00271 /* 00272 for (i = 0; i < 12; i++) 00273 printf("%g\t", b[i]); 00274 printf("\n"); 00275 */ 00276 *eu = b[0]*sq(x) + b[1]*sq(y) + b[2]*x*y + b[3]*x + b[4]*y + b[5]; 00277 *ev = b[6]*sq(x) + b[7]*sq(y) + b[8]*x*y + b[9]*x + b[10]*y + b[11]; 00278 00279 { 00280 real maxu = 0, minu = nx, x1, y1, maxv = 0, minv = ny; 00281 char s[256]; 00282 static int truc; 00283 sprintf(s, "toto.%d", truc++); 00284 fptr = fopen(s, "wt"); 00285 00286 fprintf(fptr, "# %g %g\n# &\n", x, y); 00287 for (i = 0; i < NU; i++) 00288 fprintf(fptr, "# %g %g\n", xu[i], yu[i]); 00289 fprintf(fptr, "# &\n"); 00290 for (i = 0; i < NV; i++) 00291 fprintf(fptr, "# %g %g\n", xv[i], yv[i]); 00292 fprintf(fptr, "# &\n"); 00293 for (i = 0; i < NI; i++) 00294 fprintf(fptr, "# %g %g\n", xi[i], yi[i]); 00295 fprintf(fptr, "# &\n"); 00296 00297 for (i = 0; i < NU; i++) { 00298 maxu = xu[i] > maxu ? xu[i] : maxu; 00299 minu = xu[i] < minu ? xu[i] : minu; 00300 maxv = yu[i] > maxv ? yu[i] : maxv; 00301 minv = yu[i] < minv ? yu[i] : minv; 00302 } 00303 for (x1 = minu; x1 <= maxu; x1 += (maxu - minu)/10.) { 00304 for (y1 = minv; y1 <= maxv; y1 += (maxv - minv)/10.) 00305 fprintf(fptr, "%g %g %g\n", x1, y1, 00306 b[0]*sq(x1) + b[1]*sq(y1) + b[2]*x1*y1 + b[3]*x1 + b[4]*y1 + b[5]); 00307 fprintf(fptr, "\n"); 00308 } 00309 fclose(fptr); 00310 } 00311 } |
|
Definition at line 25 of file extra1.c. References aligned(), and real. Referenced by extra_poly().
00026 { 00027 if (n < 4) return 0; 00028 if (n == 4) return aligned(x[0], y[0], x[1], y[1], x[2], y[2], x[3], y[3]); 00029 if (aligned(x[0], y[0], x[1], y[1], x[2], y[2], x[3], y[3]) || 00030 aligned(x[1], y[1], x[2], y[2], x[3], y[3], x[4], y[4]) || 00031 aligned(x[2], y[2], x[3], y[3], x[4], y[4], x[0], y[0]) || 00032 aligned(x[3], y[3], x[4], y[4], x[0], y[0], x[1], y[1]) || 00033 aligned(x[4], y[4], x[0], y[0], x[1], y[1], x[2], y[2])) 00034 return 1; 00035 return 0; 00036 } |
|
Definition at line 95 of file extra1.c. References real. Referenced by extra_poly().
00096 { 00097 int i, j, k, i1; 00098 real max, temp; 00099 00100 for (j = 0; j <= n - 2; j++) { 00101 i1 = j; 00102 max = fabs(A[j][j]); 00103 for (i = j + 1; i < n; i++) { 00104 if (fabs(A[i][j]) >= max) { 00105 i1 = i; 00106 max = fabs(A[i][j]); 00107 } 00108 } 00109 for (k = j; k < n; k++) { 00110 max = A[j][k]; A[j][k] = A[i1][k]; A[i1][k] = max; 00111 } 00112 max = B[j]; B[j] = B[i1]; B[i1] = max; 00113 for (i = j + 1; i < n; i++) { 00114 if (A[j][j] == 0.) 00115 return 1; 00116 else 00117 temp = A[i][j] / A[j][j]; 00118 for (k = j; k < n; k++) 00119 A[i][k] -= temp * A[j][k]; 00120 B[i] -= temp * B[j]; 00121 } 00122 } 00123 00124 *det = 1.0; 00125 for (i = 0; i < n; i++) 00126 *det *= A[i][i]; 00127 if (fabs(*det) < 1.e-10) return 1; 00128 00129 C[n - 1] = B[n - 1] / A[n - 1][n - 1]; 00130 for (i = n - 2; i >= 0; i--) { 00131 C[i] = B[i]; 00132 for (k = i + 1; k < n; k++) 00133 C[i] -= A[i][k] * C[k]; 00134 C[i] /= A[i][i]; 00135 } 00136 return 0; 00137 } |